*Tau Analysis 101**

"We use (the name) τ because it appears to be the third charged lepton to be found and $\tau \rho \iota \tau \sigma \nu$ means third in Greek."

> – Martin Perl, Proceedings of the XII Recontre de Moriond (1977)

Soeren Prell (Iowa State University) Belle II Physics Week October 14-18, 2024 @ KEK

The **τ** in the Standard Model

- *is a lepton and a member of a left-handed doublet*
	- τ *does not interact strongly*
- τ *lepton number* L_{τ} *is conserved*
	- *decays always have a in the final state*
	- *only decays via charged weak current*

- *The is heavy*
	- *nly lepton that decays to hadrons (but not to c, b, and t quarks)*

Standard Model of Elementary Particles

Brief history of heavy fermions

- *1972 Kobayashi & Maskawa predict 3rd generation of quarks to explain CP violation in kaon decays*
- *1974 J/ discovered independently at SLAC (Richter et al.) and BNL (Ting et al.) – first strong evidence for the charm quark*
- *1975 lepton discovered at SLAC – first evidence for 3rd generation fermions (Perl et al.)*
- *1977* $Y(1S)$ *discovered at Fermilab (Lederman et al.) first evidence for the bottom quark and 3rd generation quarks*
- *1995 top quark discovered at Fermilab (D0 & CDF)*

The τ discovery (1975)

- *If a sequential 3rd charged lepton exists, it will decay to the first two generations*
- *Looking for* $e^+e^- \to \tau^+\tau^- \to e^{\pm}\mu^{\mp}E_{miss}$

SLAC-LBL detector G.J. Feldman at

Lepton Photon 1975

Martin Perl

<u><i>⊤ pair production in e⁺e[−]collisions</u>

- *1 st order diagrams for pair production*
- $ee \rightarrow \tau\tau$ cross-section can be precisely *calculated*
	- *Was already calculated before the was discovered (assuming that the is a point-like fermion of a certain mass)*

Belle II is factory !

- *We call Belle II a B factory because of the* $large e⁺e⁻$ \rightarrow $B\overline{B}$ *cross-section at the* $Y(4S)$
- *The cross-section* $\sigma(e^+e^- \to \tau^+\tau^-) = 0.919 \pm 0.003$ *nb at 10.58 GeV*
	- *We produce 920,000* + [−] *events per 1 fb-1*

pair production is "clean"

- BB production is clean at the $Y(4S)$
	- $-$ Only $e^+e^- \rightarrow B\overline{B}$ is allowed (no additional particles)

here

- $-$ *Not enough energy for* $e^+e^- \rightarrow B^* \overline{B}$
- *Reconstruction on (tag) provides momentum of the other B*
- *Charm (and light) hadron production is not clean*
	- *Additional particles from fragmentation*
	- *Two charm hadrons can be of different types*
- *pair production is clean*
	- *No particles from fragmentation*
	- $E^*_{\tau} = E^*_{beam}$ (= 5.29 GeV at Belle II)
	- *Reconstructing tag reduces background from non-* τ *-pair events*

decay (simplified)

- *Leptonic branching fraction is ~20%*
- *(Semi) hadronic final states are mostly non-strange*
	- $|V_{us}|^2 = \sin^2 \theta_c = 5\%$ of hadr. decays have net strangeness

branching fractions

*prong (noun): projecting pointed parts at the end of a fork

Tau events are really clean !

 τ pair events have either 2 tracks (73%), 4 tracks (26%), or 6 tracks (2%)

A typical (3x1) event. Candidate for a $e^+e^-\to (\tau^+\to 3\pi\bar{\nu}_\tau)\big(\tau^-\to \mu^-\nu_\tau\bar{\nu}_\mu\big)$ event

pair kinematics

$$
e^+e^- \to \tau^+\tau^-
$$

• *Energy conservation ("jetty" pairs or boosted 's)*

 $- E^*_{\tau} = E^*_{beam} = 5.29 \text{ GeV} \rightarrow p^*_{\tau}$ $(m_{\tau} = 1.777 \text{ GeV})$

- *Momentum conservation (back-to-back taus)* $-\vec{p}^*(\tau^-) = -\vec{p}^*(\tau)$ ⁺ *(* indicates center-of-mass system)*
- *Unfortunately, we don't know the direction of the 's* – *Each decays to one or more neutrinos, taking away momentum*
- Approximate the directions of the τ 's with the event thrust axis \widehat{n}_T
	- *The thrust axis maximizes the thrust magnitude T*

i runs over all tracks and neutral particles in the event

Signal τ and tag τ

Use the thrust axis to split event into two hemispheres

Backgrounds

- *The actual background in any analysis strongly depends on the final state under study …*
- *The "usual" backgrounds …*
	- $B\overline{B}$: *many tracks (~10 on average), isotropic topology*
	- ത *continuum: many tracks, jetty-ish, few leptons*
		- *… can be effectively suppressed requiring a large thrust value, and either an e or in the tag hemisphere (lepton tag)*
- *The "unusual" backgrounds (low-multiplicity backgrounds)*
- $-e^+e^-(\gamma)$ or Bhabha events Hadrons)(nb) Hadronic cross-section $- \mu^+ \mu^- (\gamma)$ or mu pair events 20 near 10 GeV 15 $-e^+e^- X$, where X can be a lepton \uparrow 10 *pair, a hadronic resonance or a multi-hadron final state* 10.00 10.02 10.37 10.54 10.58 9.44 9.46 10.34 (with or without initial state radiation (ISR) Mass (GeV/c^2) or final state radiation (FSR))

"unusual" backgrounds don't show up here

Tau Physics 101 Belle II Physics Week 2024 13

10.62

$Back grounds from ee(\gamma)$ and $\mu\mu(\gamma)$

- *can come from ISR or FSR, or from interaction with detector material (bremsstrahlung)*
- *Relatively easy to identify, but huge cross-section* ($\gg \sigma(ee \rightarrow \tau\tau)$)
- *Even an issue for (3x1) tau events*
	- *can convert in detector material to* + [−] *or (if virtual) turn into a vector meson*
- *is mostly soft, and the leptons have nearly beam energy and remain very collinear*
	- ℓℓ() *events have large thrust value*
- *Cut on thrust is effective against* $ee(\gamma)$ and $\mu\mu(\gamma)$ *backgrounds*

Four-fermion backgrounds (2-photon events)

- *Produced fermions* $f\bar{f}$ *can be leptons or quarks*
	- *quarks can form hadronic resonances* \rightarrow $f\bar{f}$ system can produce 2,3,4, or more hadrons
- *The γ^{*} are often emitted collinear with the beams and the beam electrons disappear in the beam pipe carrying a lot of energy; but not always*
- *Possible scenarios*
	- *Beam electrons go down the beam pipe* \rightarrow *small mass of the ff system*
	- *Beam electrons are scattered into the detector* \rightarrow *if* $f\bar{f}$ *system produces 2 tracks, event can mimic* $(3x)$ τ *event* $\bar{B}(\tau^{\pm} \to \mu^{\pm} \mu^{\mp} e^{\pm}) = 8.0 \cdot 10^{-5}$ \rightarrow *Contrary to <i>t* events, there are no *v*'s 5000 *and the 4 tracks carry the full CM energy* 4000

Υ

v

Missing energy/momentum in + [−] *events*

• τ pairs have at least $2v_{\tau}$ in the SM – *Hadr. decays have 1 neutrino ()* – *Leptonic decays also have an* ҧ^ℓ \rightarrow *Large missing energy in* $\tau^+\tau^-$ *events*

- *Missing energy also arises if particles are not detected (e.g., when they go down the beam pipe)*
- In reconstructed $\tau^+\tau^-$ events, the *missing momentum vector is aligned with visible energy and the thrust axis*

→ *Missing momentum vector points into* fiducial detector volume in $\tau^+\tau^-$ events

Many low-multiplicity backgrounds are not modeled very well.

Typical analysis cuts

- *Object reconstruction*
	- *Usual criteria for tracks and neutrals (incl. particle ID)*
	- *Resonance masses*
- *Event variables*
	- *Track multiplicity (and neutral multiplicity)*
	- *Thrust magnitude*
	- *Visible energy, missing momentum magnitude, missing mass (squared)*
	- *Missing momentum direction*
- *Tag variables*
	- *3-prong tag (e.g., if signal tau decay is one-prong)*
		- *To reject* $\ell\ell(\gamma)$ *backgrounds*
	- *1-prong tag (leptonic or hadronic)*
		- For larger efficiency and to reject $q\bar{q}$ background
	- *Inclusive tag (combined many ROE variables in a BDT)*

Trigger efficiency uncertainty is not negligible!

- *Trigger efficiency is 100% for BB events, but not for* $\tau^+\tau^-$ events
- ϵ_{trig} and its uncertainty need to be determined
- *Worst* ϵ_{trig} *for (1x1) topologies*

Belle II's τ analyses

1.Lepton flavor violation (LFV) searches

2.(Precision) tests of the SM

Lepton number/flavor conservation

- *Lepton flavor is almost conserved in SM*
- *Loop diagrams with mixing can give charged lepton flavor violation (cLFV)*

Example: LFV decay $\tau \rightarrow 3\mu$

– *SM cLFV BFs are of order* 10−(50±2)

• *Many beyond SM models predict cLFV:* – *E.g., Leptoquarks (LQ), Z'*

> *Any observation of cLFV will make you famous !*

Limits on LFV τ decays

More searches are in progress, but all ℓS^0 , ℓV^0 , ℓhh , and remaining BNV modes are not covered; should repeat all searches every time our dataset doubles !

Fully-reconstructed ′

- *In (most) LFV searches, final state can be fully reconstructed (no neutrinos)*
- *Important kinematic variables*
	- *mass of* τ *candidate* $m(\tau)$
	- *difference between energy and beam energy (in center of mass)* $\Delta E = E^*(\tau) - \sqrt{s}/2$
	- Δ *tail towards lower values due to ISR*
- *Signal yield usually estimated in* $m(\tau)$ - ΔE *signal region*

 $m(\tau)$ - ΔE signal region

Signal region

1.74

Belle II Simulation:

Data Model

 $\mu = 1.7773 + 0.0001$ GeV/c²

 $\delta_{\text{Gauss}}^{\text{left}} = 4.8001 + 0.0728 \text{ M} \text{eV}/c^2$

 $\delta_{\text{Gauss}}^{\text{right}}$ = 4.4415 +/- 0.0618 MeV/c

1.75

1.76

1.77

1.78

1.79

 1.8

 $\rightarrow \mu^+ \mu^+ \mu^-$

 γ^2 /ndof = 1.69

5000

 400

3000

2000

1000

1.73

Tests of the SM with τ measurements

- *Tau properties*
	- *Lifetime*
	- *Mass*
	- $-$ *Electric and magnetic dipole moment (also of* μ *)*
- *Couplings*
	- *Lepton flavor universality*
	- *Vus*
	- *Michel parameters*
	- *Second class currents*
	- $\alpha_{\rm S}$
	- *CP violation*
- *Hadronic system*
	- *Spectral functions*
	- *Partial-wave analyses*

Almost all measurements are systematically limited: 400M τ pair events !!!

lifetime

• *The τ decays weakly. τ lifetime is the ratio of the leptonic BF and width*

$$
\tau_{\tau} = \frac{1}{\Gamma_{tot}} = \frac{B(\tau \to l\nu_l\nu_{\tau})}{\Gamma(\tau \to l\nu_l\nu_{\tau}))}
$$

• *and the leptonic width can be calculated in the SM*

$$
\Gamma(\tau^- \to l^- \nu_\tau \bar \nu_l) = \frac{G_F^2 m_\tau^5}{192 \pi^3} f(\frac{m_l^2}{m_\tau^2}) r_{EW}
$$

$$
\frac{f(x)}{f_{Z\text{com in}}} = 1 - 8x + 8x^3 - x^4 - 12x^2 \log x
$$

$$
r_{EW} = \frac{\alpha}{2\pi} \left[\frac{25}{4} - \pi^2 + O\left(\frac{m_\ell^2}{m_\tau^2}\right) \right]
$$

$$
\tau(\tau) \sim 290 \text{ fs}
$$

Not quite stable, not quite prompt

Lifetime measurement

- *Decay time*
	- *distribution is exponential with decay constant* $\lambda = 1/\tau$ *and average of* τ

$$
Q(t) = \frac{N(t)}{N_0} e^{-\lambda t}
$$

 $\langle t \rangle = \tau$

$$
N_0
$$
 is number of particles at $t = 0$

- *Decay times are too short to measure* – *Typical timing resolution in Belle II is of order 1 ns (or 3,000 lifetimes)*
- *Determine decay time from decay distance* ℓ *(taking into account time dilation)*

$$
t = \frac{\ell}{\beta \gamma c} = \frac{m\ell}{\text{pc}}
$$

lifetime measurement

- *Belle determined τ lifetime from fit to decay time distribution in (3x3) pair events*
	- *average t is* 245 *(can be measured with good vertex detector)*
- *Negative decay times result from finite detector resolution*

Best measurement from Belle (largest syst. error from SVD alignment)

$$
\tau(\tau) = 290.17 \pm 0.53 \pm 0.33 \,\text{fs}
$$

m_{τ} measurement at $e^+e^- \rightarrow \tau^+\tau^-$ threshold

 $(2d)$

 $\tau_{\rm e\mu}$

- $e^+e^- \rightarrow \tau^+\tau^-$ cross-section as *function of center-of-mass energy at* τ⁺τ[−] *threshold depends strongly on*
- *First* m_{τ} *measurements came from the cross-section of* $e^+e^- \rightarrow e\mu X$ events

 m_{τ} = (1900 \pm 100) MeV

• *This is still one of the most precise techniques*

 m_{τ} =(1776.91 \pm 0.12 $^{+0.10}_{-0.13}$) MeV

• *… but SuperKEKB operates far away from* + [−] *threshold*

m_{τ} mass measurement at Belle II

- τ mass measurement with $\tau \to 3\pi\nu$
- M_{min} *approximates* m_{τ} *assuming the neutrino direction is the same as the three-pion momentum direction*
	- $-$ *If it's not,* $M_{min} < m_{\tau}$

$$
M_{\min} = \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 - E_{3\pi}^*)(E_{3\pi}^* - p_{3\pi}^*)} \le m_\tau
$$

- *Sharp drop of* M_{min} *distribution at* m_{τ} – *Smeared by detector resolution*
- *Most precise mass measurement* – *Largest systematics from knowledge of beam energy and momentum scale*

Tau Physics 101 Belle II Physics Week 2024 29

Events / (1.5 MeV/ c^2)

 \overline{P}

Belle II, PRD 108 (2023) 032006

SM test

Test of SM with **τ** mass and lifetime

Light-lepton universality

Light-lepton universality

Most precise measurement of R_{μ} (largest syst. error from lepton ID)

Michel parameters

• *Generalized matrix element*

• *Test Lorentz structure of weak current (in SM* $g_{LL}^V = 1$ *, all other* $g_{ij}^N = 0$ *)*

$$
\frac{\mathrm{d}\Gamma}{\mathrm{d}x} = \frac{G_{\tau\ell}^{2}m_{\tau}^{5}}{192 \pi^{3}} \left\{ f_{0}\left(x\right) + \rho f_{1}\left(x\right) + \eta \frac{m_{\ell}}{m_{\tau}} f_{2}\left(x\right) - P_{\tau} \left[\xi g_{1}\left(x\right) + \xi \Delta g_{2}\left(x\right) \right] \right\}
$$

• Michel parameters ρ , η , ξ , and $\xi \delta$ are related to g_{ij}^N in SM

Michel parameters (cont'ed)

- *All measurements consistent with SM predictions*
- *Most precise measurements are from CLEO and LEP experiments*
- *More Michel parameters can be measured if polarization of outgoing lepton is known*
	- ҧ*and in radiative decays*
	- ξ' with decay in flight muons with $\tau \to \mu \bar{\nu} \nu$ *(Belle; PRL 131 (2023) 021801)*

 ξ ['] = 0.22 ± 0.94 ± 0.42

Cabibbo-Kobayashi-Maskawa (CKM) matrix

- *Unitary matrix that gives strength of weak quark transitions*
	- *Most relevant for Belle II are* $|V_{ub}|$, $|V_{cb}|$, *and* ϕ_2/α

- *Belle II can also measure* $|V_{\text{us}}|$ with *decays*
	- *Current measurements with kaon decays and τ decays differ from CKM unitarity*

$$
|V_{us}|^2 = 1 - |V_{ud}|^2 - |V_{ub}|^2
$$

$|V_{us}|$ *from exclusive* τ *decays*

$$
\frac{B(\tau \to K^{-}\nu_{\tau})}{B(\tau \to \pi^{-}\nu_{\tau})} = \frac{f_{K}^{2}|V_{us}|^{2}}{f_{\pi}^{2}|V_{ud}|^{2}} \frac{(1 - m_{K}^{2}/m_{\tau}^{2})^{2}}{(1 - m_{\pi}^{2}/m_{\tau}^{2})^{2}} \delta_{LD}
$$

Radiative corrections

Dominant systematic error from hadron ID

$|V_{\text{us}}|$ from inclusive τ decays

• *Determine from fraction of hadronic decays with strangeness*

- *Inclusive BF as sum of exclusive BFs*
- *Measurements can be extended to higher moments of hadronic mass distributions* **Spectral Moments:**

$$
R_\tau^{kl} = \textstyle{\int_0^1 dz (1-z)^k z^l \frac{dR_\tau}{dz}, \,\, z = \frac{q^2}{m_\tau^2}}
$$

• *Many spectral function measurements are still from the LEP era*

Courtesy: A. Lusiani [Tau2023 slides]

Conclusions

- *τ* pair events at the **Y**(4*S)* are clean and provide many constraints on *kinematic variables*
	- *pair events are quite different from B and charm decays*

• *properties and decays provide a wide variety of SM tests and opportunities to search for new physics*

• *Belle II will soon have the largest pile of 's in the world* – *New physics may be hiding in it …*

References

- *"The tau lepton", Martin Perl, Reports on Progress in Physics, 55 (1992) 653.*
- *"Physics with tau leptons", Achim Stahl, Springer Tracts in Modern Physics (1999)*
- *"Precision tau physics", Antonio Pich, Progress in Particle and Nuclear Physics 75 (2014) 41.*
- *"The Physics of the B factories", A. Bevan, B. Golob, T. Mannel, S. Prell, and B. Yabsley (eds.), Eur. Phys. J. C74 (2014) 3026.*
- *"The Belle II Physics Book", Belle II Collaboration, E. Kou et al., Prog. Theor. Exp. Phys. (2019)*

Back-up slides

Strong coupling constant

 $\alpha_{\rm S}$ can be determined from τ hadronic width and spectral moments

Last measurements from LEP & CLEO

 \rightarrow Very precise measurement from ATLAS at LHC

Tau g-2

Ultra peripheral Pb-Pb collisions

- *Photoproduction cross-section of tau pairs depends on*
	- *ATLAS result has similar precision to DELPHI result; ALICE analysis is in progress*
- *Also possible at Belle II (pol. beams help)*

Tau electric dipole moment

• *New measurement of tau EDM from Belle using spin correlations*

$$
- \text{ Expect to improve to } (1-2) \times 10^{-19} \text{ ecm}
$$
\n
$$
\text{with improved technique and Belle II data,}
$$
\n
$$
\text{Re}(d_{\tau}) = (-0.62 \pm 0.63) \times 10^{-17} \text{ ecm},
$$
\n
$$
\text{Im}(d_{\tau}) = (-0.40 \pm 0.32) \times 10^{-17} \text{ ecm}.
$$

$$
\mathcal{M}_{Re}^{2} \sim (S_{+} \times S_{-})\hat{k} , (S_{+} \times S_{-})\hat{p}
$$
\n
$$
\pi^{\dagger}
$$