

A beautiful Summer: Belle II Status and Outlook

florian.bernlochner@uni-bonn.de

Belle II at the Summer conferences

11 Contributions

7 Contributions

+ several smaller workshops and other conferences

Belle II at the Summer conferences

B Mesons in a nutshell

$$\begin{pmatrix} m_{\Upsilon(4S)}, \vec{0} \end{pmatrix} = \left(\sqrt{m_B^2 + |\vec{p}_B|^2}, \vec{p}_B \right) + \left(\sqrt{m_B^2 + |\vec{p}_B|^2}, -\vec{p}_B \right)$$

$$\downarrow$$

$$m_{\Upsilon(4S)} = 2\sqrt{m_B^2 + |\vec{p}_B|^2} \longrightarrow |\vec{p}_B| = \sqrt{m_{\Upsilon(4S)}^2/4 - m_B^2} \approx 340 \,\mathrm{MeV}$$

B Mesons in a nutshell

Repeat a similar calculation for a charm quark $m_c \approx 1.4 \, {\rm GeV}$ and you will get about 5 GeV

B-Meson counting

Legende Polynomial

Rediscovery of $B^0 \to D^{*-} \ell^+ \nu_{\ell}$

Properties of $B^0 \to D^{*-} \ell^+ \nu_{\ell}$

Four-momentum conservation:

 $p_B = p_{D^*\ell} + p_{\nu}$

As the mass of the neutrino is ~ zero GeV^2 :

$$0 \,\mathrm{GeV}^2 = p_{\nu}^2 = \left(p_B - p_{D^*\ell}\right)^2 = m_B^2 + m_{D^*\ell}^2 - 2p_B \cdot p_{D^*\ell} = m_{\mathrm{miss}}^2$$

Properties of $B^0 \to D^{*-}\ell^+\nu_{\ell}$

Four-momentum conservation:

$$p_B = p_{D^*\ell} + p_{\nu}$$

As the mass of the neutrino is equal to zero:

$$0 \,\text{GeV}^2 = p_{\nu}^2 = \left(p_B - p_{D^*\ell}\right)^2 = m_B^2 + m_{D^*\ell}^2 - 2\frac{p_B \cdot p_{D^*\ell}}{p_B \cdot p_{D^*\ell}} = m_{\text{miss}}^2$$

Here:

$$p_B \cdot p_{D^*\ell} = E_B E_{D^*\ell} - \overrightarrow{p}_B \cdot \overrightarrow{p}_{D^*\ell} = E_B E_{D^*\ell} - |\overrightarrow{p}_B| |\overrightarrow{p}_{D^*\ell}| \cos \theta_{B,D^*\ell}$$

Properties of $B^0 \to D^{*-}\ell^+\nu_{\ell}$

Four-momentum conservation:

$$p_B = p_{D^*\ell} + p_{\nu}$$

As the mass of the neutrino is equal to zero:

$$0 \,\mathrm{GeV}^2 = p_{\nu}^2 = \left(p_B - p_{D^*\ell}\right)^2 = m_B^2 + m_{D^*\ell}^2 - 2p_B \cdot p_{D^*\ell} = m_{\mathrm{miss}}^2$$

Here:

$$\frac{p_B \cdot p_{D^*\ell}}{p_B \cdot p_{D^*\ell}} = E_B E_{D^*\ell} - \overrightarrow{p}_B \cdot \overrightarrow{p}_{D^*\ell} = E_B E_{D^*\ell} - |\overrightarrow{p}_B| |\overrightarrow{p}_{D^*\ell}| \cos \theta_{B,D^*\ell}$$

Putting this together and solve for the angle:

$$0 = m_B^2 + m_{D^*\ell}^2 - 2\left(E_B E_{D^*\ell} - |\overrightarrow{p}_B| |\overrightarrow{p}_{D^*\ell}| \cos\theta_{B,D^*\ell}\right)$$

$$\Rightarrow \cos \theta_{B,D^*\ell} = \frac{2E_B E_{D^*\ell} - m_B^2 - m_{D^*\ell}^2}{2|\overrightarrow{p}_B||\overrightarrow{p}_{D^*\ell}|}$$

Properties of $B^0 \to D^{*-} \ell^+ \nu_{\ell}$

Four-momentum conservation:

 $p_B = p_{D^*\ell} + p_{\nu}$

$$m_{\text{miss}}^2 = \left(\left(\frac{1}{2} E_{\text{beam}}, 0, 0, 0 \right) - p_{D^* \ell} \right)^2 \approx p_{\nu}^2 = 0 \,\text{GeV}^2$$

As the mass of the neutrino is equal to zero:

0 GeV² =
$$p_{\nu}^2 = (p_B - p_{D^*\ell})^2 = m_B^2 + m_{D^*\ell}^2 - 2p_B \cdot p_{D^*\ell} = m_{\text{miss}}^2$$

e: 0 GeV² = $p_{\nu}^2 = (p_B - p_{D^*\ell})^2 = m_B^2 + m_{D^*\ell}^2 - 2p_B \cdot p_{D^*\ell} = m_{\text{miss}}^2$

$$p_B \cdot p_{D^*\ell} = E_B E_{D^*\ell} - \overrightarrow{p}_B \cdot \overrightarrow{p}_{D^*\ell} = E_B E_{D^*\ell} - |\overrightarrow{p}_B| |\overrightarrow{p}_{D^*\ell}| \cos \theta_{B,D^*\ell}$$

Putting this together and solve for the angle:

$$0 = m_B^2 + m_{D^*\ell}^2 - 2\left(E_B E_{D^*\ell} - |\overrightarrow{p}_B| |\overrightarrow{p}_{D^*\ell}| \cos\theta_{B,D^*\ell}\right)$$

$$\Rightarrow \cos \theta_{B,D^*\ell} = \frac{2E_B E_{D^*\ell} - m_B^2 - m_{D^*\ell}^2}{2|\overrightarrow{p}_B||\overrightarrow{p}_{D^*\ell}|}$$

Rediscovery of $B^0 \to D^{*-} \ell^+ \nu_{\ell}$

 $\ell = e$

 $\ell = e$

Rediscovering of B-Mixing with $B^0 \rightarrow D^{*-} \ell^+ \nu_{\ell}$

Charge of lepton encodes B-Meson type:

$$\ell^- \leftrightarrow \bar{B}^0$$
$$\ell^+ \leftrightarrow B^0$$

$$B \to X \ell \bar{\nu}_{\ell}$$

Rediscovering of B-Mixing with $B^0 \rightarrow D^{*-}\ell^+\nu_{\ell}$

Charge of lepton encodes B-Meson type:

- $\begin{aligned} \mathcal{\ell}^- &\leftrightarrow \bar{B}^0 \\ \mathcal{\ell}^+ &\leftrightarrow B^0 \end{aligned}$

Establish existing of Mixing: **double-tag** SL decays, information encoded in $N_{\ell^+\ell^-}, N_{\ell^+\ell^+}$

Rediscovering of B-Mixing with $B^0 \rightarrow D^* \ell^+ \nu_{\ell}$

Hadronic Tagging with the Full Event Interpretation

$$p_{\nu} = \left(p_{e^+e^-} - p_{B_{\text{tag}}} - p_{\ell} \right)$$

We saw plenty of this in Will's talk

Next milestones: Winter 2020 (15 - 25/fb) and Summer 2020 (50-200/fb)

BPAC's assessment:

- The goal of the Belle II collaboration to collect 200 fb^{-1} of data by the time of the
- ³⁹ summer conferences in 2020 appears to be extremely ambitious. However, the committee
- 40 fully encourages the collaboration to make every effort for this goal, since this would allow
- ⁴¹ the collaboration to start providing physics results comparable to the Belle experiment
- $_{\rm 42}$ $\,$ in the core physics programme.

25/fb Program (Moriond 2020)

Hadronic FEI Performance Studies with first Calibration using incl. SL

 $B \rightarrow X l \nu$ decays

• Semilep. FEI Performance Studies with detailed analysis of tag-side (cosBY,

Prob., Eff.) and signal-side properties

- First untagged $B \rightarrow D^* I \nu$ BF measurement
- Establish $|V_{\mu\nu}| \neq 0$ with endpoint of incl. $B \rightarrow X l \nu$ SL decays
- Hadronic FEI, $B \rightarrow D/D^* I \nu$ rediscovery

Hadronic FEI

ω **Global Calibration** Dng С С н С* m m Ď **Belle II preliminary** $\int \mathcal{L} dt = 5.15 \, \text{fb}^{-1}$ Candidates / (0.0025 GeV/c²) $\overline{D}^{(*)}D^{(*)}X$ $D^-n\pi$ 4000 J/ψX $\overline{D}^{0}K^{+}$ 3500 $D_{-}^{(*)} + \overline{D}_{-}^{(*)0}$ 3000 $\overline{D}^{*0}n\pi$ $\overline{D}^{*0}\pi^+$ B_{tag}^+ 2500 $\overline{D}^0 n\pi$ $\overline{D}^0\pi^+$ 2000 1500 1000 500 0 5.24 5.25 5.26 5.27 5.28 5.29

 m_{bc} (GeV/ c^2)

Next Goals:

- Full Calibration using $B \rightarrow X I \nu$ as a standard candle
 - Procedure: Reconstruct $B \rightarrow XI\nu$ using tagged events
 - single Lepton with high momentum, clean up ROE for X reconstruction
 - Determine BF after applying all signal-side corrections (e.g. PID)

• $\varepsilon = N_{reco} / N_{expected}$

- First global, once we have enough int.
 lumi, differential in Modes and Signal
 Probability
- Rediscover SL D* and D decays

SL FEI

Next Goals:

- Understand tag-side Properties
 - $\circ \quad \mbox{Focus in D and D* (no D^{**} \rightarrow \ D(^*)\pi)}$
 - For truth matching a tag, how strict should we be?
 - Very strict: only fully correctly reconstructed tags
 - Less strict: Allow for a number of wrongly assigned particles in D, D*
 - How many charged and neutrals?
 - Very loose: Correct if Lepton is reconstructed correctly?
- **Moriond goal:** Sig-Prob and cosBY plot for public consumption
- After this: Calibration studies

200/fb Program (Summer 2020)

• Hadronic FEI Performance, full calibration as a function of modes and

Signal Prob. → Paper

- SL FEI Performance, full calibration → Paper
- Untagged / Tagged $B \rightarrow \pi I \nu$
- Untagged $B \rightarrow D^* I \nu$: BF + Form Factors + $|V_{cb}|$
- Had. FEI: $B \rightarrow D/D^* I \nu$: Validation of E_{ECL} shape, BF + Form Factors + $|V_{cb}|$
- Hadronic FEI: Towards $B \rightarrow D/D^* \tau \nu$ rediscovery
- Hadronic FEI: Incl. |V_{ub}| & |V_{cb}|
- Hadronic FEI: $B \rightarrow \tau \nu$: first limit

Florian Bernlochner Group Meeting October

FIG. 3: fb⁻¹ us applied the $\Upsilon(4)$ order a

