Measurement of inclusive differential kinematic distributions for $|V_{cb}|$

Florian Bernlochner, Lu Cao, William Sutcliffe, Raynette van Tonder

University of Bonn

12 November 2019

|V_{cb}| from semi-leptonic decays

•
$$|V_{cb}| = \sqrt{\frac{\Delta \mathcal{B}}{\tau_B \Delta \Gamma}}$$

Exclusive V_{cb}

- $\bar{B} \to D l \bar{\nu}$
- Needs input from non-perturbative methods, e.g. lattice QCD.

Inclusive V_{cb}

- $\bar{B} \to X_c I \bar{\nu}$
- Total decay rate determined from the Heavy Quark Expansion (HQE).

Inclusive/Exclusive Puzzle

How can we help V_{ub} ?

- Dominant background:
- $\mathcal{O}(100)$ times more abundant than $B \to X_u l \nu$ decays!
- Perfect to test and validate analysis strategies
- Improved MC modelling for background decays
- Affects the normalisation mode

Signal lepton

One lepton with $p_l^B > 1$ GeV.

Signal lepton

One lepton with $p_l^B > 1$ GeV.

$$\frac{\text{Missing mass}^2}{p_{\nu}^2 = (p_{\Upsilon(4s)} - p_{B_{tag}} - p_X - p_l^B)^2}$$

Signal lepton

One lepton with $p_l^B > 1$ GeV.

$$\frac{\text{Missing mass}^2}{p_{\nu}^2 = (p_{\Upsilon(4s)} - p_{B_{tag}} - p_X - p_I^B)^2}$$

Additional selection

- log(NB) & log(ContNB)> −4
- Charge correlation cut

Upgrade both signal and background samples

Update the modelling of both the $b \rightarrow u l \nu$ signal and the $b \rightarrow c l \nu$ background to the very latest, state-of-the-art:

Signal

- Reweight [D, D^{*}, D^{**}] to the latest form factors (BGL, LLSW)
 - Reweight in 1D for D and D^{**} and
 - reweight in 4D for D^* from EvtGen default.
 - Gap model for inclusive and sum over excl. difference, $[D^*\pi\pi, D^*\eta]$.

Background

- Reweight $[\pi,\rho,\omega]$ to latest form factors (BCL, SSE) and use new hybrid mixing
 - $\bullet~$ Reweight in 1D for π and ω and
 - reweight in 4D for ρ from EvtGen default.
 - Resonant & non-resonant hybrid model.

Exclusive $B \rightarrow D l \nu$

• 1D reweighing in q^2 of $B \rightarrow D l \nu$ FFs from EvtGen HQET2 (CLN) to BGL FFs

Exclusive $B \rightarrow D^{**} l \nu$

- Particle masses and widths for $B \rightarrow D^{**} l \nu$ used in Belle generic MC are outdated
- Use new Belle MC with updated values generated by M. Welsch, as shown in the table below
- The values in parenthesis are the original values used for the simulation of the official Belle MC
- Reweight using interpolated ratio of generator level variables histograms

	Charged		Neutral	
D^{**} Type	Mass in GeV	Width in GeV	Mass in GeV	Width in GeV
D_1	2.4230(2.4270)	0.0200(0.0280)	2.4223(2.4222)	0.2040 (0.0189)
D_2^*	2.4601(2.4590)	$0.0370 \ (0.0250)$	2.4611(2.4589)	0.3090(0.0230)
D'_1	2.4450(2.4223)	0.2503(0.4120)	2.4450(2.4223)	0.2503(0.4120)
D_0^*	2.4000(2.3080)	$0.1503 \ (0.2760)$	2.4000(2.3080)	0.1503(0.2760)

New MC!

To fill the gap between the inclusive and exclusive measurement, additional MC samples were generated (again with the help of Max :)):

- $B \rightarrow D_1 (\rightarrow D\pi\pi) I\nu$
 - This sample needs to be reweighted and added back with the rest of the $D^{\ast\ast}$ MC
- $B \rightarrow D^* \pi \pi I \nu$
- $B \to D^* \eta I \nu$
- The final cocktail seems insufficient and needs more work.

Putting everything together

b ightarrow u l u

• Resonance & non-res. Hybrid Model (10 streams)

b ightarrow c l u

- Generic MC (with D**'s and existing gap kicked out) (1 stream)
- New D** (approximately 10 streams)
- Additional gap decay modes (2 streams)

MC Correction weights

- Form factor weights
- PID corrections
- Tagging efficiency corrections
- Many, many more!

p_l distribution before fitting

• Looking here at the normalisation mode: B
ightarrow X l
u

Background subtraction

• Subtraction of continuum background and badly reconstructed *B*-tags with m_{bc} fits.

• Subtraction of other backgrounds.

Signal extraction and other cool stuff

Now that we've sorted out the MC cocktail, we can investigate a bunch of potentially cool stuff:

Fit p_I to extract normalisation BF:

- Perform a likelihood binned fit with templates obtained from MC
- Plan to use the BF's of individual states as a constraint to the fit
- Plan to float the 2 broad *D*^{**} states, while keeping the narrow states fixed.

Investigate the MM^2 distribution. Can we fit this distribution in some way?

Try performing 2D fits in a similar manner as described above.