B2GM travel footprint

Fabian Becherer

Deutsches Elektronen Synchrotron, DESY Belle II Experiment, KEK

May 13, 2024

HELMHOLTZ

Fabian Becherer B2GM CO2 May 13, 2024

Introduction

- Study to get an idea of the B2GM travel footprint
- Rough estimation
 - Home institutes used as travel start
 → No travel information available
 - Average CO2 value used for countries
 → Direct fly from main airport (see backup)
 - CO2 production on-side not included
- Study two B2GMs
 - ▶ B2GM45 \rightarrow After COVID at KEK
 - ▶ B2GM43 → In Rome

B2GM - Participants

- B2GM 45 at KEK, B2GM 43 in Rome
- Home institute used as home destination
- For B2GM 43 only in-person participants counted
- Asian (Japanese) participants strongly reduced for B2GM in Europe

B2GM - CO2 travel footprint

- B2GM 45 at KEK, B2GM 43 in Rome
- Home institute used as home destination
- For Rome only in-person participants counted
- Average C02 emissions for a direct flight per region used
- CO2 travel emission strongly reduced for B2GM in Europe
- Assuming the same participants as B2GM 45 but hosted in Rome CO2 emission is comparable

Flight Frankfurt to Tokyo - CO2 footprint

- Flights with stops increase CO2 emission significantly
- \bullet E.g. use 20% more C02 emission in average per participant of B2GM due to connection flight and/or stops: Tot. CO2 increased from 503 t to 602 t

0.0

1990

2000

Daily work drive

(40km) with car

per year

B2GM45

per part

Direct flight

Frankfurt

ullet B2GM produces per participant around 50% of the world average C02 per capita emissions per year

2010 Year

- B2GM produces per participant more C02 emissions than using a car every workday for one year (40km per day)
- $\bullet \ \mathsf{DESY} \ \mathsf{switched} \ \mathsf{to} \ \mathsf{100\%} \ \mathsf{renewable} \ \mathsf{energy} \ \mathsf{source} \ \mathsf{in} \ \mathsf{2023} \to \mathsf{39.000} \ \mathsf{t} \ \mathsf{CO2} \ \mathsf{reduction} \ \mathsf{per} \ \mathsf{year} \ (\approx \! 49.000 \ \mathsf{households})$

Summary

- Quite some C02 production from B2GM travel (3 times per year)
- Also difficult to what to compare
 - → Large compared to CO2 production of individual persons, small compared to production by companies/institutes
- Analysis quite rough → First step would be collect more precise data during B2GM registration
 - ► Traveled from
 - How long staying at KEK

- B2GM in Rome
 - CO2 footprint much smaller
 - Significant reduction of participations from Asia
 - ▶ With same participations as B2GM 45 even more CO2 production
 - → If repeated "real" number somewhere between

Backup

CO2 assumptions per participant per region

	CO2 emission per participant	
Region	B2GM 45 KEK	B2GM 43 Rome
America	3.2	3.6
Germany	4.0	0.5
Italy	4.1	0.0
France	4.2	0.4
Rest of Europe	4.5	0.4
Israel	3.7	0.8
Japan	0.0	4.1
Taiwan	0.8	3.9
Korea	0.6	3.6
China	0.9	3.4
India	2.5	2.2
Russia	1.7	1.8
Australia	3.0	8.4