A beautiful Summer:
Belle II Status and Outlook

Summer 2019
\[\mathcal{L} = 6.5/\text{fb} \]

Spring 2020
\[\mathcal{L} = \mathcal{O}(10/\text{fb}) \]

Summer 2020
\[\mathcal{L} = \mathcal{O}(100/\text{fb}) \]
Belle II at the Summer conferences

11 Contributions

7 Contributions

+ several smaller workshops and other conferences

Will Sutcliffe (Belle II Postdoc) presenting results at EPS
Belle II at the Summer conferences

Belle II online luminosity

<table>
<thead>
<tr>
<th>Date</th>
<th>Total integrated luminosity [fb^{-1}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019/03/12</td>
<td>0.00</td>
</tr>
<tr>
<td>2019/04/01</td>
<td>0.00</td>
</tr>
<tr>
<td>2019/04/21</td>
<td>0.05</td>
</tr>
<tr>
<td>2019/05/11</td>
<td>0.10</td>
</tr>
<tr>
<td>2019/05/31</td>
<td>0.20</td>
</tr>
<tr>
<td>2019/06/20</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Exp: 7-8 - All runs

- Integrated luminosity [fb^{-1}]
 - Day per Day
 - Total

Belle II at the Summer conferences contributions

- Full Summer results
 - $\mathcal{L}_{Y(4S)} = 5.15/\text{fb}$

- Early Summer results
 - $\mathcal{L}_{Y(4S)} = 0.41/\text{fb}$

- $\mathcal{L}_{Y(4S)} = 0.8/\text{fb}$

- $\mathcal{L}_{Y(4S)} = 5.7/\text{fb}$

- $\mathcal{L}_{Y(4S)} = 2.6/\text{fb}$

- $\mathcal{L}_{Y(4S)} = 5.15/\text{fb}$
B Mesons in a nutshell

\[\sqrt{s} = 10.58 \text{ GeV} \]

\[e^+ \rightarrow \Upsilon(4S) \quad \text{from vacuum} \]

\[\langle \bar{b}b \rangle \]

\[\langle b\bar{q} \rangle \]

\[\langle \bar{b}q \rangle \]

Pulls quark-anti-quark pair from vacuum Fragments into two B mesons

\[
\begin{align*}
(m_{\Upsilon(4S)}, \vec{0}) &= \left(\sqrt{m_B^2 + |\vec{p}_B|^2}, \vec{p}_B \right) + \left(\sqrt{m_B^2 + |\vec{p}_B|^2}, -\vec{p}_B \right) \\
&
\end{align*}
\]

\[
\begin{align*}
m_{\Upsilon(4S)} &= 2\sqrt{m_B^2 + |\vec{p}_B|^2} \\
|\vec{p}_B| &= \sqrt{m_{\Upsilon(4S)}^2/4 - m_B^2} \approx 340 \text{ MeV}
\end{align*}
\]
B Mesons in a nutshell

\[
\sqrt{s} = 10.58 \text{ GeV}
\]

\[

e^+ \to \Upsilon(4S) \leftrightarrow e^-
\]

\[
\langle b \bar{b} \rangle
\]

\[
\langle b \bar{q} \rangle \quad \langle \bar{b} q \rangle
\]

Pulls quark-anti-quark pair from vacuum

Fragmentation into two B mesons

\[
(m_{\Upsilon(4S)}, 0) = \left(\sqrt{m_B^2 + |\vec{p}_B|^2}, \vec{p}_B \right) + \left(\sqrt{m_B^2 + |\vec{p}_B|^2}, -\vec{p}_B \right)
\]

\[
m_{\Upsilon(4S)} = 2 \sqrt{m_B^2 + |\vec{p}_B|^2} \quad \rightarrow \quad |\vec{p}_B| = \sqrt{m_{\Upsilon(4S)}^2/4 - m_B^2} \approx 340 \text{ MeV}
\]

Repeat a similar calculation for a charm quark \(m_c \approx 1.4 \text{ GeV}\) and you will get about \(5 \text{ GeV}\)
There are several concepts to quantify the difference in event topology for resonant and non-resonant interactions in B-meson decays, which can be used for a topological discrimination of the two. They are almost at rest. The momenta of the decay products are isotropically distributed. The difference in the event shape of continuum events is discussed in Figure 4.8.

Fox-Wolfram Moments

The Fox-Wolfram moments describe the phase-space distribution of energy and momentum in the event. They are defined as

$$H_l = \sum_{i,j} \frac{\mid \vec{p}_i \mid \mid \vec{p}_j \mid}{\left(\sum_i \mid \vec{p}_i \mid \right)^2} P_l(\cos \theta_{ij})$$

where
- \vec{p}_i : 3-Momentum of charged tracks or neutral clusters
- θ_{ij} : Opening angle between ith and jth particle

Cleo Cones

The Cleo Cones are defined along the thrust axis with opening angles of

$$\theta_{cone} = \arccos \left(\frac{\vec{p}_\text{B}}{\sum_{B} \mid \vec{p} \mid} \right) + 10^\circ$$

where \vec{p}_B is the total momentum flow of all particles within the cone. For continuum events, the distribution is flat, because the momenta are distributed back-to-back. In the case of resonant events, the momenta are clustered in the B-meson decay products. The B-meson counting efficiency on the on-peak data sample is 98.8%.

Figure 4.8

In the case of a continuum event, the momenta are distributed back-to-back, whereas in the case of the decay of B-mesons, created in the decay of $\Upsilon(4S)$, the momenta are clustered in the $B\bar{B}$ meson decay products. The $B\bar{B}$ sample is 98.8%.

Belle II 2019 Preliminary

$\int L dt = 2.62 \text{ fb}^{-1}$

$$R_2 = \frac{H_2}{H_0}$$

$N_{B\bar{B}} = (2.773 \pm 0.008) \times 10^6$
Rediscovery of $B^0 \rightarrow D^* - \ell + \nu_\ell$

$\mathcal{B} \approx 11\%$

$\tau_B \approx 1.5\text{ ps}$
Properties of $B^0 \rightarrow D^* \ell^- \nu \ell$

Four-momentum conservation:

$$p_B = p_{D^*\ell} + p_\nu$$

As the mass of the neutrino is \sim zero GeV2:

$$0 \text{ GeV}^2 = p_\nu^2 = (p_B - p_{D^*\ell})^2 = m_B^2 + m_{D^*\ell}^2 - 2p_B \cdot p_{D^*\ell} = m_{\text{miss}}^2$$
Properties of $B^0 \to D^* - \ell^+ \nu \ell$

Four-momentum conservation:

$$p_B = p_{D^* \ell} + p_\nu$$

As the mass of the neutrino is equal to zero:

$$0 \text{ GeV}^2 = p_\nu^2 = (p_B - p_{D^* \ell})^2 = m_B^2 + m_{D^* \ell}^2 - 2 p_B \cdot p_{D^* \ell} = m_{\text{miss}}^2$$

Here:

$$p_B \cdot p_{D^* \ell} = E_B E_{D^* \ell} - \vec{p}_B \cdot \vec{p}_{D^* \ell} = E_B E_{D^* \ell} - |\vec{p}_B| |\vec{p}_{D^* \ell}| \cos \theta_{B,D^* \ell}$$
Properties of $B^0 \rightarrow D^{*-}\ell^+\nu_{\ell}$

Four-momentum conservation:

$$p_B = p_{D^{*}\ell} + p_{\nu}$$

As the mass of the neutrino is equal to zero:

$$0 \text{ GeV}^2 = p_{\nu}^2 = (p_B - p_{D^{*}\ell})^2 = m_B^2 + m_{D^{*}\ell}^2 - 2p_B \cdot p_{D^{*}\ell} = m_{\text{miss}}^2$$

Here:

$$p_B \cdot p_{D^{*}\ell} = E_B E_{D^{*}\ell} - \vec{p}_B \cdot \vec{p}_{D^{*}\ell} = E_B E_{D^{*}\ell} - |\vec{p}_B| |\vec{p}_{D^{*}\ell}| \cos \theta_{B,D^{*}\ell}$$

Putting this together and solve for the angle:

$$0 = m_B^2 + m_{D^{*}\ell}^2 - 2 \left(E_B E_{D^{*}\ell} - |\vec{p}_B| |\vec{p}_{D^{*}\ell}| \cos \theta_{B,D^{*}\ell} \right)$$

$$\Rightarrow \cos \theta_{B,D^{*}\ell} = \frac{2E_B E_{D^{*}\ell} - m_B^2 - m_{D^{*}\ell}^2}{2 |\vec{p}_B| |\vec{p}_{D^{*}\ell}|}$$
Properties of $B^0 \rightarrow D^{*-} \ell^+ \nu_\ell$

Four-momentum conservation:

$$p_B = p_{D*\ell} + p_\nu$$

As the mass of the neutrino is equal to zero:

$$0 \text{ GeV}^2 = p_\nu^2 = (p_B - p_{D*\ell})^2 = m_B^2 + m_{D*\ell}^2 - 2 p_B \cdot p_{D*\ell} = m_{\text{miss}}^2$$

Here:

$$0 \text{ GeV}^2 = p_\nu^2 = (p_B - p_{D*\ell})^2 = m_B^2 + m_{D*\ell}^2 - 2 p_B \cdot p_{D*\ell} = m_{\text{miss}}^2$$

$$p_B \cdot p_{D*\ell} = E_B E_{D*\ell} - \vec{p}_B \cdot \vec{p}_{D*\ell} = E_B E_{D*\ell} - |\vec{p}_B||\vec{p}_{D*\ell}| \cos \theta_{B,D*\ell}$$

Putting this together and solve for the angle:

$$0 = m_B^2 + m_{D*\ell}^2 - 2 (E_B E_{D*\ell} - |\vec{p}_B||\vec{p}_{D*\ell}| \cos \theta_{B,D*\ell})$$

$$\Rightarrow \cos \theta_{B,D*\ell} = \frac{2E_B E_{D*\ell} - m_B^2 - m_{D*\ell}^2}{2|\vec{p}_B||\vec{p}_{D*\ell}|}$$
Rediscovery of $B^0 \rightarrow D^{*-} \ell^+ \nu_{\ell}$

\[
\cos \theta_{B,D^*\ell} = \frac{2E_B E_{D^*\ell} - m_B^2 - m_{D^*\ell}^2}{2 |p_B||p_{D^*\ell}|} \in [-1, 1)
\]

\[
m_{\text{miss}}^2 = \left(\frac{1}{2}E_{\text{beam}}, 0, 0, 0 - p_{D^*\ell}^*\right)^2 \approx p_{\nu}^2 = 0 \text{ GeV}^2
\]

<table>
<thead>
<tr>
<th>Particle</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracks</td>
<td>IP in z < 2 cm</td>
</tr>
<tr>
<td>Tracks</td>
<td>IP in r-(\phi) plane < 0.5 cm</td>
</tr>
<tr>
<td>(\ell)</td>
<td>1.2 < (p_{\ell}^*) < 2.4 GeV/c</td>
</tr>
<tr>
<td>e</td>
<td>Electron likelihood > 0.85</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Muon likelihood > 0.9</td>
</tr>
<tr>
<td>slow (\pi)</td>
<td>(p_{\pi}^* < 0.5 \text{ GeV/c})</td>
</tr>
<tr>
<td>(D^0)</td>
<td>1.85 < (M_D) < 1.88 GeV/c^2</td>
</tr>
<tr>
<td>(D^*)</td>
<td>0.144 < (M_{D^*} - M_D) < 0.148 GeV/c^2</td>
</tr>
<tr>
<td>(D^*)</td>
<td>(p_{D^*} < 2.5 \text{ GeV/c})</td>
</tr>
</tbody>
</table>
\[\cos \theta_{B,D^*\ell} \]

\[m_{\text{miss}}^2 \]

FIG. 1: The Maximum likelihood fit to $\cos \theta_{B,Y}$ and m_{miss}^2 distributions of untagged $\bar{B}_0 \to D^{*} \ell^{-} \nu_\ell$ candidates using 5.15 fb$^{-1}$ of collision data, where E^\ast_Y, p^\ast_Y, and m^2_Y are the center-of-mass (CM) energy, three momentum, four momentum and invariant mass of the $D^{*}\ell$ system, P^\ast_{ee} is the four momentum of the beam particles, M_B is the nominal B mass, and E^\ast_B, p^\ast_B are the CM energy and momentum of the B, inferred from the CM machine energy. For correctly reconstructed B candidates, ignoring detector resolution effects and the spread in machine energy, θ_{BY} is the CM angle between the B and $D^{*}\ell$ momenta. Here data are shown with points with error bars with different components overlaid for $\bar{B}_0 \to D^{*} e^{-} \nu_e$ (top) and $\bar{B}_0 \to D^{*} \mu^{-} \nu_\mu$ (bottom) channels. D^0 candidates are reconstructed from $K^+ \pi^+$ pairs, selected without particle identification requirements, within the invariant mass range 1.85 GeV$/c^2 < m_{K^+\pi^+} < 1.88 GeV$/c^2$. $D^{*}\ell$ candidates are reconstructed from a D^0 candidate and a π^+ candidate track, with the invariant-mass difference between $D^{*}\ell$ and D^0 candidates in the range 0.144 GeV$/c^2 < m < 0.148 GeV$/c^2$. The CM momentum of the $D^{*}\ell$ candidate is required to satisfy $p^\ast_{D^{*}\ell} < 2.5 GeV/c$. Continuum e^+e^- background is suppressed with the Fox-Wolfram moment ratio $R^\ast_{2} < 0.25$. The CM momentum of the lepton candidate is required to be in the range 1.2 GeV$/c < p^\ast_l < 2.4 GeV/c$. Electron and muon candidates are selected with requirements on the combined variables, electronID > 0.85 and muonID > 0.9 respectively. We observe $O(1100) \bar{B}_0 \to D^{*} e^{-} \nu_e$ and $O(1200) \bar{B}_0 \to D^{*} \mu^{-} \nu_\mu$ events.
\[\Delta M = m_{D^*} - m_D \]

\[p^*_\ell \leftarrow \text{CM} \]

\[\ell = e \]

\[\ell = \mu \]
Rediscovering of B-Mixing with $B^0 \to D^* - \ell^+ \nu_\ell$

Charge of lepton encodes B-Meson type:

$$\ell^- \leftrightarrow \bar{B}^0$$
$$\ell^+ \leftrightarrow B^0$$

$B \to X\ell\bar{\nu}_\ell$
Rediscovering of B-Mixing with $B^0 \rightarrow D^{*-} \ell^+ \nu_\ell$

Charge of lepton encodes B-Meson type:

$$\ell^- \leftrightarrow \bar{B}^0$$
$$\ell^+ \leftrightarrow B^0$$

Establish existing of Mixing: **double-tag** SL decays, information encoded in $N_{\ell^+\ell^-}, N_{\ell^+\ell^+}$

\[
\chi_d = \frac{N_{\ell^+\ell^-} \times \epsilon}{N_{\ell^+\ell^+} + N_{\ell^+\ell^-} \times \epsilon}
\]

$\chi_d = 0.174 \pm 0.009$
Rediscovering of B-Mixing with $B^0 \rightarrow D^{*-} \ell^+ \nu_{\ell}$

$\chi_d = \frac{N_{\ell^+\ell^-} \times \epsilon}{N_{\ell^+\ell^+} + N_{\ell^+\ell^-} \times \epsilon}$

$\chi_d = 0.174 \pm 0.009$

$\Delta z = c \beta \gamma \Delta t \approx 130 \mu m$
Rediscovering of B-Mixing with $B^0 \rightarrow D^{*-} \ell^+ \nu \ell$

Partial reconstruction of D^* via slow pion

Calibration function from fit to MC:

$$p(D^{*-}) = 0.195 + 15.95 p(\pi^+) - 51.50 p^2(\pi^+) + 101.5 p^3(\pi^+) \;.$$

$$m^2_{\text{miss}} = \left(\frac{1}{2}E_{\text{beam}},0,0,0 \right) - p_{D^*}^2 \ell \right)^2 \approx p_{\nu}^2 = 0 \; \text{GeV}^2$$
\[\ell^+ \ell^- \]

Belle II 2019, preliminary

\[\int L \, dt = 2.66 \text{ fb}^{-1} \]

- Data
- \(b \to c \to l_{\text{tag}} \)
- \(l_{\text{tag}} \) from \(D^0_{\text{sig}} \)
- \(B^+ \to D^{**} l \nu \)
- Combinatorial
- Continuum

Backgrounds

Signal

\[B^0 \to D^{*-} \ell^+ \nu_{\ell} \]

Belle II 2019, preliminary

\[\int L \, dt = 2.66 \text{ fb}^{-1} \]

- Data
- Expected
- \(\tau_{B^0} = 1.525 \text{ ps} \), \(\Delta m_d = 0.507 \text{ ps}^{-1} \)

\[\Delta t = \Delta z/(c \beta \gamma) \quad [\text{ps}] \]

FIG. 2: \(m^2_{\text{miss}} \) [GeV^2] distributions for events in the lepton tagged unmixed (left plot) and mixed (right) samples in the proc9 dataset. The points with error bars represent the data, the dark green histogram is the continuum component, the red histogram is the \(B \) \(B \) combinatorial background. The following peaking components are also shown: \(B^{\pm} D^{\ast\pm} l \nu \) events (light green), events in which the candidate tag-side lepton originate from the decay of the signal side \(D_0 \) (dark blue), and events in which the candidate tag-side lepton comes from the \(b \to c \to \ell \) decay chain.
Hadronic Tagging with the Full Event Interpretation

Inclusive Tag
\[\epsilon = \mathcal{O}(100)\% \]
Consistency of \(B_{\text{tag}} \)

Semileptonic Tag
\[\epsilon = \mathcal{O}(1)\% \]
Knowledge of \(B_{\text{tag}} \)

Hadronic Tag
\[\epsilon = \mathcal{O}(0.1)\% \]
Exact knowledge of \(B_{\text{tag}} \)

\[p_\nu = \left(p_{e^+e^-} - p_{B_{\text{tag}}} - p_\ell \right) \]

We saw plenty of this in Will’s talk
The goal of the Belle II collaboration to collect 200 \text{ fb}^{-1} of data by the time of the summer conferences in 2020 appears to be extremely ambitious. However, the committee fully encourages the collaboration to make every effort for this goal, since this would allow the collaboration to start providing physics results comparable to the Belle experiment in the core physics programme.
25/fb Program (Moriond 2020)

- **Hadronic FEI Performance** Studies with first **Calibration** using incl. SL $B \rightarrow X \ell \nu$ decays

- **Semilep. FEI Performance** Studies with detailed analysis of tag-side (cosBY, Prob., Eff.) and signal-side properties

- First **untagged** $B \rightarrow D^* \ell \nu$ BF measurement

- Establish $|V_{ub}| \neq 0$ with endpoint of incl. $B \rightarrow X \ell \nu$ SL decays

- **Hadronic FEI**, $B \rightarrow D/D^* \ell \nu$ rediscovery
Next Goals:

- **Full Calibration** using $B \to X l \nu$ as a standard candle
 - Procedure: Reconstruct $B \to X l \nu$ using tagged events
 - single Lepton with high momentum, clean up ROE for X reconstruction
 - Determine BF after applying all signal-side corrections (e.g. PID)
 - $\epsilon = N_{\text{reco}} / N_{\text{expected}}$
 - First global, once we have enough int. lumi, differential in **Modes** and **Signal Probability**

- Rediscover SL D^* and D decays
Next Goals:

- Understand tag-side Properties
 - Focus in D and D* (no D** → D(*)\pi)
 - For truth matching a tag, how strict should we be?
 - Very strict: only fully correctly reconstructed tags
 - Less strict: Allow for a number of wrongly assigned particles in D, D*
 - How many charged and neutrals?
 - Very loose: Correct if Lepton is reconstructed correctly?

- Moriond goal: Sig-Prob and cosBY plot for public consumption

- After this: Calibration studies
200/fb Program (Summer 2020)

- **Hadronic FEI Performance, full calibration** as a function of modes and Signal Prob. → Paper
- **SL FEI Performance, full calibration** → Paper
- **Untagged / Tagged** \(B \rightarrow \pi \ell \nu \)
- **Untagged** \(B \rightarrow D^* \ell \nu \): BF + Form Factors + \(|V_{cb}| \)
- **Had. FEI**: \(B \rightarrow D/D^* \ell \nu \): Validation of \(E_{ECL} \) shape, BF + Form Factors + \(|V_{cb}| \)
- **Hadronic FEI**: Towards \(B \rightarrow D/D^* \tau \nu \) rediscovery
 - **Hadronic FEI**: Incl. \(|V_{ub}| \) & \(|V_{cb}| \)
 - **Hadronic FEI**: \(B \rightarrow \tau \nu \): first limit
Backup
Belle II (Torben Ferber)

4. K-EFFICIENCIES AND π-MIS-ID RATES

\[K \text{ Efficiency}/\pi \text{ mis-ID rate for } R > R_{\text{threshold}} \]

\[\int Ldt = 2.62 \text{ fb}^{-1} \]

K-efficiency (data) and K-efficiency (MC) for different PID criteria using the decay \(D^+ \rightarrow D^0K^-\pi^+ \).

π-mis-ID rate (data) and π-mis-ID rate (MC) for different PID criteria using the decay \(D^+ \rightarrow D^0K^-\pi^+ \).

FIG. 2: K-efficiencies and π-mis-ID rates are calculated for different PID criteria using the decay \(D^+ \rightarrow D^0K^-\pi^+ \).
FIG. 3: Efficiency for $e^+\)$ in different angular regions as a function of momentum for $\text{electronID} > 0.9$. The pulls are smaller for data than in MC, and so to verify that this is not the cause of the discrepancy, two other approaches are used to calculate the efficiency. The first approach is a simple count of all events within the bin, taking advantage of the low background in the sample. The second approach involves integrating the background fit function within the signal region to determine the number of background events under the peak and then subtracting this from the total number of events within the signal region (defined as 3\(\pm\) either side of the mean). Both of these approaches provide results consistent with those from using fits. The track parameters on the pion candidates were also tightened to $\Delta R < 0.0$ cm to ensure particles originated from within the beam pipe, as well as selecting K_0^S based on their flight time instead of the angle between their momentum and vertex vector, but this did not change the result. Further investigation will thus be required to understand the source of the observed large discrepancies.

Finally, a test of the stability of the fits was performed by floating the fit parameters within a larger range, such as allowing the fraction for each Gaussian to float. This included allowing the widths of each Gaussian to change by a factor of 10. The change in fake rate was of order 1% in all bins, which is too small to make a significant contribution to the overall error. Further investigation into this discrepancy is necessary to determine its cause.

All results for electronID are listed in Tables XIII-XV and results for muonID are listed in Tables XVI-XXI.
FIG. 4: Efficiency calculated as described in Formula 1. Here it is presented in the fine binning for Good Data (a) and MC (b). The efficiency ratio (c) together with the corresponding error (d) is also presented in the fine binning. The efficiency ratio and its error are calculated with Formula 10 and Formula 11, respectively.
FIG. 4: Efficiency for μ^+ in different angular regions as a function of momentum for $\muonID > 0.9$.

7. CONCLUSIONS

We find that the efficiency of \electronID and \muonID selection for three different cut thresholds agrees between MC12 and proc9+bucket7 data within statistical error only. In fact, the small yield of $J/\psi \rightarrow \mu^+ \mu^-$ events in the available dataset provides low statistical power for constraining the total uncertainty on the data/MC efficiency ratio. This measurement could be used as a cross-check of the one based on low multiplicity events.

The pion-electron fake rate, measured by selecting pion candidates from $K_0 S \rightarrow \pi^+ \pi^-$ events, appears to be consistently higher in data than MC in almost all bins considered.

The pion-muon fake rate is found to be up to a factor 8 larger in MC than in data for pions of high momentum in the forward detector region. The observed discrepancy is not covered by the statistical uncertainty. This might be an indicator of a measurement bias, and should therefore be further investigated. Investigation of the systematic uncertainties on the measurement of the pion fake rate was done by checking the stability of the fit model. By varying parameters that are currently being fixed to the MC-based estimate we saw changes in the value of the fake rate by approximately 1%, which does not cover the discrepancy seen.