

Charm results at Belle and Belle II

Speaker: Junxi Cui (崔峻熙) Southeast University
On behalf of the Belle II Collaboration

Outline

- ➤ Quick introduce to Belle (II)
- > CPV for Charmed mesons

$$D_{(s)}^+ \to K^{\pm} h^{\pm} \pi^+ \pi^0$$
 arXiv:2305.12806, submitted to PRD

Charmed Baryon

$$\mathcal{E}_{c}^{0}
ightarrow \Xi_{c}^{0}
ightarrow \Xi^{0} h^{0}$$
 preliminary, intended to JHEP

> Search for rare decay

$$\checkmark~D^0 \to h h' e^+ e^-$$
 preliminary, intended to PRL

$$\mathcal{E}_{c}^{0} \rightarrow \Xi^{0} \ell^{+} \ell^{-}$$
PRD 109, 052003 (2024)

$$\sim D \to p\ell_{PRD 109, L031101 (2024)}$$

Summary

Experiments

- ✓ Belle and Belle II operate at asymmetric e^+e^- colliders
 - KEKB (2009-2010), peak $\mathcal{L} = 2 \times 10^{34} cm^{-2} s^{-1}$
 - SuperKEKB, peak $\mathcal{L}=4.7\times 10^{34}cm^{-2}s^{-1}$ just started Run2 (Feb. 2024)
 - Collisions at or near $\Upsilon(4S)$, B-factories

- ✓ Combined analyses at Belle & Belle II
 - $\sim 1.4 \ ab^{-1}$ in total
 - Analyze Belle data with Belle II framework
 - Common review procedures
 - For charm analyses, large statistics is crucial to improve precision

Charm physics at Belle (II)

- ✓ Two ways to produce the charm sample at B-factories
 - A large cross section for $e^+e^- \rightarrow c\bar{c}$ continuum process

- e^+e^- collider at 10.58 GeV to make $\Upsilon(4S)$ resonance decaying into $B^0\bar{B}^0$ and B^+B^- in 96% of the time
- ✓ Full topics for charm physics

Charm CP Violation

- ✓ Charge-parity violation (CPV) is essential for elucidating the matter-antimatter asymmetry in the universe_[Pisma Zh. Theor. Fiz. 5. 32(1967)]
 - In the SM, CPV from the complex phase of the CKM matrix is not large enough.
 - Search for new CPV sources.
- ✓ Charm CPV is notably small, $\leq O(10^{-3})_{[PRD 86, 036012(2012)]}$
 - Difficult for theoretical predictions due to low-energy strong-interaction effect
 - Sensitive to the New Physics_[PRD 88, 074011 (2013)]
- ✓ First and only observation of charm CPV by LHCb_[PRL 122, 211803 (2019)]
 - $\Delta A_{CP}(D^0 \to KK, \pi\pi) = (-15.4 \pm 2.9) \times 10^{-4} (>5\sigma)$
 - First evidence (3.8 σ) for direct CPV in $D^0 \to \pi^-\pi^+$ [PRL 131, 091802 (2023)]
 - CPV in other charm decays is yet to be observed.
- ✓ Continue searching for CPV in charm hadrons to understand its origin, SM, and search for New Physics
 - We need to study more channels and observables and improve the precision of measurements
 - Belle (II) mainly contribute with channels with neutral particles in the final state

a_{CP}^{T-odd} observable

- ✓ Indirectly search for CP violation under CPT symmetry conservation
 - Triple mixed product $C_T = \vec{p}_i \cdot (\vec{p}_j \times \vec{p}_k)$

So-called 'up-down asymmetry': \vec{p}_i at the up- (down-) side of $\vec{p}_j imes \vec{p}_k$ plane

Build asymmetries:

$$A_T = \frac{N(C_T > 0) - N(C_T < 0)}{N(C_T > 0) + N(C_T < 0)} \quad \bar{A}_T = \frac{\bar{N}(-\bar{C}_T > 0) - \bar{N}(-\bar{C}_T < 0)}{\bar{N}(-\bar{C}_T > 0) + \bar{N}(-\bar{C}_T < 0)}$$

T-odd CP-violating asymmetry

$$a_{CP}^{T-odd} = \frac{1}{2}(A_T - \bar{A}_T)$$

Recent measurement

$a_{CP}^{T-odd} \text{ for } D_{(s)}^+ \to K^{\pm} h^{\pm} \pi^+ \pi^0$

- ✓ No evidence of global CPV
- reach 10^{-3} level

SCS
$$a_{CP}^{T\text{-}\mathrm{odd}}(D^+ \to K^- K^+ \pi^+ \pi^0) = (+2.6 \pm 6.6 \pm 1.3) \times 10^{-3}$$
 DCS $a_{CP}^{T\text{-}\mathrm{odd}}(D^+ \to K^+ \pi^- \pi^+ \pi^0) = (-1.3 \pm 4.2 \pm 0.1) \times 10^{-2}$ CF $a_{CP}^{T\text{-}\mathrm{odd}}(D^+ \to K^- \pi^+ \pi^+ \pi^0) = (+0.2 \pm 1.5 \pm 0.8) \times 10^{-3}$ SCS $a_{CP}^{T\text{-}\mathrm{odd}}(D_s^+ \to K^+ \pi^- \pi^+ \pi^0) = (-1.1 \pm 2.2 \pm 0.1) \times 10^{-2}$ CF $a_{CP}^{T\text{-}\mathrm{odd}}(D_s^+ \to K^- K^+ \pi^+ \pi^0) = (+2.2 \pm 3.3 \pm 4.3) \times 10^{-3}$

- ✓ No evidence of local CPV in subregion for dominant resonances
- Vector mesons: ϕ , ρ , K^*

			T 11 0
Subregion	$D^+_{(s)} \to VV$	Signal region (SR)	$a_{CP}^{T\text{-}\mathrm{odd}} \ (\times 10^{-2})$
(1) SCS	$D^+ \to \phi \rho^+$	ϕ -SR, ρ^+ -SR	$0.85 \pm 0.95 \pm 0.25$
(2) SCS	$D^+ o \overline{K}^{*0} K^{*+}$	$K^{*(0,+)}$ -SR, veto ϕ -SR	$0.17 \pm 1.26 \pm 0.13$
(3) CF	$D^+ o \overline{K}^{*0} \rho^+$	K^{*0} -SR, ρ^+ -SR	$0.25 \pm 0.25 \pm 0.13$
(4) SCS	$D_s^+ \to K^{*0} \rho^+$	K^{*0} -SR, ρ^+ -SR	$6.2 \pm 3.0 \pm 0.4$
(5) SCS	$D_s^+ \to K^{*+} \rho^0$	K^{*+} -SR, ρ^0 -SR	$1.7 \pm 6.1 \pm 1.5$
(6) CF	$D_s^+ \to \phi \rho^+$	ϕ -SR, ρ^+ -SR	$0.31 \pm 0.40 \pm 0.43$
(7) CF	$D_s^+ \to \overline{K}^{*0} K^{*+}$	$K^{*(0,+)}$ -SR, veto ϕ -SR	$0.26 \pm 0.76 \pm 0.37$

 $D^+ \to \overline{K}^{*0} K^{*+}$ for example

Study of $\Xi_c^0 \to \Xi^0 h^0$, $h^0 = \pi^0$, η , η'

PRELIMINARY Belle + Belle II 1.4/ab

- ✓ Hadronic two-body decay of charmed baryons
 - Nonfactorizable amplitudes from internal W-emission and W-exchange diagram lead to the difficulties for theoretical predictions
 - Feynman diagrams_[CJPH 78, 324 (2022)] for Cabibbo-favored signal modes $\Xi_c^0 \to \Xi^0 h^0$, only nonfactorizable amplitudes contribute to.

- Serval theoretical approaches developed to deal with nonfactorizable contributions, give various predictions on branching fractions (in unit of 10^{-3}) and decay asymmetry parameters^[1-14].
- Need experiment measurement to clarify the theoretical picture.

$\Xi_c^0 \to \Xi^0 h^0$ results

✓ First measurements of the branching fractions using combined data

$$\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0) = (6.9 \pm 0.3(\text{stat.}) \pm 0.5(\text{syst.}) \pm 1.5(\text{norm.})) \times 10^{-3}$$

$$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta) = (1.6 \pm 0.2(\text{stat.}) \pm 0.2(\text{syst.}) \pm 0.4(\text{norm.})) \times 10^{-3}$$

$$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta') = (1.2 \pm 0.3(\text{stat.}) \pm 0.1(\text{syst.}) \pm 0.3(\text{norm.})) \times 10^{-3}$$

- taking $\Xi_c^0 \to \Xi^- \pi^+$ as reference mode
- favoriting predictions in SU(3) flavor symmetry [JHEP 02, 235 (2023)]
- First asymmetry parameter $\alpha(\Xi_c^0 \to \Xi^0 \pi^0)$ measurement $\alpha(\Xi_c^0 \to \Xi^0 \pi^0) = -0.90 \pm 0.15 (\text{stat.}) \pm 0.23 (\text{syst.})$
- through a simultaneous fit to Belle and Belle II data samples depending on differential decay rate

$$\frac{dN}{d\cos\theta_{\Xi^0}} \propto 1 + \alpha(\Xi_c^0 \to \Xi^0 h^0) \alpha(\Xi^0 \to \Lambda \pi^0) \cos\theta_{\Xi^0}$$

- taking $\alpha(\Xi^0 \to \Lambda \pi^0) = -0.349 \pm 0.009 (PDG)$
- consistent with predictions^[1-4]

[1]PRD 48, 4188 (1993) [2] PRD 101, 014011 (2020) [3] EPJC 7, 217 (1999) [4]PLB 794, 19 (2019)

PRELIMINARY at Belle + Belle II 1.4/ab

Search for $D^0 \rightarrow hh'e^+e^-, h^{(\prime)}=K,\pi$

PRELIMINARY Belle 942/fb

- ✓ Rare charmed meson decay
 - Flavor changing neutral current (FCNC) $c \to u\ell\ell$ process is suppressed in the SM, sensitive to BSM
 - LD contributions from vector meson dominance (VMD) mode dominate
 - Search for new physics and LFU (Lepton Flavor Universality) tests

Short Distance (SD)

Measured BFs and ULs @90% [$\times 10^{-7}$]

Experiment	$K^-K^+e^+e^-$	$\pi^-\pi^+e^+e^-$	$K^-\pi^+e^+e^-$
Babar (2019)			$40.0 \pm 5.0 \pm 2.3 \; (\rho^0/\omega)$ stat syst
BESIII (2019)	< 110	< 70	< 410
	$K^-K^+\mu^+\mu^-$	$\pi^-\pi^+\mu^+\mu^-$	$K^-\pi^+\mu^+\mu^-$
LHCb (2016-2017)	$1.54 \pm 0.27 \pm 0.19$	$9.64 \pm 0.48 \pm 1.10$	$4.17 \pm 0.12 \pm 0.40 \; (\rho^0/\omega)$

BABAR: PRL 122, 081802

BESIII: PRD 97, 072015 (2019)

LHCb: PLB517, 558(2016); PRL 119, 181805 (2017)

$D^0 \rightarrow hh'e^+e^-$ results

- ✓ Signal observed for $D^0 \to K^-\pi^+e^+e^-$ in ρ/ω region (11.8 σ)
 - $\mathcal{B} = (39.6 \pm 4.5(\text{stat}) \pm 2.9(\text{syst})) \times 10^{-7}$
 - Compatible with BABAR and with SM expectation
- ✓ No signal observed in other channels and regions
 - Set upper limits in [2.3, 7.7] \times 10⁻⁷ at 90% CL
 - Tightest to date
 - No BSM contributions are found in non-resonant regions
 - Taking $D^0 \to K^-\pi^+\pi^-\pi^+$ as reference mode

Search for $\Xi_c^0 \to \Xi^0 \ell^+ \ell^-$

✓ No neutrino-less semileptonic decays of charmed baryons observed yet.

- [1] PRD 84, 072006(2011) [2] PRD 97, 091101(2018)
- [3] PRD 103, 013007 (2021)
- Only upper limits of $\Lambda_c \to p\ell^+\ell^-$ decays were set for charmed baryons^[1,2], which receive both W-exchange and FCNC process contributions.
- Theoretically face difficulties from the Hamiltonian helicity structure and hadronic form factors.
- If observed, the signal channels would allow to test LFU
- ✓ First search for $\Xi_c^0 \to \Xi^0 \ell^+ \ell^- (\ell = e, \mu)$
 - Fully reconstruct with $\Xi^0 \to \Lambda \pi^0 (\sim 100 \text{ signals})$
 - Take $\Xi_c^0 \to \Xi^- \pi^+$ as reference mode
 - No significant signals observed
 - set upper limits at 90% CL

$$\mathcal{B}(\Xi_c^0 \to \Xi^0 e^+ e^-) < 9.9 \times 10^{-5}$$

 $\mathcal{B}(\Xi_c^0 \to \Xi^0 \mu^+ \mu^-) < 6.5 \times 10^{-5}$

Theoretical prediction gives upper limits at 2.35 (2.25) $imes 10^{-6}$ for electron (muon) mode [3]

Search for neutral $D \rightarrow p\ell$

- ✓ Baryon Number Violation (BNV) is one of the required conditions to explain matter-antimatter asymmetry
 - Some models^[1-5] allow violation of baryon (B) and lepton (L) numbers with the difference $\Delta(B-L)=0$ conserved.
- \checkmark Search in meson decays, B and L separately violated with $\Delta(B-L)=0$
 - $D o p\ell$ for D^0 , $\overline{D}{}^0$ with $\ell=e$, μ
 - Use $D \to K\pi$ as reference mode
- No signal observed
 - Set upper limits $(5-8) \times 10^{-7}$ at 90% CL

Decay mode	<i>ϵ</i> (%)	N_S	$\mathcal{S}\left(\sigma\right)$	N_{pl}^{UL}	$\mathcal{B} \times 10^{-7}$
$D^0 \rightarrow pe^-$	10.2	-6.4 ± 8.5		17.5	< 5.5
$\bar{D}^0 \rightarrow pe^-$	10.2	-18.4 ± 23.0		22.0	< 6.9
$D^0 o \bar{p}e^+$	09.7	-4.7 ± 23.0		22.0	< 7.2
$\bar{D}^0 \rightarrow \bar{p}e^+$	09.6	7.1 ± 9.0	0.6	23.0	< 7.6
$D^0 \to p\mu^-$	10.7	11.0 ± 23.0	0.9	17.1	< 5.1
$\bar{D}^0 \to p \mu^-$	10.7	-10.8 ± 27.0		21.8	< 6.5
$D^0 \to \bar{p}\mu^+$	10.5	-4.5 ± 14.0		21.1	< 6.3
$\bar{D}^0 \to \bar{p}\mu^+$	10.4	16.7 ± 8.8	1.6	21.4	< 6.5

- Most stringent limit for electron modes to date
- First measurement for muon channels

- [1] PRD 8, 1240 (1973)
- [2] PRL 32, 438 (1974)
- [3] PRD 20,776 (1979)
- [4] PLB 91, 222 (1980)
- [5] PLB 314, 336 (1993)

Summary

- ➤ Belle and Belle II provide a unique environment for charm physics both in meson and baryon decays, sensitively in SM measurements and search for physics beyond the SM
- > Belle is still producing important measurements for more than 10 years after the end of data taking
 - Search for T-odd CPV in $D_{(s)}^+ \to K^{\pm} h^{\pm} \pi^+ \pi^0$
 - Search for rare decays: FCNC $D^0 \to hh'e^+e^-$, semi-leptonic $\Xi_c^0 \to \Xi^0\ell^+\ell^-$, BNV $D \to p\ell$
- > Belle + Belle II combined data sample provides the platform for further charm measurements
 - \mathcal{B} and α measurements for $\Xi_c^0 \to \Xi^0 h^0$
- > Belle II has started Run 2 data taking, expecting more physics results with a larger data sample
- Analyses ongoing... (Unblinded, not released yet)
 - Search for CPV for $D^0 \to K_S^0 K_S^0$
 - a_{CP}^{T-odd} in $D_{(s)}^+ \to K_S^0 K^- \pi^+ \pi^+$ for more observables
 - Mixing in $D^0 \to K_S \pi \pi$
 - Precise $\mathcal{B}(\Lambda_c^+ \to p K_s^0 \pi^0)$ measurement

Thank you for your attention!

Backups

Theoretical Predictions for $\Xi_c^0 \to \Xi^0 h^0$

Table 1. Theoretical predictions for the branching fractions and decay asymmetry parameters for $\Xi_c^0 \to \Xi^0 h^0$ decays. Branching fractions are given in units of 10^{-3} .

Reference	Model	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0)$	$\mathcal{B}(\Xi_c^0 o \Xi^0 \eta)$	$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta')$	$\alpha(\Xi_c^0 \to \Xi^0 \pi^0)$
Körner, Krämer [5]	quark	0.5	3.2	11.6	0.92
Ivanov et al. [6]	quark	0.5	3.7	4.1	0.94
Xu, Kamal [7]	pole	7.7	-	-	0.92
Cheng, Tseng [8]	pole	3.8	-	-	-0.78
Żenczykowski [9]	pole	6.9	1.0	9.0	0.21
Zou et al. [10]	pole	18.2	26.7	-	-0.77
Sharma, Verma [11]	$\mathbf{C}\mathbf{A}$	-	-	-	-0.8
Cheng, Tseng [8]	$\mathbf{C}\mathbf{A}$	17.1	-	-	0.54
Geng et al. [12]	$SU(3)_F$	4.3 ± 0.9	$1.7^{+1.0}_{-1.7}$	$8.6^{+11.0}_{-6.3}$	-
Geng <i>et al.</i> [13]	$SU(3)_F$	7.6 ± 1.0	10.3 ± 2.0	9.1 ± 4.1	$-1.00^{+0.07}_{-0.00}$
Zhao et al. [14]	$SU(3)_F$	4.7 ± 0.9	8.3 ± 2.3	7.2 ± 1.9	-
Huang et al. [15]	$SU(3)_F$	2.56 ± 0.93	-	-	-0.23 ± 0.60
Hsiao et al. [16]	$SU(3)_F$	6.0 ± 1.2	$4.2^{+1.6}_{-1.3}$	-	-
Hsiao et al. [16]	$SU(3)_F$ -breaking	$3.6 {\pm} 1.2$	7.3 ± 3.2	-	-
Zhong et al. [17]	$SU(3)_F$	$1.13^{+0.59}_{-0.49}$	$1.56{\pm}1.92$	$0.683^{+3.272}_{-3.268}$	$0.50^{+0.37}_{-0.35}$
Zhong et al. [17]	$SU(3)_{F}$ -breaking	$7.74^{+2.52}_{-2.32}$	$2.43^{+2.79}_{-2.90}$	$1.63^{+5.09}_{-5.14}$	$-0.29^{+0.20}_{-0.17}$
Xing et al. [18]	$SU(3)_F$	$1.30{\pm}0.51$	-	-	-0.28 ± 0.18

• Ref. [17] with breaking scenario suits best for ${\mathcal B}$ measurements

- [5] J. G. Körner and M. Krämer, Exclusive non-leptonic charm baryon decays, Z. Phys. C 55 (1992) 659.
- [6] M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij, and A. G. Rusetsky, Exclusive nonleptonic decays of bottom and charm baryons in a relativistic three-quark model: Evaluation of nonfactorizing diagrams, Phys. Rev. D 57 (1998) 5632.
- [7] Q. P. Xu and A. N. Kamal, Cabibbo-favored nonleptonic decays of charmed baryons, Phys. Rev. D 46 (1992) 270.
- [8] H. Y. Cheng and B. Tseng, Cabibbo-allowed nonleptonic weak decays of charmed baryons, Phys. Rev. D 48 (1993) 4188.
- [9] P. Żenczykowski, Nonleptonic charmed-baryon decays: Symmetry properties of parity-violating amplitudes, Phys. Rev. D 50 (1994) 5787.
- [10] J. Q. Zou, F. R. Xu, G. B. Meng, and H. Y. Cheng, Two-body hadronic weak decays of antitriplet charmed baryons, Phys. Rev. D 101 (2020) 014011.
- [11] K. K. Sharma and R. C. Verma, A study of weak mesonic decays of Λ_c and Ξ_C baryons on the basis of HQET results, Eur. Phys. J. C 7 (1999) 217.
- [12] C. Q. Geng, Y. K. Hsiao, C. W. Liu, and T. H. Tsai, Antitriplet charmed baryon decays with SU(3) flavor symmetry, Phys. Rev. D 97 (2018) 073006.
- [13] C. Q. Geng, C. W. Liu, and T. H. Tsai, Asymmetries of anti-triplet charmed baryon decays, Phys. Lett. B 794 (2019) 19.
- [14] H. J. Zhao, Y. L. Wang, Y. K. Hsiao, and Y. Yu, A Diagrammatic Analysis of Two-Body Charmed Baryon Decays with Flavor Symmetry, JHEP 02 (2020) 165.
- [15] F. Huang, Z. P. Xing, and X. Z. He, A global analysis of charmless two body hadronic decays for anti-triplet charmed baryons, JHEP 03 (2022) 143.
- [16] Y. K. Hsiao, Y. L. Wang, and H. J. Zhao, Equivalent SU(3)_f approaches for two-body anti-triplet charmed baryon decays, JHEP 09 (2022) 35.
- [17] H. Zhong, F. Xu, Q. Wen and Y. Gu, Weak decays of antitriplet charmed baryons from the perspective of flavor symmetry, JHEP 02 (2023) 235.
- [18] Z. P. Xing, et al., Global analysis of measured and unmeasured hadronic two-body weak decays of antitriplet charmed baryons, Phys. Rev. D 108 (2023) 053004.

Systematic uncertainties for $\mathcal{B}(\Xi_c^0 \to \Xi^0 h^0)$

Table 5. Relative systematic uncertainties (%) for branching fraction ratio measurements. The uncertainties in last two rows are correlated systematic uncertainties from intermediate branching fractions and background shape, and others are uncorrelated ones.

Source		$\xrightarrow{0} \to \Xi^0 \pi^0$ $\to \Xi^- \pi^+$)	$\frac{\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta)}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$		$\frac{\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta')}{\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)}$	
Bource	Belle	Belle II	Belle	Belle II	Belle	Belle II
Tracking	0.7	0.8	0.7	0.7	1.0	1.5
$\pi^{\pm} { m PID}$	0.4	0.2	0.4	0.2	1.4	0.2
π^0 reconstruction	4.4	8.8	2.3	4.3	2.3	4.2
Photon reconstruction	-	-	4.0	2.0	4.0	1.9
MC statistics	0.8	0.7	0.9	0.9	1.2	1.0
α uncertainty	1.1	1.2	3.0	3.4	1.0	3.5
Ξ^0 signal mass window	0.5	2.0	0.5	2.0	0.5	2.0
Normalization mode statistics	1.0	1.3	1.0	1.3	1.0	1.3
Broken-signal ratio $(n_{\text{broken}}/n_{\text{sig}})$	2.1	1.5	3.5	3.6	3.6	5.7
Broken-signal PDF	0.2	0.1	7.3	7.5	2.0	1.1
Mass Resolution	-	-	7.2	7.0	2.4	1.4
Intermediate states \mathcal{B}	-	-	0.5	0.5	1.3	1.3
Background shape	4.9	4.9	9.2	9.2	6.8	6.8
Total	7.2	10.6	15.3	15.6	9.9	11.2

Values for $\mathcal{B}(\Xi_c^0 \to \Xi^0 h^0)$

Mode	$N_{ m Belle}^{ m obs}$	$\varepsilon_{\mathrm{Belle}}$ (%)	$N_{ m Belle~II}^{ m obs}$	ε _{Belle II} (%)
$\Xi_c^0 o \Xi^- \pi^+$	36340 ± 348	13.92 ± 0.05	13719 ± 184	13.38 ± 0.03
$\Xi_c^0 o \Xi^0 \pi^0$	1315 ± 66	1.09 ± 0.01	869 ± 46	1.71 ± 0.01
$\Xi_c^0 o \Xi^0 \eta$	81 ± 15	0.80 ± 0.01	60 ± 11	1.12 ± 0.01
$\Xi_c^0 o \Xi^0 \eta'$	23 ± 6	0.46 ± 0.01	8±4	0.81 ± 0.01

Results	Belle	Belle II	Combined
$\mathcal{B}(\Xi_c^0 \to \Xi^0 \pi^0) / \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	$0.47 \pm 0.02 \pm 0.03$	$0.51 \pm 0.03 \pm 0.05$	$0.48 \pm 0.02 \pm 0.03$
$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta) / \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	$0.10 \pm 0.02 \pm 0.01$	$0.14 \pm 0.02 \pm 0.02$	$0.11 \pm 0.01 \pm 0.01$
$\mathcal{B}(\Xi_c^0 \to \Xi^0 \eta')/\mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+)$	$0.12 \pm 0.03 \pm 0.01$	$0.06 \pm 0.03 \pm 0.01$	$0.08 \pm 0.02 \pm 0.01$

are taken from ref. [39]. We combine the Belle and Belle II branching fraction ratios and uncertainties using formulas in ref. [44]:

$$r = \frac{r_1 \sigma_2^2 + r_2 \sigma_1^2}{\sigma_1^2 + \sigma_2^2 + (r_1 - r_2)^2 \epsilon_r^2},$$

$$\sigma = \sqrt{\frac{\sigma_1^2 \sigma_2^2 + (r_1^2 \sigma_2^2 + r_2^2 \sigma_1^2) \epsilon_r^2}{\sigma_1^2 + \sigma_2^2 + (r_1 - r_2)^2 \epsilon_r^2}},$$
(5.3)

where r_i , σ_i and ϵ_r are the branching fraction ratio, uncorrelated uncertainty, and relative correlated systematic uncertainty from each data sample, respectively. The branching

[44] G. D'Agostini, On the use of the covariance matrix to fit correlated data, Nucl. Instrum. Methods Phys. Res., Sect. A 346 (1994) 306.

ULs ($\times 10^{-7}$) for $D^0 \rightarrow hh'ee$

					BELLE		BESIII	BABAR
m_{ee} region	$[\mathrm{MeV}/c^2]$	Yield	Significance	B	UL @ 90% CL	Efficiency (%)	(UL @ 9	0% CL)
$K^-K^+e^+e^ \eta$ $ ho^0/\omega$ non-resonant	520-560 > 675 > 200	$\begin{array}{c} -2.6 \pm 1.8 \\ 3.5 \pm 3.3 \end{array}$	$<0.1\sigma \ 2.0\sigma \ 1.5\sigma$	$\begin{array}{c} -1.2 \pm 0.9 \pm 0.1 \\ 3.1 \pm 3.0 \pm 0.4 \end{array}$	< 2.3 < 3.0 < 7.7	3.53 ± 0.04 6.00 ± 0.06 3.19 ± 0.04	< 110	_
$\pi^-\pi^+e^+e^- \ \eta \ ho^0/\omega \ \phi \ ho$ non-resonant	520-560 $675-875$ $995-1035$ > 200	0.6 ± 2.3 3.7 ± 4.1 3.6 ± 3.2 -0.2 ± 4.1	$\begin{array}{c} 0.3\sigma \\ 0.9\sigma \\ 1.1\sigma \\ < 0.1\sigma \end{array}$	$0.4 \pm 1.4 \pm 0.2$ $2.0 \pm 2.2 \pm 0.8$ $1.1 \pm 1.1 \pm 0.2$ $-0.2 \pm 3.4 \pm 0.9$	< 3.2 < 6.1 < 3.1 < 7.2	5.31 ± 0.05 5.69 ± 0.05 9.41 ± 0.06 3.69 ± 0.04	< 70	_
$K^-\pi^+e^+e^ \eta$ ρ^0/ω ϕ non-resonant	520-560 675-875 990-1034 > 560	4.0 ± 2.7 110 ± 13 4.6 ± 2.4 2.2 ± 4.2	1.6σ 11.8σ 2.5σ 0.4σ	$2.2 \pm 1.5 \pm 0.5$ $39.6 \pm 4.5 \pm 2.9$ $1.4 \pm 0.8 \pm 0.3$ $1.3 \pm 2.4 \pm 0.6$	< 5.6 - < 2.9 < 6.5	5.09 ± 0.04 8.01 ± 0.06 9.19 ± 0.06 4.89 ± 0.09	< 410	< 31*

^a Excluding resonance regions, which is same for all three modes.

BESIII PRD97(2019)072015 BABAR PRL122(2019)081802