SIMBA: Theoretical Basics

Bahman Dehnadi

Deutsches Elektronen-Synchrotron

The SIMBA collaboration Florian Bernlochner, Heiko Lacker, Zoltan Ligeti, Iain Stewart, Kerstin Tackmann, Frank Tackmann

SIMBA collaboration meeting, Nov 12th 2019, Hamburg, Germany

Theory overview

$B \rightarrow X_s \gamma$

Effective weak interaction at low energies

 $B \to X_s \gamma$

Precise measurement of b $\rightarrow s\gamma$ rate at low scale gives access to possible new physics contributions at high energies

 $\succ b
ightarrow s\gamma$ transition rate: $\mathrm{d}\Gamma/\mathrm{d}E_{\gamma} = |C_7|^2\,\delta(E_{\gamma}-m_b/2)$

 $\succ b \rightarrow s\gamma$ transition rate: $\mathrm{d}\Gamma/\mathrm{d}E_{\gamma} = |C_7|^2 \,\delta(E_{\gamma} - m_b/2)$

 $\geq E_{\gamma}$ spectrum determined by nonpert. B distribution (shape function)

- $\succ b
 ightarrow s\gamma$ transition rate: $\mathrm{d}\Gamma/\mathrm{d}E_{\gamma} = |C_7|^2\,\delta(E_{\gamma}-m_b/2)$
- $\geq E_{\gamma}$ spectrum determined by nonperturbative B distribution (shape function)
- Tail and far-tail is mostly perturbative

- $\flat \ b
 ightarrow s\gamma$ transition rate: $\mathrm{d}\Gamma/\mathrm{d}E_{\gamma} = |C_7|^2 \,\delta(E_{\gamma}-m_b/2)$
- $\geq E_{\gamma}$ spectrum determined by nonperturbative B-meson distribution (shape function)
- Tail and far-tail is mostly perturbative
- $\succ \Upsilon(4S)$ boost and exp. resolution further smears it all out

 $\flat \ b
ightarrow s\gamma$ transition rate: $\mathrm{d}\Gamma/\mathrm{d}E_{\gamma} = |C_7|^2\,\delta(E_{\gamma}-m_b/2)$

2.2

 E_{γ} [GeV]

 $\geq E_{\gamma}$ spectrum determined by nonperturbative B-meson distribution (shape function)

2.6

2.8

Tail and far-tail is mostly perturbative

2

1.8

- $\succ \Upsilon(4S)$ boost and exp. resolution further smears it all out
- Most experimental sensitivity comes from peak region at higher E_{γ}

2.4

4

3

2

1.5

0.5

0

1.6

3.5

2.5

 $[GeV^{-1}]$

 $\left(\mathrm{d}\Gamma_s/\mathrm{d}E_\gamma\right)/\Gamma_s$

- $\flat \ b
 ightarrow s\gamma$ transition rate: $\mathrm{d}\Gamma/\mathrm{d}E_{\gamma} = |C_7|^2\,\delta(E_{\gamma}-m_b/2)$
- $\succ E_{\gamma}$ spectrum determined by nonperturbative B-meson distribution (shape function)
- Tail and far-tail is mostly perturbative
- $\succ \Upsilon(4S)$ boost and exp. resolution further smears it all out
- Most experimental sensitivity comes from peak region at higher E_{γ}

Ready for global fit to inclusive $B \rightarrow X_s \gamma$ measurements

current status Kerstin's talk

What to do next?

pert. $(\mu_H, \mu_J, \mu_S) \otimes$ nonpert. Residual scale dependencies are used to assign a perturbative uncertainty

 $B \rightarrow X_s \gamma$

pert. $(\mu_H, \mu_J, \mu_S) \otimes$ nonpert. Residual scale dependencies are used to assign a perturbative uncertainty

 $B \to X_s \gamma$

Scales are not physical parameters with an uncertainty that can be propagated, they simply specify a particular perturbative scheme

Scale variation **does not provide** any insight into the **correlation** in the spectrum!

 $B \to X_s \gamma$

Unknown corrections at higher orders are the actual sources of perturbative theory uncertainty

 $c_0 + \alpha_s(\mu) \left[c_1 + \alpha_s(\mu) c_2 \right] + \mathcal{O}(\alpha_s^3)$

 $B \to X_s \gamma$

Unknown corrections at higher orders are the actual sources of perturbative theory uncertainty

$$c_0 + \alpha_s(\mu) \left[c_1 + \alpha_s(\mu) \left[c_2 + \alpha_s(\mu) \frac{c_3}{c_3} \right] \right] + \mathcal{O}(\alpha_s^4)$$

✓ Basic Idea: treat them as theory nuisance parameters

Frank Tackmann [2019]

- Encode correct correlations
- Can be propagated straightforwardly
- Can be consistently included in a fit and constrained by data

 $B \to X_s \gamma$

Unknown corrections at higher orders are the actual sources of perturbative theory uncertainty

$$c_0 + \alpha_s(\mu) \left[c_1 + \alpha_s(\mu) \left[c_2 + \alpha_s(\mu) \frac{c_3}{c_3} \right] \right] + \mathcal{O}(\alpha_s^4)$$

Basic Idea: treat them as theory nuisance parameters

Frank Tackmann [2019]

- Encode correct correlations
- Can be propagated straightforwardly
- Can be consistently included in a fit and constrained by data

Task: Implement the full next order in terms of unknown parameters

(work in progress) BD, Ivan Novikov

$B \to X_u \, \ell \, \bar{\nu}$

Similar theoretical framework for $B o X_u \, \ell \, ar{
u}$

- $B \rightarrow X_u \, \ell \, \bar{\nu}$ is a 3-body problem \rightarrow extended phase space
- Sub-leading corrections (and shape functions) play crucial role

 $B \rightarrow X_s \gamma$: absorb all the sub-leading shape functions into the leading shape function

$$\widehat{\mathcal{F}}_s(k) = \widehat{F}(k) + rac{1}{m_b}ig[\widehat{F}_1(k) + \widehat{F}_2(k) - \widehat{F}_3(k) + \widehat{F}_4(k)ig]$$

 $B \to X_u \, \ell \, \bar{\nu}$: account for a more complicated linear combination of the sub-leading shape functions (more involved kinematic dependence)

• Nonperturbative shape functions are universal functions

$B \to X_u \,\ell \,\bar{\nu}$

Similar theoretical framework for $B o X_u \, \ell \, ar{
u}$

- $B \rightarrow X_u \, \ell \, \bar{\nu}$ is a 3-body problem \rightarrow extended phase space
- Sub-leading corrections (and shape functions) play crucial role

 $B \rightarrow X_s \gamma$: absorb all the sub-leading shape functions into the leading shape function

$$\widehat{\mathcal{F}}_s(k) = \widehat{F}(k) + rac{1}{m_b}ig[\widehat{F}_1(k) + \widehat{F}_2(k) - \widehat{F}_3(k) + \widehat{F}_4(k)ig]$$

 $B \to X_u \, \ell \, \bar{\nu}$: account for a more complicated linear combination of the sub-leading shape functions (more involved kinematic dependence)

• Nonperturbative shape functions are universal functions

✓ The aim:

- Global $B \to X_u \, \ell \, \bar{\nu} + B \to X_s \, \gamma$ fit using also Belle II measurements
- Simultaneously determine $|V_{tb}V_{ts}^*C_7^{\text{incl}}|, |V_{ub}|, m_b$

Summary and Outlook

- \geq EFT for weak interactions at low energies (e.g. inclusive B meson decay rates)
- Solution Global fit to inclusive $B \rightarrow X_s \gamma$ measurements [current status]
- Theoretical developments [work in progress]
 - Better control on theoretical uncertainties with nuisance parameters
 - Provide a more efficient implementation for theory (C++ program)
 - Fine-tune the theoretical framework for $B o X_u \, \ell \, ar{
 u}$
 - Global $B \to X_s \gamma + B \to X_u \, \ell \, \bar{\nu}$ fit using also Belle II measurements

Thank you for your attention!

