SIMBA: Determining the shape function (and m_b and C_7) using $B o X_s \gamma$

Kerstin Tackmann

DESY and Universität Hamburg

Bonn - DESY - Göttingen Meeting November 12, 2019

Florian Bernlochner, Heiko Lacker, Zoltan Ligeti, Iain Stewart, Frank Tackmann, Kerstin Tackmann

I HH

SIMBA: Shape function from $B \rightarrow X_s \gamma$

Inclusive B Meson Decays.

Inclusive decay rate can be systematically calculated:

- Overall normalization proportional to
 - $|V_{qb}|^2$ for $B \to X_q \ell \nu$
 - $\blacktriangleright ~ |V_{tb}V_{ts}^*C_7^{
 m incl}|^2$ for $B
 ightarrow X_s \gamma$
 - C₇^{incl} sensitive to BSM physics in the loop
- Differential distributions sensitive to m_b and universal shape functions, describing the dynamics of b in B
 - ► One leading shape function and several subleading shape functions, current fits to $B \to X_s \gamma$ fit the particular combination occuring in $B \to X_s \gamma$

Global fit

- Simultaneously determine from the data
 - Normalization (overall rates): $|V_{tb}V_{ts}^*C_7^{\text{incl}}|$, $|V_{ub}|$
 - Input parameters and their uncertainties: m_b, shape function(s)
- Combine different decay modes and measurements
 - Different $B \to X_s \gamma$ and $B \to X_u \ell \nu$ spectra (eventually $B \to X_s \ell^+ \ell^-$)
 - Can also impose external constraints on m_b , μ_{π}^2 (λ_1)
- ⇒ Minimize uncertainties by making maximal use of all available information
 - "Best" (most sensitive) kinematic region chosen by the fit given experimental uncertainties

Two main theory requirements

- Consistent theory description across phase space
- Over the second seco

< 47 >

Basis Expansion for the Shape Function.

Expand $\widehat{F}(k)$ into suitable orthonormal basis

$$\widehat{F}(k) = rac{1}{\lambda} iggl[\sum\limits_{n=0}^{\infty} c_n f_n \Big(rac{k}{\lambda}\Big) iggr]^2$$
 $\mathrm{d}k \, \widehat{F}(k) = \sum\limits_{n=0}^{\infty} c_n^2 = 1$

- Given a generating model function f₀, can construct an orthonormal basis from it
- Fit $\widehat{F}(k)$ by fitting basis coefficients c_n
 - Experimental uncertainties and correlations can be properly captured in covariance matrix of fitted coefficients c_n
- ⇒ Provides model-independent description with *data-driven* estimation of shape function uncertainties

Choice of Basis and Truncation.

In practice, series must be truncated

• Induces residual basis (model) dependence

How to determine where to truncate?

- Add coefficients as long as they yield statistically significant fit improvement
- Add one more coefficient to account for truncation error
- ⇒ Precision of available data determines how many coefficients can be fitted

We want a quickly converging basis

- Do not waste limited statistical power on "fixing up" poor basis
- Use a generating model function which by itself already provides a good fit to the data

"Prefit" with only c_0

Experimental Inputs

- Belle inclusive [arXiv:0907.1384]
 - Measured in $\Upsilon(4S)$ rest frame
 - Include data for $E_{\gamma} \geq 1.7 \, {
 m GeV}$
- BABAR inclusive [arXiv:1207.5772]
 - Measured in $\Upsilon(4S)$ rest frame
 - Include data for $E_{\gamma} \geq 1.8 \, {
 m GeV}$
- BABAR hadronic tag [arXiv:0711.4889]
 - Measured in B rest frame
- BABAR sum-over-exclusive modes [arXiv:1207.2520]
 - Measured in *B* rest frame
 - Sum highest bins containing K* resonance

Going to be similar in size to fit uncertainties

Summary and Outlook.

• Fit to Belle and $BABAR \ B o X_s \gamma$ spectra almost complete

- Fixing parametric inputs and evaluating theory uncertainties
 - Expecting theory uncertainties to be of comparable size to experimental uncertainties
- Main results C_7^{incl} , m_b , ..., and the shape function
 - More robust theory uncertainties compared to previous approaches (model independent within uncertainties)
 - Shape function and m_b important inputs for determination of $|V_{ub}|$
 - Future plan: combined fit to $B o X_s \gamma$ and $B o X_u \ell \nu$
 - Requires developments on the theory side \rightarrow see Bahman's talk

< 47 >