Studies of hadron spectroscopy at Belle and Belle II

Jake Bennett The University of Mississippi XV International Conference on Beauty, Charm, Hyperons in Hadronic Interactions - June 6, 2024

 \mathcal{B}

(dn)(s

10

- - _
- -1800 <u>_</u> 6fb⁻¹ = 102M 1600 2. Luminosity 5.5 1400 Off-peak/Scan 121fb⁻¹ = 36M 100fb⁻¹ 54fb⁻¹ 1200 5.0 1000 Integrated 25fb⁻¹ = 158M $14 \text{fb}^{-1} = 99 \text{M}$ 10.9 107 **800** Ec.m. (GeV) 3fb⁻¹ = 12M 600 30fb⁻¹ = 122M $711 \text{fb}^{-1} = 772 \text{M}$ X(3872) 433fb⁻¹ = 471M 400
- 200 Υ(4S) Υ(3S) ((2S) 10.37 10.53 10.62 10.03 10.33 9.47 10.00 Mass (GeV/c⁻)

Even >10 years after data taking, still producing new results in hadron spectroscopy

>350 papers published since Belle shutdown!

Belle/KEKB (KEK) and BaBar/PEP-II (SLAC)

Very successful physics programs with a total recorded sample over 1.5 ab^{-1} (1.25 × 10⁹ BB pairs)

Flavor physics (CKM/UT, CPV), NP in rare processes, new particle discoveries

Belle II capabilities

- Belle II is the next generation B-factory
 - Upgraded detector and accelerator
 - ~1000 members (~100 US @ 18 institutions)
 - ~15-year program ongoing since 2019
- Advantages for spectroscopy physics program
 - World record instantaneous luminosity (aiming for 50x Belle integrated luminosity)
 - High resolution, hermetic detector, good PID capability
 - Efficient reconstruction of neutrals (π^0 , η , ...)
 - Reconstruct single resonance to explore recoiling system (e.g. $e^+e^- \rightarrow J/\psi X$)
 - Using tagged events (i.e. with a fully reconstructed partner B) to measure absolute branching fractions
 - Variety of production mechanisms accessible

Belle II

B-factory Datasets

- Belle II: next generation B-factory building upon success of Belle
- Wide-ranging physics program including study of new XYZ states
- Many opportunities in unique production and decay modes

Ipon success of Belle Idy of new XYZ states d decay modes

Quarkonium-like states, the XYZ zoo

- Experimental clues for "exotic" states, especially near thresholds
- \bullet

red - expected states black - charmonium states blue/magenta - exotic candidates

More data/studies provide better input, distinguishing characteristics for theoretical explanations

Search for the double-charmonium state with $\eta_c J/\psi$ at Belle

- - Interpreted as four-quark state ($cc\bar{c}\bar{c}$)

Search for the double-charmonium state with $\eta_c J/\psi$ at Belle

Nature of bottomonium states?

- Bottomonium states above $B\bar{B}$ threshold have unexpected behavior
 - Light hadron transitions to bottomonium enhanced
 - Some transitions strongly violate heavy quark spin symmetry
 - Potential admixture of $B_{(s)}^{(*)} \overline{B}_{(s)}^{(*)}$
 - ("dressed" by hadrons)?
 - Indication of nearby "exotic" states (e.g. tetraquarks, hadrobottomonia)

Unique opportunities at 10.75 GeV

- $e^+e^- \rightarrow \Upsilon(nS)\pi^+\pi^-$
- fall of 2021
 - Goal to characterize the $\Upsilon(10753)$ by studying golden channels (and others)

Study of $\Upsilon(10753)$ decays to $\pi^+\pi^-\Upsilon(nS)$ final states at Belle II

Study of $\Upsilon(10753)$ decays to $\pi^+\pi^-\Upsilon(nS)$ final states at Belle II

Study di-pion spectrum

- No evidence for $f_0(980)$ in $\pi^+\pi^-\Upsilon(1S)$ - disagrees with predictions
- Di-pion mass spectrum in $\pi^+\pi^-\Upsilon(2S)$ similar to that in $\Upsilon(2S) \rightarrow \pi^+ \pi^- \Upsilon(1S)$ disagrees with S-D mixing prediction

11

Study of $\Upsilon(10753)$ decays to $\pi^+\pi^-\Upsilon(nS)$ final states at Belle II

- Look for Z_b contributions in $M(\pi\Upsilon)$ \bullet
 - No evidence for intermediate $Z_{b}(10610/10650)^{\pm}$
 - Establish upper limits by convolving Gaussian function with the profiled likelihood distribution

Mode	$N_{Z_{b1}}$	$N_{Z_{b1}}^{\mathrm{UL}}$	$\sigma_{Z_{b1}}$ (pb)	$\sigma_{Z_{b1}}^{\mathrm{UL}} (\mathrm{pb})$	$N_{Z_{b2}}^{\mathrm{UL}}$	$N_{Z_{b2}}$
$10.746 \mathrm{GeV}$						
$\pi \Upsilon(1S)$	$0.0^{+1.6}_{-0.0}$	< 4.9	$0.00\substack{+0.04 \\ -0.00}$	< 0.13	_	
$\pi \Upsilon(2S)$	$5.8^{+5.9}_{-4.6}$	< 13.8	$0.06\substack{+0.06 \\ -0.05}$	< 0.14	—	—
10.805 GeV						
$\pi \Upsilon(1S)$	$2.5^{+2.4}_{-1.6}$	< 5.2	$0.21\substack{+0.20 \\ -0.13}$	< 0.43	$0.0\substack{+0.7 \\ -0.0}$	< 5.8
$\pi \Upsilon(2S)$	$5.2^{+3.8}_{-3.0}$	< 12.3	$0.15\substack{+0.11 \\ -0.09}$	< 0.35	$0.0\substack{+0.8 \\ -0.0}$	< 6.0

Observation of $e^+e^- \rightarrow \omega \chi_{h,I}(1P)$ and Se

- $\Upsilon(10753)$ interpreted as conventional bottomonium, hybrid, tetraquark

$$\mathcal{B}[\Upsilon(10753) \to \chi_{b0}\omega] = (0.73-6.94) \times 10^{-3}$$
$$\mathcal{B}[\Upsilon(10753) \to \chi_{b1}\omega] = (0.25-2.16) \times 10^{-3}$$
$$\mathcal{B}[\Upsilon(10753) \to \chi_{b2}\omega] = (1.08-11.5) \times 10^{-3}$$

$$\Gamma_{ee}B[\Upsilon(10753) \to \omega \chi_{b1}] = \begin{array}{l} 0.63 \pm 0.39 \pm 0.20 \text{ (constructive)} \\ 2.01 \pm 0.38 \pm 0.76 \text{ (destructive)} \end{array}$$

$$\Gamma_{ee}B[\Upsilon(10753) \to \omega \chi_{b2}] = \begin{array}{l} 0.53 \pm 0.46 \pm 0.15 \text{ (constructive)} \\ 1.32 \pm 0.44 \pm 0.55 \text{ (destructive)} \end{array}$$

- Observed ratio $\sigma_B(e^+e^- \rightarrow \omega \chi_{b1})/\sigma_B(e^+e^- \rightarrow \omega \chi_{b2}) = 1.3 \pm 0.6$ contradicts expectations for pure D-wave state and 1.8σ discrepancy with S-D mixing
- Large difference in $\omega \chi_{bI}$ and $\pi^+ \pi^- \Upsilon(1S)$ production rate at $\Upsilon(10753)$ and $\Upsilon(10860)$ may indicate different internal structure
- Observed $\Upsilon(10860) \rightarrow \omega \chi_{bJ}$ may simply be the tail of the $\Upsilon(10753)$ •

earch for
$$X_b
ightarrow \omega \Upsilon(1S)$$
 at \sqrt{s} near 10.75 Ge

Conventional quarkonium model (S-D mixing) give comparable predictions for $\Upsilon(10753) \rightarrow \pi^+ \pi^- \Upsilon(1S)$ and $\omega \chi_{hI}$

Observation of $e^+e^- \rightarrow \omega \chi_{b,I}(1P)$ and Se

- $\Upsilon(10753)$ interpreted as conventional bottomonium, hybrid, tetraquark \bullet

$$\mathcal{B}[\Upsilon(10753) \to \chi_{b0}\omega] = (0.73-6.94) \times 10^{-3}$$
$$\mathcal{B}[\Upsilon(10753) \to \chi_{b1}\omega] = (0.25-2.16) \times 10^{-3}$$
$$\mathcal{B}[\Upsilon(10753) \to \chi_{b2}\omega] = (1.08-11.5) \times 10^{-3}$$

earch for
$$X_b
ightarrow \omega \Upsilon(1S)$$
 at \sqrt{s} near 10.75 Ge

Conventional quarkonium model (S-D mixing) give comparable predictions for $\Upsilon(10753) \rightarrow \pi^+ \pi^- \Upsilon(1S)$ and $\omega \chi_{hI}$

14

Search for $e^+e^- \rightarrow \eta_b(1S)\omega$ and $\chi_{b0}(1P)\omega$

No exclusive $\chi_{b0}(1P)$ channels with large branching ratio and efficiency, so study recoil against ω \bullet

$$M_{\text{recoil}}(\pi^{+}\pi^{-}\pi^{0}) = \sqrt{\left(\frac{\sqrt{s} - E_{\omega}}{c^{2}}\right)^{2} - \left(\frac{p_{\omega}}{c}\right)^{2}}$$

$$\underbrace{\text{arXiv:2312.13043}}_{\text{fit} \quad \sqrt{s} = 10.745 \text{ GeV}}$$

$$\text{Lui et al. (2023)}$$

$$Wang (2019)$$

$$\underbrace{\text{Prediction from S-D mixing}}_{0 \quad 10^{1} \quad 10^{2}}$$

$$\underbrace{\text{Prediction from four-quark}}_{0 \quad 10^{0} \quad 10^{1} \quad 10^{2}}$$

15

Energy dependence of *BB* cross sections at Belle II

Semi-inclusive reconstruction: reconstruct one $B^{(*)}$ in 16 modes with $D_{(s)}^{(*)}$ or J/ψ

Energy dependence of *BB* cross sections at Belle II

17

Scan of $e^+e^- \rightarrow B^{(*)}_{(s)}\bar{B}^{(*)}_{(s)}X$ cross section

- Measure the fully-inclusive process $e^+e^- \rightarrow B^{(*)}_{(s)}\bar{B}^{(*)}_{(s)}X$ at various center-of-mass energies
 - Reconstruct D_s^{\pm} as a proxy for B_s^0 and D^0 as a proxy for B

$$\sigma(e^+e^- \to b\bar{b} \to D_s^{\pm} X) = 2 \sigma(e^+e^- \to B_s^0 \bar{B}_s^0 X) \mathcal{B}(B_s^0 X) + 2 \sigma(e^+e^- \to B\bar{B} X) \mathcal{B}(B_s^0 X) \mathcal{B}(B_s^0 X) = 2 \sigma(e^+e^- \to B_s^0 \bar{B}_s^0 X) \mathcal{B}(B_s^0 X) \mathcal{B}(B$$

- Improves statistical precision over full reconstruction of $B_{(s)}$
- Strong suppression of $B_s^{(*)} \bar{B}_s^{(*)} \pi^0$ (isospin) means $\sigma(e^+e^- \to B_s^0 \bar{B}_s^0 X) = \sigma(e^+e^- \to B_s^{(*)} \bar{B}_s^{(*)})$ up to $B^0_{
 m s} \bar{B}^0_{
 m s} \pi^0 \pi^0$ threshold
- Subtract continuum $e^+e^- \rightarrow D_{(s)}X$ using scaled momentum

Scan of $e^+e^- \rightarrow B^{(*)}_{(s)}\bar{B}^{(*)}_{(s)}X$ cross section

Scan of $e^+e^- \rightarrow B^{(*)}_{(s)}\bar{B}^{(*)}_{(s)}X$ cross section

Prospects in baryon spectroscopy

- Mesons get all the attention...
- Baryon spectrum is much more complicated than quarkonia but exotic candidates exist even in the first excited states
 - Notable examples include the $\Lambda(1405)$ and $\Lambda(1440)$
- Excited spectrum not well understood
 - Many missing states
 - Multiple candidates for known states
 - Few quantum number determinations for baryons containing c or b quarks
- Belle still actively publishing
- Belle II can
 - measure quantum numbers for excited charmed baryons
 - search for excited baryons in charmed baryon decays
 - search for exotic candidate states

Study of *KN* threshold in $\Lambda_c \to \Lambda \pi^+ \pi^+ \pi^-$

- Charmed baryon decays have become a source for hyperon spectroscopy
- $\Lambda \pi$ spectrum in Λ_c decays similar to $\Lambda \pi$ collider data to study I=1, S=-1 sector
- Besides $\Sigma(1385)^{\pm}$, no additional I=1 quark-model states expected near $\Lambda(1405)$

Study of $\Omega(2012)^- \rightarrow \Xi(1530)K$

- Limited experimental evidence for excited states like the $\Omega(2012)^{-1}$
 - Can be interpreted as standard baryon or molecular state
 - Some suggestion that in the molecular picture decays to $\Xi \bar{K}$ and $\Xi (1530) \bar{K}$ should be similar

 $\frac{\mathcal{B}(\Omega(2012)^- \to \Xi(1530)\bar{K} \to \Xi\pi\bar{K})}{\mathcal{B}(\Omega(2012)^- \to \Xi\bar{K})}$ $\mathcal{R}^{\Xi \pi \bar{K}}_{\Xi \bar{K}} =$ $= 0.97 \pm 0.24 \pm 0.07$

MeV/c²

Events/3

Summary and conclusions

- Continued studies of conventional and potentially exotic states \bullet
- Much higher significance confirmation of the $\Upsilon(10753)$ \bullet Precise measurements on energy dependence of e^{-1}
- No clear indications yet on the nature of the $\Upsilon(10753)$ \bullet
 - Results in $\eta_h(1S)\omega$ consistent with S-D mixing, but not in $\chi_{hI}(1S)\omega$
 - No enhancement in $\eta_{b}(1S)\omega$ as predicted by tetraquark model
 - Additional studies underway ($\pi\pi h_b(1P)$, $\eta h_b(1P)$, $\Upsilon(1S)$ inclusive, etc)
- Excellent environment for spectroscopy not just quarkonia but hyperons too!
 - Further searches can include Ξ^* and Ω^* states
 - Spin-parity determinations
 - Collecting comprehensive details, since exotic states may be hidden

)
+
$$e^- \rightarrow B^{(*)}_{(s)} \bar{B}^{(*)}_{(s)}$$
 cross section

Backup