B decays at e^+e^- colliders

Rahul Tiwary On behalf of the Belle & Belle II Collaboration

22nd Conference on Flavour physics and CP violation (FPCP 2024) May 27-31, 2024 Bangkok, Thailand

Outline

- Motivation
- Overview of B factories
- Probing $B \rightarrow K \nu \overline{\nu}$ at Belle II
- First measurement of $B \rightarrow K^*(892)\gamma$ at Belle II
- Results for exclusive $B \rightarrow \rho \gamma$ study using Belle + Belle II data
- Search for double radiative $B \rightarrow \gamma \gamma$ using Belle + Belle II data
- Summary

Motivation

$$\frac{\frac{1}{4}W_{\mu\nu}\cdot W^{\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{1}{4}G_{\mu\nu}^{\alpha}G_{\alpha}^{\mu\nu}}{_{\text{kinetic energies and self-interactions of the gauge bosons}}$$

$$= \frac{\overline{L}\gamma^{\mu}\left(i\partial_{\mu} - \frac{1}{2}g\tau\cdot W_{\mu} - \frac{1}{2}g'YB_{\mu}\right)L + \overline{R}\gamma^{\mu}\left(i\partial_{\mu} - \frac{1}{2}g'YB_{\mu}\right)R}{_{\text{kinetic energies and electroweak interactions of fermions}}$$

$$= \frac{1}{2}\left|\left(i\partial_{\mu} - \frac{1}{2}g\tau\cdot W_{\mu} - \frac{1}{2}g'YB_{\mu}\right)\phi\right|^{2} - V(\phi)$$

$$= \frac{g''(\overline{q}\gamma^{\mu}T_{a}q)G_{\mu}^{\alpha}}{_{\text{interactions between quarks and gluons}} + \underbrace{\left(G_{1}\overline{L}\phi R + G_{2}\overline{L}\phi_{c}R + h.c.\right)}_{\text{fermion masses and couplings to Higgs}}$$

The elusive *b* quark

- Heaviest quark that can hadronize to a meson
- Myriad of final states and interactions to probe from

Rare decays!!!

Flavour changing neutral currents (FCNC) decays of *B* mesons

- Forbidden at tree level, allowed at loop level [PRD 2 (1970) 1285]
- Standard Model (SM) contribution is small, sensitive to beyond SM.
- BSM particles can contribute in the loop or mediate the process at the tree level.

Electroweak penguins

Belle

- SVD (3/4 layers) \Rightarrow Vertex Reco.
- ACC+TOF \Rightarrow Particle ID (K/ π)
- ECL $\Rightarrow \gamma$ and e
- CDC \Rightarrow Tracking
- KLM \Rightarrow RPC

Belle TDR: A. Abashian et al., Nucl. Instrum. Meth. A479, 117 (2002)

Belle II

- PXD (2 layers) + SVD (4 layers)
 ⇒ Vertex Reco.
- ARICH+TOP \Rightarrow Particle ID (K/ π)
- ECL ⇒ With waveform sampling readout electronics (γ and e)
- CDC \Rightarrow Small cell, long lever arm
- KLM \Rightarrow Scintillator + RPC

Belle/Belle II status

Belle II collected 362 fb-1 at $\Upsilon(4S)$ – equivalent to BaBar and ~1/2 of Belle sample Belle II collected 42 fb-1 of off-resonance data [60 MeV below $\Upsilon(4S)$] compared to ~90 fb-1 from Belle

Events at B factories

Belle II

- Clean environment with on average ~10-15 tracks, 3-4 π^0
- Known initial state kinematics
- Principle background from light quarks

Event kinematics

B factory specific variables to exploit information on initial kinematics Different event shape to separate BB from continuum background

9

$B \rightarrow K \nu \overline{\nu}$: Motivation

- $B^+ \rightarrow K^+ \nu \overline{\nu}$ is a challenging due to a single charged track in the final state
- $\mathfrak{B}(SM) = (5.58 \pm 0.37) \times 10^{-5} [PRD 107, 014511]$
- New physics could significantly increase the rate Advantages at Belle II:
- Constraints from well-known initial state kinematics;
- Lower average multiplicity at the Y(4S) compared to hadronic collisions.

NP scenarios:

- Light : axions [PRD 102, 015023 (2020)],
- dark scalars [PRD 101, 095006 (2020)],
- axion-like particles [JHEP 04 (2023) 131]
- Heavy : Z' [PL B 821 (2021) 136607],
- leptoquarks [PRD 98, 055003 (2018)]

$B \rightarrow K \nu \overline{\nu}$: Reconstruction

 e^{-}

Inclusive tag analysis (ITA)

- Select first signal kaon that minimizes q²_{rec} (computed as K⁺ recoil)
- Nested BDT to suppress background
- Binned fit to q²_{rec} and BDT _____
 output simultaneously for on and off resonance

Hadronic tag analysis (HTA)

- Select first tag B decaying hadronically [Comput Softw Big Sci 3, 6 (2019)]
- Single BDT to suppress background
- Fit BDT output

HTA

$B \rightarrow K \nu \overline{\nu}$: Validation

Signal efficiency checked with signal embedded $B \rightarrow K J/\psi (\rightarrow \mu \mu)$ Remove J/ψ and correct the kaon kinematics to match that of signal

- $B \rightarrow X_c (\rightarrow K^0_L)$ validated from pion enriched sideband Signal like $B \rightarrow K^+ K^0_L K^0_L$ checked with $B \rightarrow K^+ K^0_S K^0_S$ [PRD 85 112010]
- Similar treatment for $B \rightarrow K^+ K^0_{\ S} K^0_{\ I}$ and $B \rightarrow K^+ nn$

$B \rightarrow K \nu \overline{\nu}$: Results

First measurement of $B - >K^*(892)\gamma$ at Belle II

- Flavour changing neutral current decays sensitive to new physics
- CP (A_{CP}) and isospin (Δ_{+0}) asymmetries are theoretically clean thanks to form factor cancellations
- Asymmetries are ideal for BSM searches [PRD 88 (2013) 094004] [PRL 106 (2011) 141801]
- Belle measurement found evidence of isospin asymmetry at 3.1σ [PRL 119, 191802 (2017)]

$$A_{CP} = \frac{\Gamma(\bar{B} \to \overline{K^*}\gamma) - \Gamma(B \to K^*\gamma)}{\Gamma(\bar{B} \to \overline{K^*}\gamma) + \Gamma(B \to K^*\gamma)}$$
 SM prediction: A_{CP} is small (~1%)

$$\Delta A_{CP} = A_{CP}(B^0 \to K^{*0}\gamma) + A_{CP}(B^+ \to K^{*+}\gamma)$$

 $\Delta_{+0} = \frac{\Gamma(B^0 \to K^{*0}\gamma) - (B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + (B^+ \to K^{*+}\gamma)}$

SM prediction: $\Delta_{+,0}$ range from 2-8% with an uncertainty ~2%

B->K*(892) γ : Analysis

- Analysis based on run 1 data (362 fb⁻¹)
- Reconstruct $K^* \rightarrow K^+ \pi^-$, $K^0_{\ S} \pi^0$, $K^+ \pi^0$, $K^0_{\ S} \pi^-$
- Combine K* with a prompt photon to get B candidate
- Dedicated BDTs to suppress continuum, $\pi \rightarrow \gamma \gamma$, and $\eta \rightarrow \gamma \gamma$ decays

Fit strategy

• Perform 2D fit to ΔE and M_{bc} to extract signal yield

Control sample study

- Employed $B \to D^0 \pi^-$ to calibrate continuum, $\pi \to \gamma \gamma$, and $\eta \to \gamma \gamma$ BDTs
- Hadron identification calibrated using $D^0 \rightarrow K^- \pi^+$
- Significant effort towards $K^0_{\ S}$ systematics using $D^+ \rightarrow K^0_{\ S} \pi^+$

$B \rightarrow K^*(892)\gamma$: Results

- Consistent with World average and SM
- Asymmetries are statistically limited
- Similar sensitivity to Belle result despite half the data $\Delta_{0+} = 6.2 \pm 1.5 \text{ (stat)} \pm 0.6 \text{ (sys)} \pm 1.2 \text{ (f}_{+}/f_{00}) [PRL 119, 191802 (2017)]$ (Thanks to improved K⁰_S efficiency, continuum suppression, and addition of ΔE to fit model)

$$\mathcal{B}[B^{0} \to K^{*0}\gamma] = (4.16 \pm 0.10 \pm 0.11) \times 10^{-5}$$
$$\mathcal{B}[B^{+} \to K^{*+}\gamma] = (4.04 \pm 0.13 \pm 0.13) \times 10^{-5}$$
$$\mathcal{A}_{CP}[B^{0} \to K^{*0}\gamma] = (-3.2 \pm 2.4 \pm 0.4)\%,$$
$$\mathcal{A}_{CP}[B^{+} \to K^{*+}\gamma] = (-1.0 \pm 3.0 \pm 0.6)\%,$$
$$\Delta \mathcal{A}_{CP} = (2.2 \pm 3.8 \pm 0.7)\%,$$
$$\Delta_{0+} = (5.1 \pm 2.0 \pm 1.0 \pm 1.1)\%$$

 B^{0}, B^{+} (4 MeV/c²), 000 Data $K^+\pi^-\gamma$ Fit Belle II $B^0 \rightarrow K^{*0}[K^*\pi^*]\gamma$ Preliminary gg Background 009 Candidates $Ldt = 362 \text{ fb}^{-1}$ **BB** Background 200 5.24 5.25 5.26 5.27 5.28 5.29 M_{bc} [GeV/c²] MeV/c²) Data $K_{\rm s}^0\pi^+$ - Fit Belle II ₹300 Preliminar $B^+ \rightarrow K^{*+}[K^0_{\alpha}\pi^+]\gamma$ ---- qq Background Candidates 000 $Ldt = 362 \text{ fb}^{-1}$ **BB** Background 100 5.28 5.23 5.24 5.25 5.26 5.27 5.29 M_{hr} [GeV/c²] 16

Uncertainty:

stat. + sys. + f_{+}/f_{00} (for Δ_{0+})

Exclusive measurement of $B \rightarrow \rho \gamma$ at Belle and Belle II

- Flavor changing neutral current with $b \rightarrow d$ transition
- Independent search for NP
- SM branching fraction suppressed by |Vtd /Vts | ~ 0.04 with respect to $B -> K^*(892)\gamma$
- The first "charmless" study with Belle and Belle II joint data
- Earlier results from Belle [Phys. Rev. Lett. 101, 111801] and BaBar [Phys. Rev. D 78, 112001].

17

$B \rightarrow \rho \gamma$: Analysis

- Select high energy photon candidate 1.8< E_{γ}^{B} < 2.8 GeV with shower shape consistent to an isolated photon.
- Reconstruct $ho^0 o \pi^+\pi^-$ and $ho^+ o \pi^+\pi^0$ for neutral and charged modes of B.
- Define $M_{K\pi}$ as the invariant mass calculated assuming π^+ is K^+
- The $M_{K\pi}$ helps separate $K^*\gamma$ background better compared to $M_{\pi\pi}$
- Dedicated BDTs to suppress continuum, $\pi \rightarrow \gamma \gamma$, and $\eta \rightarrow \gamma \gamma$ decays

$B \rightarrow \rho \gamma$: Observables and Fit strategy

- $B^0 \rightarrow K^*(892)[K^+\pi^-]\gamma$ taken as a control channel.
 - Calibrate the signal PDF modelling
 - Efficiency corrections due to application of BDTs
- Simultaneous 3D fitting with 3x2=6 samples to determine target observables.
- ΔE , M_{bc} and $M_{K_{\pi}}$ for $(\check{B^+}, B^-, B^0) imes$ (Belle, Belle II)
 - Floating parameters:

•
$$\mathbf{A}_{\mathbf{I}} \equiv \frac{rc_{\rho}^{2}BR(B^{0} \rightarrow \rho^{0}\gamma) - BR(B^{\pm} \rightarrow \rho^{\pm}\gamma)}{rc_{\rho}^{2}BR(B^{0} \rightarrow \rho^{0}\gamma) + BR(B^{\pm} \rightarrow \rho^{\pm}\gamma)}, \text{ where } c_{\rho} = \sqrt{2} \text{ and } r \equiv \frac{f_{+-}}{f_{00}} \frac{\tau_{B^{\pm}}}{\tau_{B^{0}}}$$

•
$$A_{CP} \equiv \frac{BR(B^+ \rightarrow \rho^+ \gamma) - BR(B^- \rightarrow \rho^- \gamma)}{BR(B^+ \rightarrow \rho^+ \gamma) + BR(B^- \rightarrow \rho^- \gamma)}$$

•
$$\blacksquare \equiv rc_{\rho}^{2}BR(B^{0} \to \rho^{0}\gamma) + BR(B^{\pm} \to \rho^{\pm}\gamma)$$

•
$$BR(B^{\pm} \rightarrow \rho^{\pm}\gamma) = \frac{1}{2}(1 - A_I)$$

• $BR(B^0 \rightarrow \rho^0\gamma) = \frac{1}{4r}(1 + A_I)$

$B \rightarrow \rho \gamma$: Results

Total

Perform Belle+Belle II simultaneous 3D fit of M_{hc} , ΔE and $M_{K\pi}$

Double radiative $B \rightarrow \gamma \gamma$ at Belle + Belle II

- Very rare decay with $\mathfrak{B}(SM) = (1.4^{+1.4}_{-0.8}) \times 10^{-8} [JHEP 12, 169 (2020)]$
- Highly CKM suppressed relative to Bs $\rightarrow \gamma\gamma$
- Challenging due to the presence of two photons in the final state; large backgrounds

Previous searches:

- <u>PLB 363 (1995) 137-144</u>
- PRD 73, 051107 (2006)
- PRD 83, 032006 (2011)

Experiment	Integrated Luminosity $(\int \mathcal{L} dt)$	Limit @ 90 C.L.
L3	$73 \mathrm{\ pb^{-1}}$	3.9×10^{-5}
Belle	$104 {\rm ~fb^{-1}}$	6.2×10^{-7}
Babar	$426 {\rm fb}^{-1}$	3.2×10^{-7}

B->γγ : Analysis

- Analysis based on combined Belle (362 fb⁻¹) + Belle II (711 fb⁻¹) data
- Reconstruct signal from two prompt photons
- Peaking background in M_{bc} due to back-to-back off time photons
 => Suppressed using photon timing cuts
- Dedicated BDTs to suppress continuum, $\pi \rightarrow \gamma \gamma$, and $\eta \rightarrow \gamma \gamma$ decays

Fit strategy

- 3D fit to ΔE , M_{bc} and transformed continuum BDT output (C'_{BDT})
- Use $B^0 \rightarrow K^*(892)[K^+\pi^-]\gamma$ as control sample

Belle vs Belle II

- Improved signal efficiency per fb⁻¹ bkg
- Improved ∆E resolution

$B \rightarrow \gamma \gamma$: Results

- Combined signal yield = $11.0^{+6.5}_{-5.5}$
- Since no significant signal \Rightarrow set 90% C.L. limits
- Sensitivity approaching SM prediction
 - \rightarrow best upper limit with Belle II data

	$\mathcal{B}(B^0 o \gamma \gamma)$	$\mathcal{B}(B^0 o \gamma \gamma)$
		(at 90% CL)
Belle	$(5.4^{+3.3}_{-2.6} \pm 0.5) \times 10^{-8}$	$< 9.9 imes 10^{-8}$
Belle II	$(1.7^{+3.7}_{-2.4}\pm0.3) imes10^{-8}$	$< 7.4 \times 10^{-8}$
Combined	$(3.7^{+2.2}_{-1.8} \pm 0.7) \times 10^{-8}$	$< 6.4 \times 10^{-8}$

Expected 90 C.L. 4.4×10^{-8}

- Uncertainties are comparable between Belle and Belle II, despite Belle II having a smaller dataset.
- 5x improvement over previous best UL.

Summary

- FCNC's are attractive to probe SM and physics beyond.
- First evidence for $B^+ \rightarrow K^+ \nu \overline{\nu}$ decay with 2.7 σ compatibility with SM [arxiv: 2311.14647, to appear in PRD]
- World's most precise measurement of $B \rightarrow \rho \gamma$ decays using Belle (711 fb-1) and Belle II (362 fb-1) data.
- First measurement of $B \rightarrow K^*(892)\gamma$ with Belle II data
- Best upper limit for $B > \gamma \gamma$, rarest decay measured with Belle II data so far

