

Challenges and Prospects

florian.bernlochner@uni-bonn.de

Florian Bernlochner Göttingen - Bonn - DESY Meeting

The $R(D^{(*)})$ anomal

a Fantastic B: Semileptonic decays with τ

Two aspects:

1) Precise determination of R

Need **excellent understanding** of semileptonic background decays

2)

R in the SM

Interplay of **theory** and **experiment** to measure non-perturbative dynamics

Observable of choice:

Experimentally most important:

 $\begin{array}{ccc} D & D^* \\ \text{Wave function} & \langle c\bar{q} \rangle & \forall & \langle c\bar{q} \rangle \\ \text{spin configuration} \end{array}$

Why measure $B \to X \tau \bar{\nu}_{\tau}$?

No one has measured it for ~ 18 years; no measurement from the B-factories

Florian Bernlochner Göttingen - Bonn - DESY Meeting

Why measure $B \to X \tau \bar{\nu}_{\tau}$?

No one has measured it for ~ 18 years; no measurement from the B-factories

Florian Bernlochner Göttingen - Bonn - DESY Meeting

Why measure $B \to X \tau \bar{\nu}_{\tau}$?

Experimental aspects

$$\frac{\mathcal{B}(B \to D^{(*)}\tau\bar{\nu}_{\tau})}{\mathcal{B}(B \to D^{(*)}\ell\bar{\nu}_{\ell})}$$

1. Leptonic or Hadronic τ decays?

 $\rightarrow D(\tau)(\ell)(\ell) \\ \ell = e, \mu$ Some properties (e.g. τ polarisation) only accessible in hadronic decays. $\psi_{qb} \psi_{qb} \psi_{\ell} \psi_{\ell} \psi_{\ell} \psi_{\ell} \psi_{qb} \psi_{qb} \psi_{\ell} \psi_$

2. Albeit not necessarily a rare decay of O(%) in BF, difficult to separate from normalisation and backgrounds

LHCb: Isolation criteria, displacement of $D^{(*)}$ and τ , kinematics B-Factories: Full reconstruction of event (Tagging), matching topology, kinematics

Tagging approach in a nut-shell:

- ► e⁺/e⁻ collision produces $Y(4S) \rightarrow B\overline{B}$
- Fully reconstruct one of the two Bmesons ('tag') → possible to measure momentum of signal B
- Missing four-momentum (neutrinos) can be reconstructed with high precision

$$p_{\text{miss}} = (p_{\text{beam}} - p_{B\text{tag}} - p_{D^{(*)}} - p_{\ell})$$

Small efficiency (~0.2-0.4%) compensated by large integrated luminosity

Tagging approach in a nut-shell:

- ► e⁺/e⁻ collision produces Y(4S) → BB
- Fully reconstruct one of the two Bmesons ('tag') → possible to measure momentum of signal B
- Missing four-momentum (neutrinos) can be reconstructed with high precision

$$p_{\text{miss}} = (p_{\text{beam}} - p_{B\text{tag}} - p_{D^{(*)}} - p_{\ell})$$

Small efficiency (~0.2-0.4%) compensated by large integrated luminosity

How does one measure R(D/D*) at a B-factory?

Tagging approach in a nut-shell:

- ► e⁺/e⁻ collision produces Y(4S) → BB
- Fully reconstruct one of the two Bmesons ('tag') → possible to measure momentum of signal B
- Missing four-momentum (neutrinos) can be reconstructed with high precision

$$p_{\text{miss}} = (p_{\text{beam}} - p_{B\text{tag}} - p_{D^{(*)}} - p_{\ell})$$

Small efficiency (~0.2-0.4%) compensated by large integrated luminosity

Demand matching topology

Measurement by Belle (PhD thesis Jan Hasenbusch, Uni Bonn)

FR (pre-FEI)

$$\begin{array}{c} \text{Tag side} \\ \hline J/\psi \ D^* \\ \gamma \ D \\ K \ \pi \end{array} \leftarrow B^- \leftarrow \Upsilon(4S) \rightarrow \begin{array}{c} \text{Signal side} \\ B^+ \rightarrow X\tau^+ v \\ \downarrow \ell^+ v \\ \downarrow \ell^+ v \end{array}$$

Cuts:

- lepton ID
- lepton charge correlation with Btag candidates (this rejects mixed events in case of neutral Btags)
- build X from left-over clusters and tracks on signal side
 - reject curlers and clean up ROE

$$m_{\rm miss}^2 = p_{\rm miss}^2 = (p_{e^+e^-}^{\mu} - p_{\rm visible}^{\mu})^2$$

Sidebands and troubles

Sidebands and troubles

Tighter?

<u>tight</u>

	PID	$\min \vec{p} /{\rm MeV}$	$\max \; (\mathrm{d}r,\mathrm{d}z)/\mathrm{cm}$	heta
Electron	> 0.90	300	(0.5, 1.5)	$17^\circ < \theta < 150^\circ$
Muon	> 0.97	600	(0.5, 1.5)	$25^{\circ} < \theta < 145^{\circ}$
Kaon	< 0.60	100	(0.5, 1.5)	-
Pion	> 0.60	100	(0.5, 1.5)	-
Photon	-	150	-	-

((dr, dz) < (0.5, 1.5) cm).

MM2 versus Tagging Mode

MM2 versus # of tracks

Semi-Inclusive $B \to DX \ell \bar{\nu}_{\ell}$

2D Fit

$$\chi^2(\vec{\theta}) \to \chi^2(\vec{\theta}, \vec{\lambda}) = \chi^2(\vec{\theta}) + \chi^2_{\rm NP}(\vec{\lambda}),$$

Rel. uncertainty $\delta R(X)/\%$		
Statistical	± 5.2	
PID	±1.1	
$\mathcal{B}(B \to X \tau \nu)$ composition	± 0.6	
$\mathcal{B}\left(B \to D\ell\nu\right)$	± 0.2	
$\mathcal{B}\left(B \to D^* \ell \nu\right)$	$+5.5 \\ -5.0$	
$\mathcal{B}\left(B \to D^{**}\ell\nu\right)$ composition	± 3.7	
$\mathcal{B}\left(D \to X \ell \nu\right)$	± 4.7	
D^{**} decay model	± 0.2	
$\mathrm{FF}_{\mathrm{CLN}}(B \to D^{(*)} \ell \nu)$	± 0.7	
$\mathrm{FF}_{\mathrm{LLSW}}(B \to D^{**} \ell \nu)$	$+5.5 \\ -5.1$	
MC statistics	± 2.6	
Total systematic	$+8.2 \\ -7.9$	
Total	$+9.7 \\ -9.4$	

Post-Fit

 $R(X) = 0.298 \pm 0.012_{\rm stat} \pm 0.018_{\rm sys}.$

Fit prob. inkl. systematics 4.9%

Putting it all together

