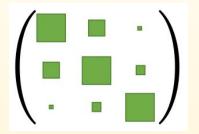


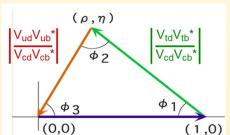
CPV at e⁺/e⁻ colliders

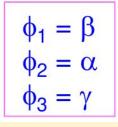
FPCP2024, Chulalongkorn University, Bangkok Thailand 30/05/2024

Stefano Lacaprara
for the Belle II collaboration
INFN Padova

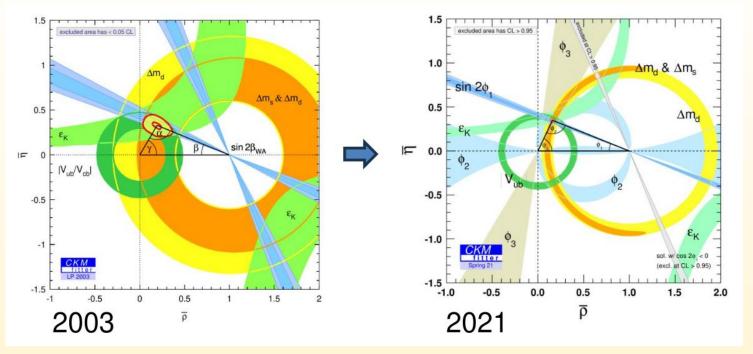
CPV in Standard Model: CKM matrix

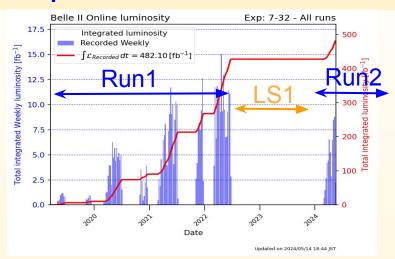

- CPV: a key for matter-antimatter asymmetry in the universe
 - o In SM, only source is complex phase in CKM matrix
 - (and possible similar phase in PMNS matrix)

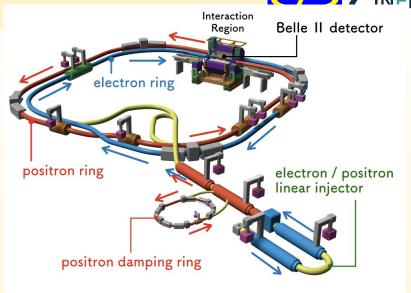



Nobel Prize 2008

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$


- From CKM unitarity: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$
 - Triangle in complex plane
 - Three angles
 - Other triangles exists

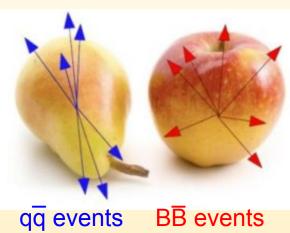

CPV and **Unitarity Triangle**

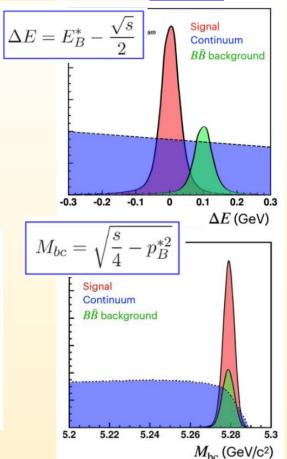

- Precise test of SM by overconstraint Unitarity Triangle
- Search for New Physics effects, especially in loop mediated diagrams

SuperKEKB and Belle II

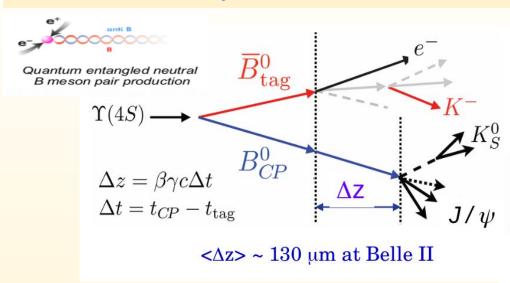
- e⁺/e⁻ (4/7 GeV) at KEK
- Run 1 operation 2019-2022
 - 424/fb collected 362/fb at Y(4S)
- Long Shutdown 1 (LS1) until end of 2023
 - For accelerator and detector upgrades
- Run 2 operation form Jan 2024

Luminosity record 4.7x10³⁴ cm⁻²s⁻¹

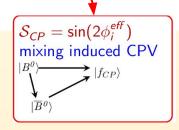

- 2x KEKB
- Goal 6x10³⁵ cm⁻²s⁻¹


B-Factories variables

- Two key variables to discriminate fully reconstructed (hadronic) signal from background
 - o Background from continuum (qq-bar) and from BB
- Discrimination against continuum (qq-bar) background using event-shape variables via a multivariate classifier



TDCPV analysis

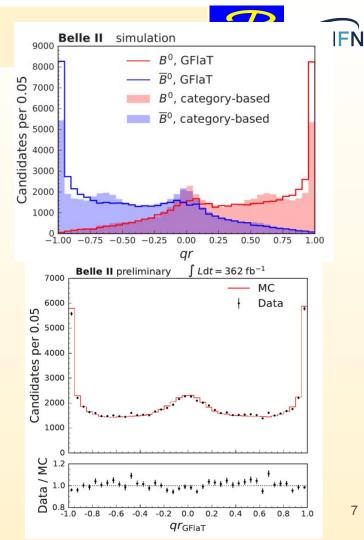


- B_{CP} fully reconstructed CP eigenstate
- B_{tag} vertex and flavour information
- Complex analysis, many key elements:
 - high signal efficiency
 - excellent vertex resolution σ₂~26/50μm (signal/tag side)
 - high flavour tagging efficiency $\varepsilon = 37\%$

Flagship measurement of the B Factories, still very important at Belle II;

$$\mathcal{A}_{f}(\Delta t) = \frac{\Gamma(\overline{B}^{0}(\Delta t) \to f) - \Gamma(B^{0}(\Delta t) \to f)}{\Gamma(\overline{B}^{0}(\Delta t) \to f) + \Gamma(B^{0}(\Delta t) \to f)}$$
$$= S_{f} \sin(\Delta m_{B} \Delta t) + A_{f} \cos(\Delta m_{B} \Delta t)$$

$$\mathcal{A}_{CP} = -\mathcal{C}_{CP}$$
Direct CPV
 $|B\rangle \xrightarrow{\neq} |f\rangle$
 $|\bar{B}\rangle \xrightarrow{\neq} |\bar{f}\rangle$


B flavour tagging: GFlaT

 CPV analysis in Belle II used a category-based (CB) algorithm [Eur. Phys. J 82, 283 (2022)]

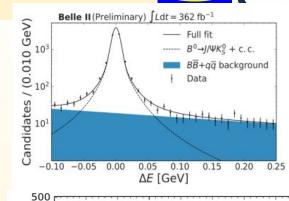
arXiv:2402.17260

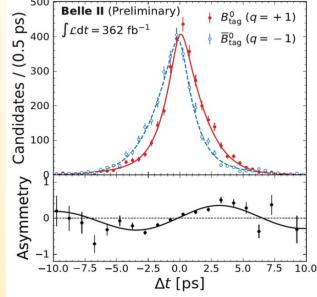
- A more advanced algorithm GFlaT, based on graph convolutional neural network (GNN) was developed
 - \circ Using 25 variables for each track from the B_{taq} decay
- Performance evaluated on data on self-tagging $B^0 \to D^{(*)} \pi^+$ decays
- Significant improvement in performance
 - +18% (relative)

$$\varepsilon_{\text{tag}}(\text{CB}) = (31.7 \pm 0.5 \pm 0.4) \%$$

 $\varepsilon_{\text{tag}}(\text{GFIaT}) = (37.4 \pm 0.4 \pm 0.3) \%$

$\sin(2\phi_1/\beta)$ from B $\rightarrow J/\psi K_S$


B (INFN

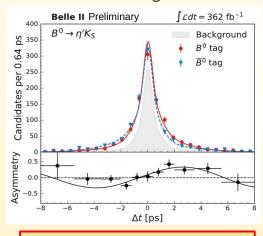

- Golden channel, almost background free
- Updated results using improved GFlaT flavour tagger
- Fit ΔE distribution to subtract background
- Fit background-subtracted Δt distribution to extract CPV parameters

$$S = 0.724 \pm 0.035 \pm 0.014$$

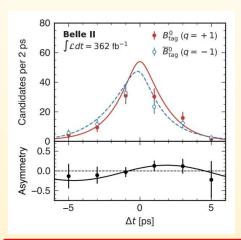
 $C = -0.035 \pm 0.026 \pm 0.013$

World average (K_S mode only): $S_{CP} = 0.695 \pm 0.019$ $A_{CP} = 0.000 \pm 0.020$

 Statistical uncertainties 8% smaller than with category-based Flavour Tagger



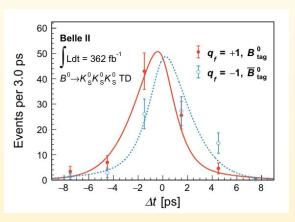
TDCPV in Charmless B decay


- $B \rightarrow \eta' K_s$ arXiv:2402.03713
- 2 sub-channels:

~800 signal events

$$S = 0.67 \pm 0.10 \pm 0.04$$

 $C = -0.19 \pm 0.08 \pm 0.03$


- $\bullet \quad \mathsf{B} \to \phi \mathsf{K}_{\varsigma}$
- arXiv:2307.02802
- challenge : non resonant background with opposite-CP
 - ~160 signal events

S =
$$0.54 \pm 0.26^{+0.06}_{-0.08}$$

C = $-0.31 \pm 0.20 \pm 0.05$

arXiv:2403.02590

- $B \rightarrow K_S K_S K_S$
- Challenge: no prompt tracks from B vertex
 - Use $K_S \rightarrow \pi^+ \pi^-$ extrapolated to IP
 - ~160 signal events

$$S = -1.37 ^{+0.35}_{-0.45} \pm 0.03$$

$$C = -0.07 \pm 0.20 \pm 0.05$$

CPV in $B^0 \to K^0_S \pi^0$

PRL 131, 111803 (2023) PRD 109, 012001 (2024)

- First Belle II measurement of TDCPV in $B^0 \rightarrow K_s \pi^0$
 - Signal yield: 415⁺²⁶₋₂₅ events
- Key ingredient in Isospin Sum Rule

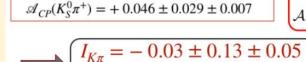
$$I_{K\pi} = \mathcal{A}_{\mathrm{CP}}^{K^+\pi^-} + \mathcal{A}_{\mathrm{CP}}^{K^0\pi^+} \frac{\mathcal{B}(K^0\pi^+)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2\mathcal{A}_{\mathrm{CP}}^{K^+\pi^0} \frac{\mathcal{B}(K^+\pi^0)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2\mathcal{A}_{\mathrm{CP}}^{K^0\pi^0} \frac{\mathcal{B}(K^+\pi^0)}{\mathcal{B}(K^+\pi^-)} \frac{\mathcal{B}(K^0\pi^0)}{\tau_{B^+}} \approx 0 \quad \text{(within \sim1\%)}$$

$$B^0 \to K^+\pi^-$$

 $\mathcal{B}(K^+\pi^-) = (20.67 \pm 0.37 \pm 0.62) \times 10^{-6}$
 $\mathcal{A}_{CP}(K^+\pi^-) = -0.072 \pm 0.019 \pm 0.007$

$$B^{+} \to K^{+}\pi^{0}$$

$$\mathcal{B}(K^{+}\pi^{0}) = (13.93 \pm 0.38 \pm 0.84) \times 10^{-6}$$


$$\mathcal{A}_{CP}(K^{+}\pi^{0}) = +0.013 \pm 0.027 \pm 0.005$$

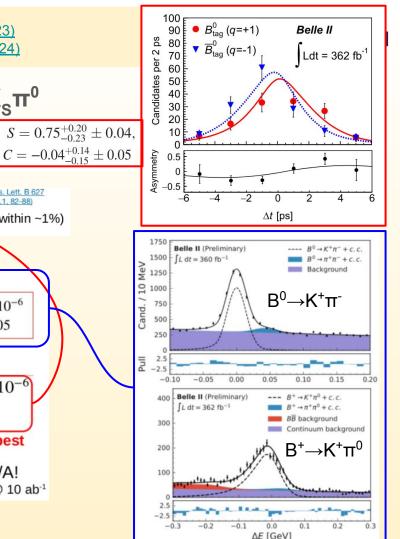
$$B^+ \to K_S^0 \pi^+$$

 $\mathcal{B}(K_S^0 \pi^+) = (24.40 \pm 0.71 \pm 0.86) \times 10^{-6}$

$$\mathcal{B} = (10.50 \pm 0.62 \pm 0.67) \times 10^{-6}$$

$$\mathcal{A}_{CP} = -0.01 \pm 0.12 \pm 0.05$$

 $B^0 \to K_{\rm S}^0 \pi^0$

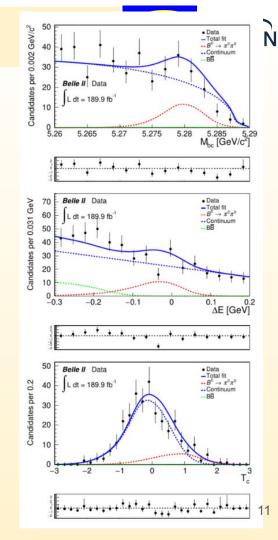


precision on par with W/A!

(world average 0.13 ± 0.11)

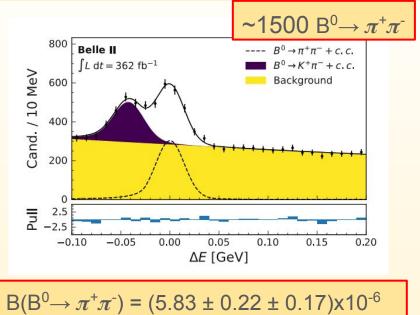
→ 5% uncertainty achievable @ 10 ab⁻¹

world's best



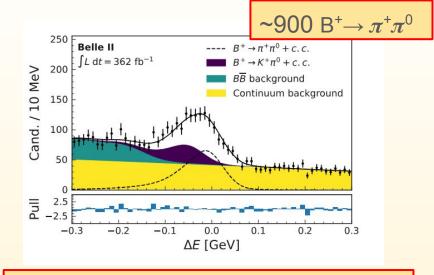
- [PRD107 (2023) 112009]
- ϕ_2/α from isospin analysis of $B \rightarrow \pi \pi/\rho \rho$ modes

 Bellell will measure all modes
- $B^0 \rightarrow \pi^0 \pi^0$ most challenging mode, very hard for LHCb
- Fake photons background reduced with multivariate algorithm for $\pi^0 \rightarrow \gamma \gamma$ purity
 - Control channel: $B^0 \rightarrow D^0(K^+\pi^-\pi^0) \pi^0$
- Using Flavour Tagger to get direct CP asymmetry
- Results:
 - o N Yield: 93 ± 18


B =
$$(1.38 \pm 0.27 \pm 0.22) \times 10^{-6}$$

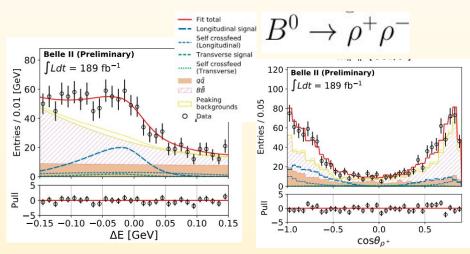
A_{CP} = $0.14 \pm 0.46 \pm 0.07$

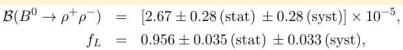
Competitive with Belle with ⅓ of dataset

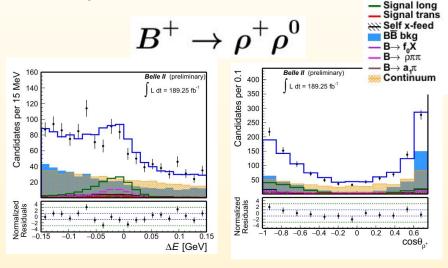


Toward ϕ_2/α : $B \rightarrow \pi\pi$

world's best

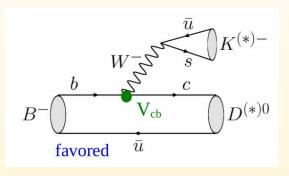

B(
$$\pi^+\pi^0$$
) = (5.10 ± 0.29 ± 0.32)x10⁻⁶
A_{CP} ($\pi^+\pi^0$) = -0.081 ± 0.54 ± 0.008


- Compatible and competitive with WA
- Modes with π^0 limited by π^0 systematics: will be reduced with more data



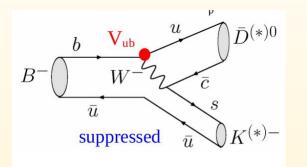
DataTotal fit

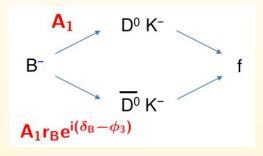
- Broad resonances of vector mesons, π^0 in final state
 - multiple non-negligible peaking background contributions
- CP analysis requires measurement of longitudinal polarization:
 - angular analysis using helicity angles of ρ's



$$\mathcal{B}(B^+ \to \rho^+ \rho^0) = [23.2^{+2.2}_{-2.1}(\mathrm{stat}) \pm 2.7(\mathrm{syst})] \times 10^{-6},$$

 $f_L = 0.943^{+0.035}_{-0.033}(\mathrm{stat}) \pm 0.027(\mathrm{syst}),$
 $\mathcal{A}_{CP} = -0.069 \pm 0.068(\mathrm{stat}) \pm 0.060(\mathrm{syst}).$


Results on γ/ϕ_3

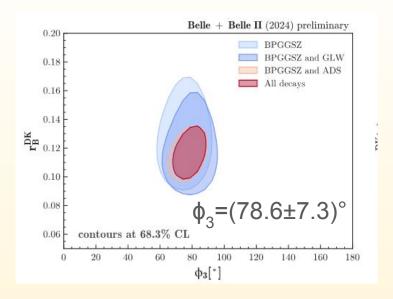

- γ/ϕ_3 from interference of tree level amplitudes:
 - Fundamental input of CKM UT fit
- Phi3 can be measured using interference B→DK and B→DK (or DK*, Dpi)

$$B^- \rightarrow D^0 K^- \approx V_{cb} V_{us}^*$$

$$B^- \rightarrow \overline{D}^0 K^- \approx V_{ub} V^*_{cs}$$

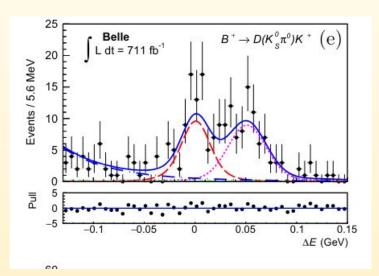
 $A_1 r_B e^{i(\delta_B^- \phi_3)}$

• Amplitude ratio r_{R} and strong phase δ_{R} are mode-dependent

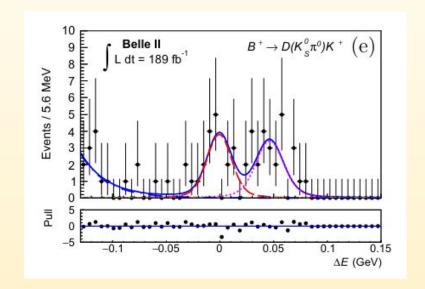

Belle/BelleII combined results on γ/ϕ_3

- Several methods used
 - GLW B[±] \rightarrow D⁰_{CP} K[±] arXiv:2308.05048 [hep-ex]
 - Use CP eigenstate of D meson
 - ADS <u>PRL 78 (1997) 3257</u>
 - Enhancement of CP violation by using doubly Cabibbo suppressed decays.
 - \triangleright BPGGSZ D⁰ \rightarrow K_Sh⁺h⁻ JHEP 2022, 63 (2022)
 - Different amplitude and strong phase in different region of Dalitz plot.
 - GLS D⁰ \rightarrow K_SK π <u>arXiv:2306.02940 [hep-ex]</u>
- D-decay strong phase from CLEO-c & BESIII
 - Need improvement by BESIII for more

LHCb: ϕ_3 =(63.8±3.6)° LHCb-CONF-2022-003 Few ab-1 needed for a meaningful comparison


- Likelihood with 60 input observables
 - o and 16 auxiliary inputs (D-decay)
- r_B with little high-fluctuation
 - Worse precisione with WA value

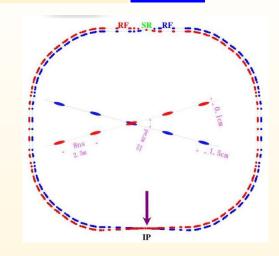
Belle + Belle II Combined

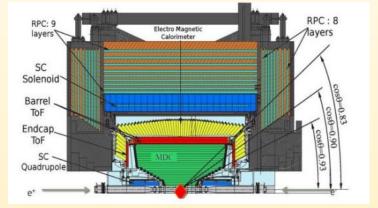


Example:

- CP-odd K_spi0: only in Belle(II)
- Combined Belle and Belle analysis

B decay	D decay	Method	Data set (Belle + Belle II)[fb ⁻¹]
$B^+ \rightarrow Dh^+$	$D \rightarrow K_s^0 \pi^0, K^- K^+$	GLW	711 + 189
$B^+ \rightarrow Dh^+$	$D \rightarrow K^{+}\pi^{-}, K^{+}\pi^{-}\pi^{0}$	ADS	711 + 0
$B^+ \rightarrow Dh^+$	$D \rightarrow K_s^0 K^- \pi^+$	GLS	711 + 362
$B^+ \rightarrow Dh^+$	$D \rightarrow K_s^0 h^- h^+$	BPGGSZ (m.i.)	711 + 128
$B^+ \rightarrow Dh^+$	$D \rightarrow K_s^0 \pi^- \pi^+ \pi^0$	BPGGSZ (m.i.)	711 + 0
$B^+ \rightarrow D^*K^+$	$D^* \to D\pi^0, D \to K_s^0\pi^0, K_s^0\phi, K_s^0\omega, K^-K^+, \pi^-\pi^+$	GLW	210+0
$B^+ \rightarrow D^*K^+$	$D^* \rightarrow D\pi^0$, $D\gamma$, $D \rightarrow K_s^0\pi^-\pi^+$	BPGGSZ (m.d.)	605 + 0


BESIII @ Beijing Electron-Positron Collider (BEPC-II)

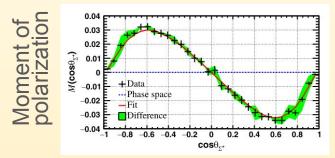


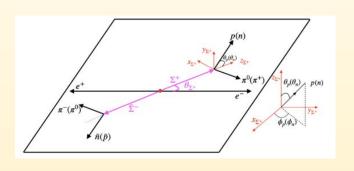
- CM Energies: [2-4.95] GeV: τ-charm region
 - Luminosity: ~10³³ cm⁻²s⁻¹
- Collected 10 billion of J/ψ and 3 billion of $\psi(2S)$
 - Possible to study CPV on hyperons

Decay	\mathcal{B} (10 ⁻⁵)	Events at BESIII	
$J/\psi o \Lambda ar{\Lambda}$	189 ± 9	18.9×10^{6}	
$J/\psi \to \Sigma^+ \bar{\Sigma}^-$	150 ± 24	15.0×10^{6}	
$J/\psi o \Xi ar\Xi$	97 ± 8	9.7×10^{6}	
$\psi(2S) o \Sigma ar{\Sigma}$	23.2 ± 1.2	116×10^{3}	
$\psi(2S) o\Omegaar\Omega$	5.66 ± 0.30	28×10^{3}	

Front. Phys. 12(5), 121301 (2017)

CPV in Hyperon decay


PRL.131.191802 (2023)


- Polarized and entangled pair of hyperons from J/ψ decays
- Decay asymmetry parameters α from S-wave (parity conserving) and P-wave (parity violating) amplitudes. α for anti-hyperons
 - α is CP-odd

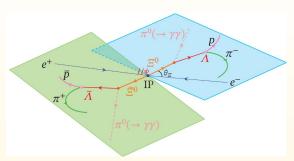
$$\mathcal{A}_{\mathbf{CP}} = \frac{\alpha_+ + \bar{\alpha}_-}{\bar{\alpha}_+}$$
 \Rightarrow **CP** violation

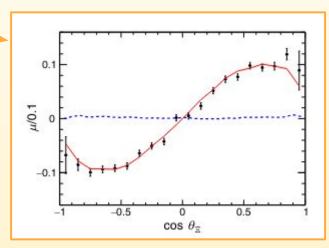
- Non zero $A_{CP} = \frac{\alpha_+ + \bar{\alpha}_-}{\alpha_+ \bar{\alpha}_-}$ ⇒ CP violation $d\Omega = \frac{d\Omega}{d\Omega} = \frac{d\Omega}{d\Omega} = \frac{4\pi}{2\pi}$ Selected events with $J/\psi \to \Sigma + \text{anti-}\Sigma^-$, $\Sigma^+ \to n\pi^+$, anti- $\Sigma^- \to \bar{p}\pi^0$ or c.c.
 - 10 billion $J/\psi \to \Sigma^+$ anti- Σ^-
 - Complex angular analysis: 5 observables
 - First result with neutron in the final state

Non flat \Rightarrow polarization observed

 $Acp = 0.080 \pm 0.052 \pm 0.028$

$e^+e^- \rightarrow J/\psi \rightarrow \Xi^0$ anti- Ξ^0 , $\Xi^0 \rightarrow \Lambda(\rightarrow p\pi^-)\pi^0$ +cc

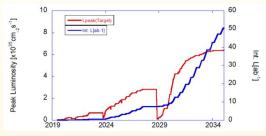



- Even more complex angular analysis (9 helicity angles)
- 8 free parameters (plus other in daughter's decay)
 - \circ 10 billion J/ψ events:

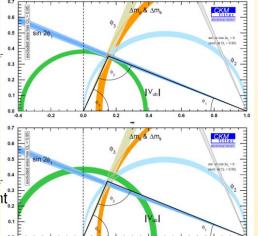
PhysRevD.108.L031106 (2023)

- 320k events with little background
- Results:
 - ∃⁻ polarization observed (first time)
 - Independent measurement of Λ decay parameters
 - ∘ First measurement of weak phase difference in ≡ decay
 - Three independent CP test

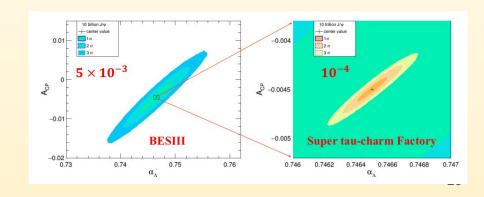
Parameter	This work	Previous result
A_{CP}^{Ξ}	$(-5.4 \pm 6.5 \pm 3.1) \times 10^{-3}$	$(-0.7 \pm 8.5) \times 10^{-2}$ [49]
$\Delta \phi_{CP}^{\Xi}(\text{rad})$	$(-0.1 \pm 6.9 \pm 0.9) \times 10^{-3}$	$(-7.9 \pm 8.3) \times 10^{-2}$ [49]
A_{CP}^{Λ}	$(6.9 \pm 5.8 \pm 1.8) \times 10^{-3}$	$(-2.5 \pm 4.8) \times 10^{-3}$ [20]



Perspective



• Belle II goal: L=6x10³⁵cm⁻²s⁻¹; L_{int}50/ab



[PTEP (2019) 123C01]

- Together with LHCb will further constraint UT
- Unique measurements in some modes
- UT consistent with SM or not?

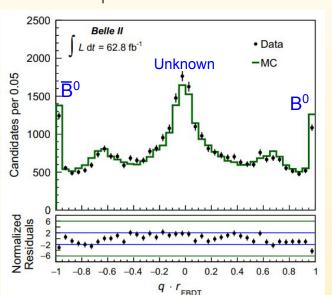
- BESIII and Super Tau-Charm Facility
 - \circ today $10^{10} J/\psi$
 - At super J/ψ factory 10¹² J/ψ per year
 - L~10³⁵
 - polarized beam (phase II)
- CPV sensitivity in hyperon's decay
 - o 10⁻⁴ 10⁻⁵
 - o challenging SM predictions

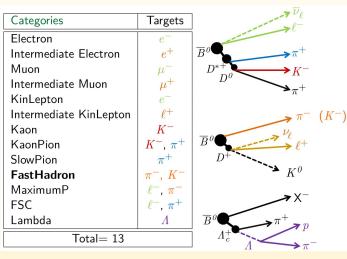
Summary

- CPV studies is a key ingredient of e⁺/e⁻ colliders
- Large CPV program in B physics at Belle II
 - Precise measurement of Unitary Triangles
 - Search for new physics
 - Results on Run1 show significant better performance compared to Belle
- Hyperon polarization at J/ψ , $\psi(2S)$ decays at BESIII
 - new way to study CPV

Backup

$sin(2\phi_1/\beta)$ future




- Expected to be dominated by systematics with 50/ab
- Mostly from alignment of vertex detector and tag-side interference
- Penguin pollution will need to be constrained from B \rightarrow J/ $\psi\pi^0$

		sics Book	
	No	Vertex	Leptonic
	improvement	improvement	categories
$S_{c\bar{c}s} \ (50 \ {\rm ab^{-1}}) \ {\rm tir}$	ne dependent CP p	arameter	
stat.	0.0027	0.0027	0.0048
syst. reducible	0.0026	0.0026	0.0026
syst. irreducible	0.0070	0.0036	0.0035
$A_{c\bar{c}s}~(50~{\rm ab}^{-1})~{\rm di}$	rect CP asymmetr	y	
stat.	0.0019	0.0019	0.0033
syst. reducible	0.0014	0.0014	0.0014
syst. irreducible	0.0106	0.0087	0.0035

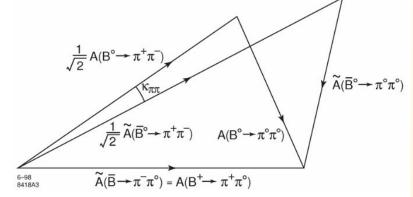
- Used to determine the quark-flavour of B_{taq}
- Many different final states considered, combined with two layers of MVA discriminators.
 - Developed also a Deep Neural Network with similar performance

Performance measured on data using B0->D(*)-h+ decays

• Effective efficiency:

$$\varepsilon_{eff} = \Sigma_i \varepsilon_i (1 - 2w_i)^2$$
$$= (30.0 \pm 1.2 \pm 0.4)\%$$

Measurement of ϕ_2/α



• The measurement of ϕ_2 from $B \to \pi\pi$ (or $B \to \rho\rho$) final states comes from an isospin analysis:

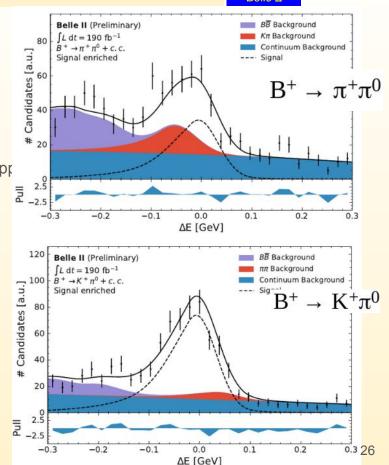
The following equalities hold:

$$\frac{1}{\sqrt{2}}A^{+-} + A^{00} = A^{+0}$$
$$\frac{1}{\sqrt{2}}\tilde{A}^{+-} + \tilde{A}^{00} = \tilde{A}^{+0}$$
$$A^{+0} = \tilde{A}^{+0}$$

- Observables (for e.g. $B \rightarrow \pi\pi$):
 - ⇒ branching fractions of: $B^0 \to \pi^+\pi^0$, $\pi^+\pi^-$, $\pi^0\pi^0$;
 - → direct (time-independent) CP asymmetries: C⁺⁻, C⁰⁰;
 - \rightarrow time-dependent CP asymmetries: S⁺⁻, S⁰⁰.
- Belle II will be able to measure all these observables;
- We expect to push the sensitivity to α to $\sim 1^{\circ}$.

M. Gronau and D. London, PRL 65 (1990), 3381

J. Skorupa @ ICHEP 2022


- $B^+ \rightarrow K^+ \pi^0$ enters in " $K\pi$ " puzzle
- Using common selection for both channels
 - Enhance pion and kaon final state
 - Background from continuum qq reduced with MVA
- BR and A^{CP} from 3D fit on M_{bc}, ΔE, BDT_{Cont.Supp}
 - Simultaneous fit to both samples
 - \circ D⁺ \to K_s π ⁺ and D⁰ \to K⁻ π ⁺ for detector asymmetries
- Results:

$$\mathcal{B}(\pi^{+}\pi^{0}) = (6.1 \pm 0.5 \pm 0.5) \times 10^{-6}$$

$$\mathcal{B}(K^{+}\pi^{0}) = (14.3 \pm 0.7 \pm 0.8) \times 10^{-6}$$

$$\mathcal{A}^{CP}(\pi^{+}\pi^{0}) = -0.09 \pm 0.09 \pm 0.02$$

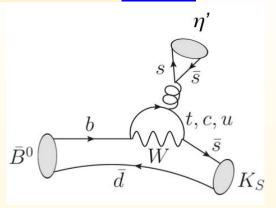
$$\mathcal{A}^{CP}(K^{+}\pi^{0}) = 0.01 \pm 0.05 \pm 0.01$$

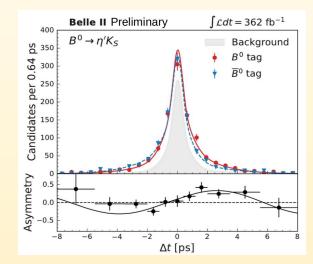
Time dependent $B \rightarrow \eta' K_S$

arXiv:2402.03713

- Mediated by loop diagram, CPV expected to be the same as in $B^0 \to J/\psi \ K_S$ (tree)
- Deviation would be indication of new physics in the loop
- Reconstruct in 2 sub-channels:

$$\circ \quad \eta' \to \eta(\to \gamma\gamma)\pi + \pi -, \ \eta' \to \rho\gamma$$


Found ~800 signal in total, performed time dependent fit

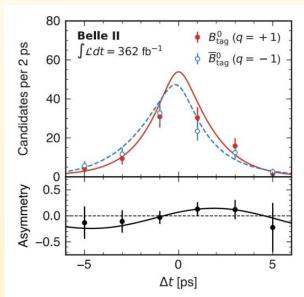

in De, Mbc, ContSupp and DeltaT variables

$$S = 0.67 \pm 0.10 \pm 0.04$$

$$C = -0.19 \pm 0.08 \pm 0.03$$

In agreement with WA and B0 → J/y KS result

Time dependent $B \rightarrow \phi' K_S$

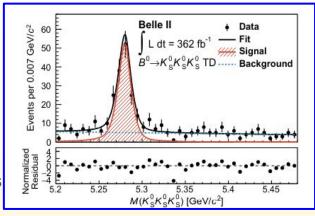

- Two tracks from φ, clean signature
- Major challenge : non resonant background with opposite-CP
- Found ~800 signal in total, performed time dependent fit in De, Mbc, ContSupp and DeltaT variables

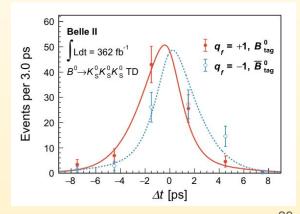
$$S = 0.54 \pm 0.26 \stackrel{+0.06}{-0.08}$$

$$C = -0.31 \pm 0.20 \pm 0.05$$

Results competitive with best measurements

$$\circ$$
 HFLAV C_{CP}= 0.01 ± 0.14, S_{CP} = 0.74 $^{+0.11}_{-0.13}$


arXiv:2403.02590


Time dependent $B \rightarrow K_S K_S K_S$

- b→s decay mediated by penguin loop, potentially sensitive to new physics
 - Very reliable theoretically
- B vertex challenging: no *prompt* tracks from B, but only reconstructed $K_S \rightarrow \pi^+ \pi^-$ extrapolated back;
 - For TD analysis (S_{CP}), using only candidates with enough hits on inner silicon vertex detector;
- Signal from 3-dimensional fit: M_{bc}, M_{KsKsKs},
 BDT_{Cont.Supp.}
- Signal yield = 158 ± 14 events

$$S = -1.37^{+0.35}_{-0.45} \pm 0.03$$

 $C = -0.07 \pm 0.20 \pm 0.05$

Isospin Sum Rule

→ Stringent null test of SM, sensitive to presence of non-SM dynamics.

$$I_{K\pi} = \mathcal{A}_{\mathrm{CP}}^{K^+\pi^-} + \mathcal{A}_{\mathrm{CP}}^{K^0\pi^+} \frac{\mathcal{B}(K^0\pi^+)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2\mathcal{A}_{\mathrm{CP}}^{K^+\pi^0} \frac{\mathcal{B}(K^+\pi^0)}{\mathcal{B}(K^+\pi^-)} \frac{\tau_{B^0}}{\tau_{B^+}} - 2\mathcal{A}_{\mathrm{CP}}^{K^0\pi^0} \frac{\mathcal{B}(K^0\pi^0)}{\mathcal{B}(K^+\pi^-)} \approx 0 \quad \text{(within \sim1\%)}$$

- \rightarrow experimentally consistent with 0 at 10% level, limited by $K_S^0\pi^0$ mode
- → Belle II in unique position to measure all observables at single experiment

$$B^0 o K^+ \pi^-$$

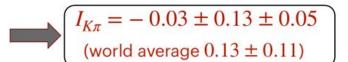
$$\mathcal{B}(K^+\pi^-) = (20.67 \pm 0.37 \pm 0.62) \times 10^{-6}$$

$$\mathcal{A}_{CP}(K^+\pi^-) = -0.072 \pm 0.019 \pm 0.007$$

$$B^+ \to K_S^0 \pi^+$$

$$\mathcal{B}(K_S^0 \pi^+) = (24.40 \pm 0.71 \pm 0.86) \times 10^{-6}$$

$$\mathcal{A}_{CP}(K_S^0 \pi^+) = +0.046 \pm 0.029 \pm 0.007$$


$$B^+ \to K^+ \pi^0$$

$$\mathcal{B}(K^+\pi^0) = (13.93 \pm 0.38 \pm 0.84) \times 10^{-6}$$

$$\mathcal{A}_{CP}(K^+\pi^0) = +0.013 \pm 0.027 \pm 0.005$$

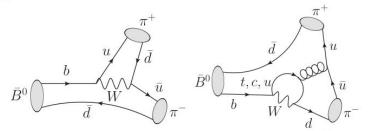
$$B^0 \to K_S^0 \pi^0$$

$$\mathcal{B} = (10.50 \pm 0.62 \pm 0.67) \times 10^{-6}$$

$$A_{CP} = -0.01 \pm 0.12 \pm 0.05$$

precision on par with W/A!

250


 $1500 - \int L dt = 360 \text{ fb}^{-1}$

Stefano Lacaprara, IIVEN Padova, FPCP2U24, Bangkok 30/5/2U24

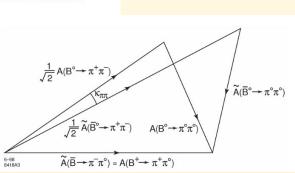
Measurement of ϕ_2/α

Two amplitudes of comparable size with different weak phase:

Penguin in $B^0 \to \pi^+\pi^-, \pi^0\pi^0$, but not in $B^\pm \to \pi^\pm\pi^0$

$$\phi_2 = (\widehat{\bar{A}^{+0}}, A^{+0}), \ \phi_2^{eff} = (\widehat{\bar{A}^{+-}}, A^{+-})$$

Isospin analysis [Gronau-London PRL, 64 3381 (1990)]: constraints


$$\mathsf{B}^0$$
 and B^\pm amplitudes:


$$A^{+0} = A^{+-} / \sqrt{2} + A^{00}$$

 $\bar{A}^{+0} = \bar{A}^{+-} / \sqrt{2} + \bar{A}^{00}$

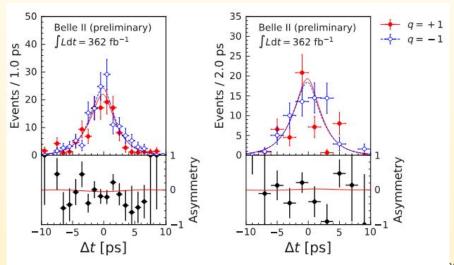
$$|A^{+0}| = |\bar{A}^{+0}|$$

Similar for B $\rightarrow \rho \rho$

- Belle II will be able to measure all these observables
 - Final sensitivity ~1°

EPS-HEP 2023

- $B^0 \to K_S \pi^0 \gamma$ is expected to have small/none mixing induced CPV in SM
 - \circ b \rightarrow s γ_R is helicity suppressed (m_s/m_b) wrt b \rightarrow s γ_L
 - $\circ \quad B^0 {\longrightarrow} s\gamma_L \ vs \ B^0 {\longrightarrow} \overline{B}{}^0 {\longrightarrow} s\gamma_R$
- Vertex from $K_S \rightarrow \pi^+ \pi^-$ and IP constraint
- Measured separately for exclusive: K*⁰(→ K^S π⁰)γ


$$S = 0.00 \begin{array}{c} +0.27 & +0.03 \\ -0.26 & -0.04 \end{array}$$

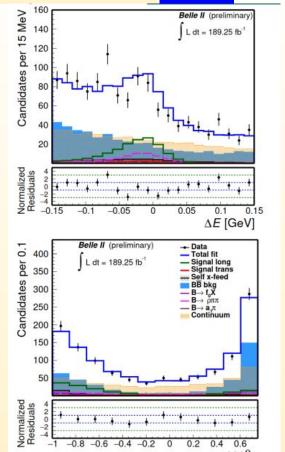
$$C = 0.10 \pm 0.13 \pm 0.03$$

and inclusive decay K^Sπ⁰γ

$$S = 0.04^{+0.45}_{-0.44} \pm 0.10$$

 $C = -0.0.6 \pm 0.25 \pm 0.07$

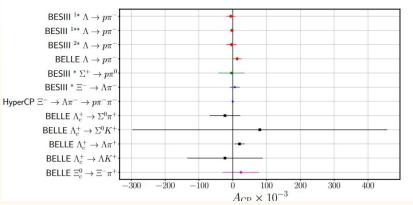
Most precise result so far



- Similar to B⁰→ ρ⁺ρ⁻
- 6D fit: ΔE , BDT, $2*M(\pi\pi)$, 2*helicity angles
 - Template fit w/ correlation
- Results:

$$\circ$$
 N(sig) = 345 ± 31

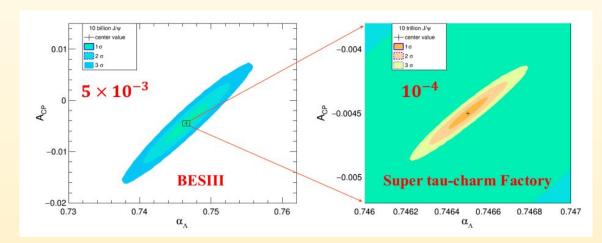
$$\mathcal{A}^{\text{CP}}\!=\!-0.069\pm0.068~(\text{stat})\pm0.060~(\text{syst})$$
 $\mathcal{B}=(23.2^{+2.2}_{-2.1}~(\text{stat})\pm2.7~(\text{syst}))\cdot10^{-6}$ $f_L=0.943^{+0.035}_{-0.033}~(\text{stat})\pm0.027~(\text{syst})$


WA: $\mathcal{A}^{CP} = -0.05 \pm 0.05$, $\mathcal{B} = (24.0 \pm 1.9) \cdot 10^{-6}$

Hyperon at Super Tau-Charm Facility (STCF)

- Many (null) results so far
 - BESIII and Belle
- BESIII: today
 - \circ 10 billion J/ψ
- At super J/ψ factory
 - \circ 10¹² J/ψ per year
- CPV sensitivity in hyperon's decay
 - o 10⁻⁴ 10⁻⁵
 - challenging SM predictions

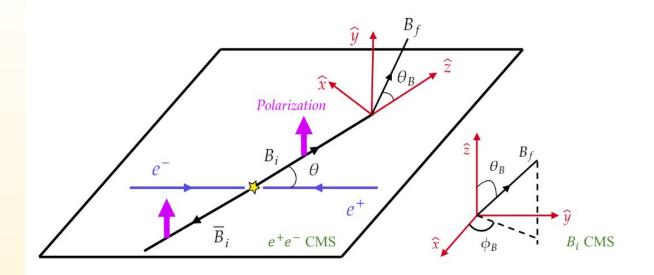
BESIII:


Nature Phys. 15, p 631-634 (2019) Phys. Rev. Lett. 125, 052004 (2020) Nature 606, 64-69 (2022) Phys. Rev. Lett. 129, 131801 (2022) Phys. Rev. D 108, L031106 (2023)

Belle:

Sci. Bull. 68, 583-592 (2023)

HyperCP:


Phys. Rev. Lett. 93, 262001, 2004.

Polarized hyperon pairs in e^+e^- collisions

Polarization:

$$P_{y}(\cos\theta) = \frac{\sqrt{1 - \alpha_{\psi}^{2} \cos\theta \sin\theta}}{1 + \alpha_{\psi} \cos^{2}\theta} \sin(\Delta\Phi)$$

- Angular distribution of $\frac{d\Gamma}{d\Omega} \propto 1 + \alpha_{\psi} \cos^2 \theta$, $\alpha_{\psi} \in [-1.0, 1.0]$
- Unpolarized e^+e^- beams \Rightarrow transverse polarized hyperon (if $\Delta \Phi \neq 0$):