Amplitude Analysis of $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau}$ at Belle (II)

Stefan Wallner, Andrei Rabusov, Stephan Paul, Daniel Greenwald for the Belle (II) collaborations (swallner@mpp.mpg.de)

Max Planck Institute for Physics

PWA13/ATHOS8 May 30, 2024

FOR PHYSICS

MAX PLANCK IN

- Precision studies of the weak interaction
- τ lepton properties potentially sensitive to Beyond Standard Model physics
- Unique and clean laboratory to study hadronic decays
- **>** Precision measurement of τ requires τ factory
 - **•** Belle : 900 M τ pairs produced (
 - Belle II: 400 M au pairs produced ($\mathcal{L}pprox$ 0.4 ab⁻⁻

τ Physics at Belle and Belle II

- Precision studies of the weak interaction
- τ lepton properties potentially sensitive to Beyond Standard Model physics
- Unique and clean laboratory to study hadronic decays
- Precision measurement of τ requires τ factory
 - Belle : 900 M au pairs produced ($\mathcal{L} \approx 1 \text{ ab}^{-1}$)
 - Belle II: 400 M τ pairs produced ($\mathcal{L} \approx 0.4 \, \text{ab}^{-1}$)

The Belle (II) detector

- High-precision tracking
- Efficient particle identification
- Reconstruction of neutral particles

▶ Production of τ pairs in e^+e^- collisions

- \blacktriangleright Clean events; Large boost of τ
- Known initial conditions
- Study of hadron resonances in weak \(\tau\) decays complementary to studies in diffractive production, photo production, ...

- The Belle (II) detector
 - High-precision tracking
 - Efficient particle identification
 - Reconstruction of neutral particles
- ▶ Production of τ pairs in e^+e^- collisions
 - \blacktriangleright Clean events; Large boost of τ
 - Known initial conditions
- Study of hadron resonances in weak τ decays complementary to studies in diffractive production, photo production, ...

Partial-Wave Analysis of $\tau^{\mp} \rightarrow \pi^{\mp} \pi^{\mp} \pi^{\pm} \overline{\nu_{\tau}}^{}$ at Belle

- ► $\tau^{\mp} \to \pi^{\mp} \pi^{\mp} \pi^{\pm} {}^{'} \overline{\nu}_{\tau}$ unique laboratory for hadron spectroscopy
- $\blacktriangleright \ \mathcal{B}(\tau^{\mp} \to \pi^{\mp} \pi^{\mp} \pi^{\pm} \, \overline{\nu_{\tau}}) \approx 9 \%$
 - Belle: 55×10^6 events
- 3π system dominated by a_1 resonance
 - Study of $a_1(1420)$ observed by COMPASS
- Studied to far only by CLEO in partial-wave analysis [PRD 61 (1999) 012002]

- ► $\tau^{\mp} \to \pi^{\mp} \pi^{\mp} \pi^{\pm} {}^{'} \overline{\nu}_{\tau}$ unique laboratory for hadron spectroscopy
- $\blacktriangleright \ \mathcal{B}(\tau^{\mp} \to \pi^{\mp} \pi^{\mp} \pi^{\pm} \overline{\nu_{\tau}}) \approx 9\%$
 - Belle: 55×10^6 events
- ▶ 3π system dominated by a_1 resonance
 - Study of $a_1(1420)$ observed by COMPASS
- Studied to far only by CLEO in partial-wave analysis [PRD 61 (1999) 012002]

• Amplitude for τ helicity λ

$$^{\lambda}\mathcal{A}={}^{\lambda}\ell_{\mu}\,J^{\mu}$$

Decompose hadronic current into partial waves

$$J_{\mu} = \sum_{a} c_{a} J_{a}^{\mu}$$

- ▶ J_a^{μ} calculated using relativistic tensor formalism and the isobar model [EPJC 81 (2021) 1073]
- Labeling: $J^{P}[\xi\pi]_{L}$
- \blacktriangleright Intensity for unpolarized τ

$$= \frac{1}{2} \sum_{\lambda} \left| {}^{\lambda} \ell_{\mu} J^{\mu} \right|^2 = \sum_{a,b} c_a \left[c_b \right]^* J^{\mu}_a \left[J^{\nu}_b \right]^* L_{\mu\nu}$$

 Fit *I* to data in independently narrow m_{3π} bins to measure partial-wave amplitudes c_a(m_{3π})

• Amplitude for τ helicity λ

$$^{\lambda}\mathcal{A}={}^{\lambda}\ell_{\mu}\,J^{\mu}$$

Decompose hadronic current into partial waves

$$J_{\mu} = \sum_{a} c_{a} J^{\mu}_{a}$$

- J_a^{μ} calculated using relativistic tensor formalism and the isobar model [EPJC 81 (2021) 1073]
- Labeling: $J^{P}[\xi \pi]_{L}$
- \blacktriangleright Intensity for unpolarized τ

$$= \frac{1}{2} \sum_{\lambda} \left| {}^{\lambda} \ell_{\mu} J^{\mu} \right|^2 = \sum_{a,b} c_a \left[c_b \right]^* J^{\mu}_a \left[J^{\nu}_b \right]^* L_{\mu\nu}$$

Fit *I* to data in independently narrow $m_{3\pi}$ bins to measure partial-wave amplitudes $c_a(m_{3\pi})$

• Amplitude for τ helicity λ

$$^{\lambda}\mathcal{A}={}^{\lambda}\ell_{\mu}\,J^{\mu}$$

Decompose hadronic current into partial waves

$$J_{\mu} = \sum_{a} c_{a} J_{a}^{\mu}$$

- J_a^{μ} calculated using relativistic tensor formalism and the isobar model [EPJC 81 (2021) 1073]
- Labeling: $J^{P}[\xi \pi]_{L}$
- \blacktriangleright Intensity for unpolarized τ

$$I = rac{1}{2} \sum_{\lambda} \left| {}^{\lambda} \ell_{\mu} J^{\mu} \right|^2 = \sum_{a,b} c_a \left[c_b
ight]^* J^{\mu}_a \left[J^{
u}_b
ight]^* L_{\mu
u}$$

Fit *I* to data in independently narrow $m_{3\pi}$ bins to measure partial-wave amplitudes $c_a(m_{3\pi})$

• Amplitude for τ helicity λ

$$^{\lambda}\mathcal{A}={}^{\lambda}\ell_{\mu}\,J^{\mu}$$

Decompose hadronic current into partial waves

$$J_{\mu} = \sum_{a} c_{a} J^{\mu}_{a}$$

- J_a^{μ} calculated using relativistic tensor formalism and the isobar model [EPJC 81 (2021) 1073]
- Labeling: $J^{P}[\xi \pi]_{L}$
- \blacktriangleright Intensity for unpolarized τ

$$U = rac{1}{2} \sum_{\lambda} \left| {}^{\lambda} \ell_{\mu} J^{\mu} \right|^2 = \sum_{a,b} c_a \left[c_b
ight]^* J^{\mu}_a \left[J^{
u}_b
ight]^* L_{\mu
u}$$

 Fit *I* to data in independently narrow m_{3π} bins to measure partial-wave amplitudes c_a(m_{3π})

Unknown au Direction

• Cannot measure ν_{τ} momentum

- Cannot measure the au momentum, needed to calculate $L_{\mu\nu}$
- ▶ τ energy in e^+e^- center-of-mass system known
 - \blacktriangleright Constraint the τ momentum up to one unknown angle α
- Marginalize the intensity over this unknown angle

$$\overline{l} = \int \mathrm{d}\alpha \, l = \sum_{a,b} c_a \left[c_b \right]^* J^{\mu}_a \left[J^{\nu}_b \right]^* \overline{L}_{\mu\nu}$$

► Need to pre-calculate and store $N_{\text{wave}} \times N_{\text{wave}}$ matrix $M_{ab} = J_a^{\mu} \left[J_b^{\nu} \right]^* \bar{L}_{\mu\nu}$ for each event

Partial-Wave Analysis Formalism Unknown τ Direction

• Cannot measure ν_{τ} momentum

- Cannot measure the au momentum, needed to calculate $L_{\mu\nu}$
- ▶ τ energy in e^+e^- center-of-mass system known
 - \blacktriangleright Constraint the τ momentum up to one unknown angle α

• Marginalize the intensity over this unknown angle \overline{I}

Need to pre-calculate and store
$$N_{\text{wave}} \times N_{\text{wave}}$$
 matr

Partial-Wave Analysis Formalism $Unknown \tau$ Direction

- Cannot measure the au momentum, needed to calculate $L_{\mu\nu}$
- ▶ τ energy in e^+e^- center-of-mass system known
 - \blacktriangleright Constraint the τ momentum up to one unknown angle α
- Marginalize the intensity over this unknown angle

$$\bar{I} = \int \mathrm{d}\alpha \, I = \sum_{a,b} c_a \left[c_b \right]^* J_a^{\mu} \left[J_b^{\nu} \right]^* \bar{L}_{\mu\nu}$$

► Need to pre-calculate and store $N_{\text{wave}} \times N_{\text{wave}}$ matrix $M_{ab} = J_a^{\mu} \left[J_b^{\nu} \right]^* \bar{L}_{\mu\nu}$ for each event

Partial-Wave Analysis Formalism $Unknown \tau$ Direction

- Cannot measure the au momentum, needed to calculate $L_{\mu\nu}$
- ▶ τ energy in e^+e^- center-of-mass system known
 - \blacktriangleright Constraint the τ momentum up to one unknown angle α
- Marginalize the intensity over this unknown angle

$$\bar{I} = \int \mathrm{d}\alpha \, I = \sum_{a,b} c_a \left[c_b \right]^* J_a^{\mu} \left[J_b^{\nu} \right]^* \bar{L}_{\mu\nu}$$

• Need to pre-calculate and store $N_{\text{wave}} \times N_{\text{wave}}$ matrix $M_{ab} = J_a^{\mu} \left[J_b^{\nu} \right]^* \bar{L}_{\mu\nu}$ for each event

Unknown τ Direction

• Decompose $\bar{L}_{\mu\nu}$ into 4 4-vectors

$$\bar{L}_{\mu\nu} = \sum_{i}^{4} {}^{i} v_{\mu} \left[{}^{i} v_{\nu} \right]^{*}$$

Write marginalized intensity

$$\bar{I} = \sum_{i}^{4} \sum_{a,b} \left[c_a{}^i v_\mu J^\mu_a \right] \left[c_b{}^i v_\nu J^\nu_b \right]^*$$

Group all pre-calculable quantities into

$${}^{i}\varPsi_{a} = {}^{i}v_{\mu}J^{\mu}_{a}$$

allows to write the marginalized intensity in the simple form

$$\overline{I} = \sum_{i}^{4} \left| \sum_{a} c_{a}^{i} \Psi_{a} \right|$$

Unknown τ Direction

• Decompose $\overline{L}_{\mu\nu}$ into 4 4-vectors

$$\bar{L}_{\mu\nu} = \sum_{i}^{4} {}^{i} \boldsymbol{v}_{\mu} \left[{}^{i} \boldsymbol{v}_{\nu} \right]^{*}$$

Write marginalized intensity

$$\bar{I} = \sum_{i}^{4} \sum_{a,b} \left[c_a^{i} v_\mu J_a^\mu \right] \left[c_b^{i} v_\nu J_b^\nu \right]^*$$

$${}^{i}\varPsi_{a} = {}^{i}v_{\mu}J^{\mu}_{a}$$

$$\overline{I} = \sum_{i}^{4} \left| \sum_{a} c_{a}^{i} \Psi_{a} \right|$$

Unknown τ Direction

• Decompose $\bar{L}_{\mu\nu}$ into 4 4-vectors

$$\bar{L}_{\mu\nu} = \sum_{i}^{4} {}^{i} \mathbf{v}_{\mu} \left[{}^{i} \mathbf{v}_{\nu} \right]^{*}$$

Write marginalized intensity

$$\bar{I} = \sum_{i}^{4} \sum_{a,b} \left[c_a^{i} v_{\mu} J_a^{\mu} \right] \left[c_b^{i} v_{\nu} J_b^{\nu} \right]^*$$

Group all pre-calculable quantities into

$${}^{i}\varPsi_{a}={}^{i}v_{\mu}J^{\mu}_{a}$$

allows to write the marginalized intensity in the simple form

$$\overline{I} = \sum_{i}^{4} \left| \sum_{a} c_{a}^{i} \Psi_{a} \right|^{2}$$

• Overall small background of 18%

$$\tau^{\mp} \to \pi^{\mp} \pi^{\mp} \pi^{\pm} \pi^{0} \overline{\nu}_{\tau} 12\%$$

$$e^+e^-
ightarrow qar{q}$$
 4 %

Modeling background in partial-wave decomposition

 Requires high-dimensional pdf of background distribution

Realistic background simulation at Belle

- Parameterize background pdf using a neural network
- Include background pdf with fixed shape per $m_{3\pi}$ bin
- Study remaining leakage by performing partial-wave decomposition of simulated background sample
 - Small background leakage into partial waves

Overall small background of 18 %

$$\ \, \tau^{\mp} \rightarrow \pi^{\mp} \pi^{\mp} \pi^{\pm} \pi^{0} \overline{\nu}_{\tau}^{0} 12 \,\%$$

$$e^+e^-
ightarrow qar{q}$$
 4 %

Modeling background in partial-wave decomposition

 Requires high-dimensional pdf of background distribution

Realistic background simulation at Belle

- Parameterize background pdf using a neural network
- Include background pdf with fixed shape per $m_{3\pi}$ bin
- Study remaining leakage by performing partial-wave decomposition of simulated background sample
 - Small background leakage into partial waves

Overall small background of 18 %

$$\tau^{\mp} \to \pi^{\mp} \pi^{\mp} \pi^{\pm} \pi^{0} \overline{\nu}_{\tau}^{0} 12\%$$

$$e^+e^-
ightarrow qar{q}$$
 4 %

Modeling background in partial-wave decomposition

 Requires high-dimensional pdf of background distribution

- Realistic background simulation at Belle
- Parameterize background pdf using a neural network
- Include background pdf with fixed shape per $m_{3\pi}$ bin
- Study remaining leakage by performing partial-wave decomposition of simulated background sample
 - Small background leakage into partial waves

phase-space, Simulated background, Neural Network

Overall small background of 18%

$$\tau^{\mp} \to \pi^{\mp} \pi^{\mp} \pi^{\pm} \pi^{0} \overline{\nu}_{\tau}^{0} 12\%$$

$$e^+e^-
ightarrow qar{q}$$
 4 %

Modeling background in partial-wave decomposition

 Requires high-dimensional pdf of background distribution

- Parameterize background pdf using a neural network
- Include background pdf with fixed shape per $m_{3\pi}$ bin
- Study remaining leakage by performing partial-wave decomposition of simulated background sample
 - Small background leakage into partial waves

Wave Set

$$J_{\mu} = \sum_{a} c_{a} J^{\mu}_{a}$$

- Fit 16 partial waves to the data
- ▶ 9 waves representing $J^P = 1^+$
 - ▶ Various ρ , f_0 and f_2 decay modes
- 4 waves representing $J^P = 0^-$
- ▶ 3 waves representing $J^P = 1^-$
- ▶ CLEO used only 7 waves representing only $J^P = 1^+$

$1^+[f_0(980)\pi]_P$

- Narrow peak at about 1.4 GeV/ c^2
- Accompanied by rise in relative phase
- Similar to a₁(1420) signal observed by COMPASS in same partial wave

$1^+[f_0(980)\pi]_P$

- Narrow peak at about 1.4 GeV/ c^2
- Accompanied by rise in relative phase
- Similar to a₁(1420) signal observed by COMPASS in same partial wave

 $1^{-}[\omega(782)\pi]_P$ Wave

- ▶ 0.77 GeV/ $c^2 m_{\pi^-\pi^+}$ region not well described by ho(770) only
 - ➡ Additional narrow structure
 - → Potential ω (782) contribution from *G*-parity violating ω (782) → $\pi^{-}\pi^{+}$ decay
- Modeled by including $1^{-}[\omega(782)\pi]_{P}$ wave
 - $G \cdot P \cdot (-1)^J = +$ for first class currents
 - $[\omega(782)\pi]$ system has G = +
 - \blacktriangleright P = for J = 1 state
 - \blacktriangleright ρ -like state
- Broad bump in intensity at about 1.4 GeV/c²
- Similar yield and shape as CLEO measurement of $\tau^- \rightarrow \omega(782)\pi^-\nu_{\tau}$ with $\omega(782) \rightarrow \pi^-\pi^+\pi^0$ [PRD 61 (2000) 072003]

Data points, Simulated background, Simulated signal without $\omega(782)$ $1^{-}[\omega(782)\pi]_{P}$ Wave

- ▶ 0.77 GeV/ $c^2 m_{\pi^-\pi^+}$ region not well described by ho(770) only
 - ➡ Additional narrow structure
 - → Potential ω (782) contribution from *G*-parity violating ω (782) → $\pi^{-}\pi^{+}$ decay
- Modeled by including $1^{-}[\omega(782)\pi]_{P}$ wave
 - $G \cdot P \cdot (-1)^J = +$ for first class currents
 - $[\omega(782)\pi]$ system has G = +
 - \blacktriangleright P = for J = 1 state
 - \blacktriangleright ρ -like state
- Broad bump in intensity at about 1.4 GeV/c²
- Similar yield and shape as CLEO measurement of $\tau^- \rightarrow \omega(782)\pi^-\nu_{\tau}$ with $\omega(782) \rightarrow \pi^-\pi^+\pi^0$ [PRD 61 (2000) 072003]

Data points, Simulated background, Simulated signal without $\omega(782)$ $1^{-}[\omega(782)\pi]_{P}$ Wave

- ▶ 0.77 GeV/ $c^2 m_{\pi^-\pi^+}$ region not well described by ho(770) only
 - ➡ Additional narrow structure
 - → Potential ω (782) contribution from *G*-parity violating ω (782) → $\pi^{-}\pi^{+}$ decay
- Modeled by including $1^{-}[\omega(782)\pi]_{P}$ wave
 - $G \cdot P \cdot (-1)^J = +$ for first class currents
 - $[\omega(782)\pi]$ system has G = +
 - \blacktriangleright P = for J = 1 state
 - \blacktriangleright ρ -like state
- Broad bump in intensity at about $1.4 \,\mathrm{GeV}/c^2$

```
Similar yield and shape as CLEO measurement of \tau^- \rightarrow \omega(782)\pi^-\nu_{\tau} with \omega(782) \rightarrow \pi^-\pi^+\pi^0 [PRD 61 (2000) 072003]
```


 $1^{-}[\omega(782)\pi]_{P}$ Wave

- ▶ 0.77 GeV/ $c^2 m_{\pi^-\pi^+}$ region not well described by ho(770) only
 - ➡ Additional narrow structure
 - → Potential $\omega(782)$ contribution from *G*-parity violating $\omega(782) \rightarrow \pi^{-}\pi^{+}$ decay
- Modeled by including $1^{-}[\omega(782)\pi]_{P}$ wave
 - $G \cdot P \cdot (-1)^J = +$ for first class currents
 - $[\omega(782)\pi]$ system has G = +
 - \blacktriangleright P = for J = 1 state
 - \blacktriangleright ρ -like state
- Broad bump in intensity at about $1.4 \,\mathrm{GeV}/c^2$
- Similar yield and shape as CLEO measurement of $\tau^- \rightarrow \omega(782)\pi^-\nu_{\tau}$ with $\omega(782) \rightarrow \pi^-\pi^+\pi^0$ [PRD 61 (2000) 072003]

Conventional PWA: Parameterize lineshape of ξ by fixed amplitude

- Freed-isobar analysis: Measure the ξ line shape by
 - Replacing fixed parameterization by step-wise constant function
- Free multiple isobar line shape simultaneously to avoid bias, e.g. $[\pi\pi]_P$ and $[\pi\pi]_S$ amplitudes
 - Mathematical ambiguities in the partial-wave decomposition (zero modes) [PRD 97 (2018) 114008]

Requires external input to resolve them

- Conventional PWA: Parameterize lineshape of ξ by fixed amplitude
- Freed-isobar analysis: Measure the ξ line shape by
 - Replacing fixed parameterization by step-wise constant function
- Free multiple isobar line shape simultaneously to avoid bias, e.g. $[\pi\pi]_P$ and $[\pi\pi]_S$ amplitudes
 - Mathematical ambiguities in the partial-wave decomposition (zero modes) [PRD 97 (2018) 114008]

Requires external input to resolve them

- Conventional PWA: Parameterize lineshape of ξ by fixed amplitude
- Freed-isobar analysis: Measure the ξ line shape by
 - Replacing fixed parameterization by step-wise constant function
- Free multiple isobar line shape simultaneously to avoid bias, e.g. [ππ]_P and [ππ]_S amplitudes
 - Mathematical ambiguities in the partial-wave decomposition (zero modes) [PRD 97 (2018) 114008]
 - ► Requires external input to resolve them

$[\pi\pi]_P$ amplitudes from $J^P = 1^+$ partial wave

- $G_{\pi\pi} = + \Rightarrow \rho$ -like state
- Clear peak from $\rho(770)$ resonance
- Accompanied by rising phase

$[\pi\pi]_{P}$ amplitudes from $J^{P}=1^{-}$ partial wave

- $G_{\pi\pi} = \Rightarrow \omega$ -like state
- E Clear peak from $\omega(782)$ resonance
- Accompanied by rising phase
 - → Verifies observation of G violation ω(782) → $π^-π^+$ decay

Measuring the Amplitude of Isobar Resonances

$[\pi\pi]_P$ amplitudes from $J^P = 1^+$ partial wave

- $G_{\pi\pi} = + \Rightarrow \rho$ -like state
- Clear peak from $\rho(770)$ resonance
- Accompanied by rising phase

$[\pi\pi]_P$ amplitudes from $J^P=1^-$ partial wave

- $G_{\pi\pi} = \Rightarrow \omega$ -like state
- Clear peak from ω(782) resonance
- Accompanied by rising phase
 - ▶ Verifies observation of G violation $\omega(782) \rightarrow \pi^{-}\pi^{+}$ decay

$[\pi\pi]_P$ amplitudes from $J^P = 1^+$ partial wave

- $G_{\pi\pi} = + \Rightarrow \rho$ -like state
- Clear peak from $\rho(770)$ resonance
- Accompanied by rising phase

$[\pi\pi]_P$ amplitudes from $J^P = 1^-$ partial wave

- $G_{\pi\pi} = \Rightarrow \omega$ -like state
- Clear peak from $\omega(782)$ resonance
- Accompanied by rising phase
 - → Verifies observation of *G* violation $\omega(782) \rightarrow \pi^{-}\pi^{+}$ decay

Belle II finished first run of data taking 2022

- Measured about 426 fb⁻¹
 - About BaBar data set; 1/2 Belle data set
- World-record luminosity of $4.71 \times 10^{34} \, \text{cm}^{-2} \, \text{s}^{-1}$
- Many physics results published or in the pipeline
- Specific low-multiplicity triggers at Belle II

Continued data taking since February 2024

- Improved setup
 - Continuously improving detector performance
 - Improved trigger
 - Machine learning algorithms for track reconstruction, particle identification, ...

Belle II finished first run of data taking 2022

- Measured about 426 fb⁻¹
 - About BaBar data set; 1/2 Belle data set
- World-record luminosity of $4.71 \times 10^{34} \, \text{cm}^{-2} \, \text{s}^{-1}$
- Many physics results published or in the pipeline
- Specific low-multiplicity triggers at Belle II

Continued data taking since February 2024

- Improved setup
- Continuously improving detector performance
 - Improved trigger
 - Machine learning algorithms for track reconstruction, particle identification, ...

SuperKEKB Operation Status Live Event Display

Ongoing spectroscopy analyses at Belle II

- ▶ Partial-wave analyses of $\tau^{\mp} \rightarrow h^{\mp} h^{\pm} {}^{\mu} \overline{\nu_{\tau}}$
- ▶ Dalitz-plot analyses of $B \rightarrow hhh$ decays
- Quarkonium spectroscopy

$B ightarrow D^{(*)} K^- K^{(*)}_{(\mathrm{S})}$

[LA THUILE 2024]

- Measure branching fractions of various decay modes
- Limited sample size
- Hypothesis test of resonances in KK subsystem

TA+ Agisit

Ongoing spectroscopy analyses at Belle II

- ▶ Partial-wave analyses of $\tau^{\mp} \rightarrow h^{\mp} h^{\pm} {}^{\iota} \overline{\nu}_{\tau}$
- Dalitz-plot analyses of $B \rightarrow hhh$ decays
- Quarkonium spectroscopy

 $B
ightarrow D^{(*)}K^-K^{(*)}_{(\mathrm{S})}$

- Measure branching fractions of various decay modes
- Limited sample size
- Hypothesis test of resonances in KK subsystem

[LA THUILE 2024]

Ongoing spectroscopy analyses at Belle II

- ▶ Partial-wave analyses of $\tau^{\mp} \rightarrow h^{\mp} h^{\pm} {}^{\iota} \overline{\nu}_{\tau}$
- Dalitz-plot analyses of $B \rightarrow hhh$ decays
- Quarkonium spectroscopy

Summary and Outlook

• Many opportunities for spectroscopy at Belle (II): hadronic τ and B decays

- Analysis formalism and background modeling challenging
- ▶ Precision measurements in $\tau^{\mp} \rightarrow \pi^{\mp} \pi^{\pm} \overline{\nu_{\tau}}$ decays
 - Studies of a₁ states
 - \rightarrow Observation of $a_1(1420)$ like signal
 - Amplitudes of $\pi^-\pi^+$ subsystem: ρ , ω , $[\pi\pi]_S$
- Even larger sample from Belle II will allow us to study also rare decays

Amplitude Analysis of $au^- o \pi^- \pi^- \pi^+
u_ au$ at Belle (II)

Summary and Outlook

- Many opportunities for spectroscopy at Belle (II): hadronic τ and B decays
- Analysis formalism and background modeling challenging
- ▶ Precision measurements in $\tau^{\mp} \rightarrow \pi^{\mp} \pi^{\mp} \pi^{\pm} {}^{(}\overline{\nu_{\tau}^{)}}$ decays
 - Studies of a₁ states
 - Observation of $a_1(1420)$ like signal
 - Amplitudes of $\pi^-\pi^+$ subsystem: ρ , ω , $[\pi\pi]_S$
- Even larger sample from Belle II will allow us to study also rare decays

Amplitude Analysis of $au^- o \pi^- \pi^- \pi^+
u_ au$ at Belle (II)

Summary and Outlook

- Many opportunities for spectroscopy at Belle (II): hadronic τ and B decays
- Analysis formalism and background modeling challenging
- ▶ Precision measurements in $\tau^{\mp} \rightarrow \pi^{\mp} \pi^{\pm} {}^{`} \overline{\nu_{\tau}}$ decays
 - Studies of a₁ states
 - Observation of $a_1(1420)$ like signal
 - Amplitudes of $\pi^-\pi^+$ subsystem: ρ , ω , $[\pi\pi]_S$
- ▶ Even larger sample from Belle II will allow us to study also rare decays

Amplitude Analysis of $au^- o \pi^- \pi^- \pi^+
u_ au$ at Belle (II)

Backup

