Theory introduction to the dark sector

Stefania Gori UC Santa Cruz

2024 Belle II Physics Week

KEK

October 14-18, 2024

Overview

The Higgs portal

SM + singlet scalar:

$$
\mathcal{L} \supset -\frac{\xi}{2}|H|^2 s^2 + \frac{\mu_s^2}{2} s^2 - \frac{\lambda_s}{4!} s^4 + \mu^2 |H|^2 - \lambda |H|^4
$$
 + couplings within
the dark sector
operator

In addition to dark matter models, new (light) scalars appear in e.g., theories that address the hierarchy problem (relaxion), or that explain the baryon-antibaryon asymmetry

The Higgs portal

SM + singlet scalar:

If the scalar, s, gets a VEV, then it will mix with the SM Higgs:

$$
\tan \theta_s \sim \frac{\xi v_h v_s}{m_h^2 - m_s^2}
$$

---X--
H⁻ s

Constraints from Higgs coupling measurements since $\kappa_i \sim \cos \theta_s$

The mixing cannot be too large (model independent bound)

Visible decays of the dark scalar

2.

As we have learnt for the dark photon, also the dark scalar will mainly decay to DM if $2m_{DM} < m_S$

4

Visible decays of the dark scalar

2.

Dark scalars at fixed target experiments

B-mesons

At proton fixed target experiments, large production from B and K meson decays, $B \rightarrow K s, K \rightarrow \pi s$

particularly suited for high energy fixed target (SPS CERN beam)

This will produce two classes of signatures:

 $B \rightarrow K +$ missing energy, $K \rightarrow \pi +$ missing energy in the case of $2m_{DM} < m_s$ **1.**

 $B \rightarrow K + 2$ leptons/tracks, K → π + 2 leptons/tracks **2.** in the case of $2m_{DM} > m_s$

Huge meson statistics

For example, at SHiP:

Dark scalars at B factories

2 main production mechanisms:

And then again either visible or invisible decays of the scalar, s

Several searches have been performed at Babar

B. Echenard

- $\mathsf{Y(2S,3S)} \rightarrow \mathsf{y} \mathsf{A^0}, \mathsf{A^0} \rightarrow \mathsf{\mu^+ \mu^-}$ PRL103 (2009) 081803
- $Y(3S) \rightarrow YA^0, A^0 \rightarrow \tau^+\tau^-$ PRL103 (2009) 181801
- $Y(2S,3S) \rightarrow YA^0, A^0 \rightarrow hadrons$ PRL107 (2011) 221803
- $Y(2S,3S) \rightarrow YA^0, A^0 \rightarrow$ invisible arXiv: 0808.0017
- $\Upsilon(1S) \rightarrow \Upsilon A^0$, $A^0 \rightarrow$ invisible PRL107 (2011) 021804
- $\Upsilon(1S) \rightarrow \Upsilon A^0$, $A^0 \rightarrow \mu^+ \mu^-$ PRD 87 (2013) 031102
- $\Upsilon(1S) \rightarrow \Upsilon A^0, A^0 \rightarrow \tau^+ \tau^ \bullet$ PRD 88 (2013) 071102
- $Y(1S) \rightarrow A^0$, $A^0 \rightarrow gg$ or ss PRD 88 (2013) 031701

Summary plot: the invisible dark scalar

Note: here we have the assumption, $m_s = 3m_x$

1.

Summary plot: the visible dark scalar

This entire parameter space predicts a **dark sector in thermal equilibrium** with the SM

2.

The neutrino portal

 $\mathcal{L} \supset yHLN + \frac{M}{2}N^2$ + interactions in the dark sector

This operator will generically induce some mixing of N with the three active SM neutrinos.

Sterile neutrinos appear in e.g., models that explain the origin of neutrino masses: seesaw mechanism. Sterile neutrinos can have a mass below the few GeV scale in inverse or linear seesaw models.

$$
m_\nu^\text{SM} \sim \frac{y^2 v^2}{M}
$$

N

 ν_α

The neutrino portal

 $\mathcal{L} \supset yHLN + \frac{M}{2}N^2$ + interactions in the dark sector

This operator will generically induce some mixing of N with the three active SM neutrinos.

N

Н

 ν_α

The neutrino portal

 $\mathcal{L} \supset yHLN + \frac{M}{2}N^2$ + interactions in the dark sector

This operator will generically induce some mixing of N with the three active SM neutrinos.

Giffin, SG, Tsai, Tuckler, 2206.13745

N

Ή

 ν_{α}

Summary plot: the invisible sterile neutrino

Very interesting opportunity for Belle II

Sterile neutrinos from tau decays.

Need to measure tau decay rates and their kinematics with as much precision as possible.

1.

Summary plot: the visible sterile neutrino

11

Chapter 3

Axions & axion-like particles (ALPs)

- ***** The effective field theory
- ***** Signatures

How do ALPs couple to the SM?

At dimension 5, the most general Lagrangian for a spin 0, CP-odd particle with an approximate shift symmetry, $a \rightarrow a + c$:

Georgi, Kaplan, Randall 1986

Redundant

operator

$$
\mathcal{L} \supset -\frac{g_{ag}}{4} a G^{a}_{\mu\nu} \tilde{G}^{a\mu\nu} - \frac{g_{aW}}{4} a W^{a}_{\mu\nu} \tilde{W}^{a\mu\nu} - \frac{g_{aB}}{4} a B_{\mu\nu} \tilde{B}^{\mu\nu} + ig_{af} (\partial_{\mu} a) (\bar{f} \gamma^{\mu} \gamma_5 f)
$$

For the complete one-loop analysis, see e.g.
Bonilla et al, 2107.11392

$$
g_i \propto \frac{1}{f_a}
$$

ALP effective field theory (EFT)

At dimension 5, also the operator $ig_{aH}(\partial_{\mu}a)(H^{\dagger}D_{\mu}H + \text{h.c.})$ exists.

However, it can be reabsorbed in the definition of the fermion coupling. In fact, if we redefine

$$
H \to e^{ig_{aH}a}H, \quad f \to e^{-i\beta_f g_{aH}a}f
$$

$$
\beta_u - \beta_Q = -1, \quad \beta_d - \beta_Q = 1, \quad \beta_e - \beta_L = 1, \quad 3\beta_Q + \beta_L = 0
$$

the Higgs operator disappears and the fermion couplings get a shift: $g_{af} \rightarrow g_{af} + \beta_f g_{aH} I_{3\times 3}$

S.Gori

Bauer et al, 2012.12272

How do ALPs couple to the SM?

At dimension 5, the most general Lagrangian for a spin 0, CP-odd particle with an approximate shift symmetry, $a \rightarrow a + c$:

Georgi, Kaplan, Randall 1986

$$
\mathcal{L} \supset -\frac{g_{ag}}{4} a G^{a}_{\mu\nu} \tilde{G}^{a\mu\nu} - \frac{g_{aW}}{4} a W^{a}_{\mu\nu} \tilde{W}^{a\mu\nu} - \frac{g_{aB}}{4} a B_{\mu\nu} \tilde{B}^{\mu\nu} + ig_{af} (\partial_{\mu} a) (\bar{f} \gamma^{\mu} \gamma_5 f)
$$

$$
a = - - \mathcal{L}^{\mathcal{M}^{\mathcal{M}^{\mathcal{M}}}}_{\mathcal{M}^{\mathcal{M}}} g
$$

$$
a = - - \mathcal{L}^{\mathcal{M}^{\mathcal{M}^{\mathcal{M}}}}_{\mathcal{M}^{\mathcal{M}}} \gamma^{\mu} \gamma^{\mu} \gamma^{\mu} \gamma^{\mu} \gamma^{\mu}
$$

Minimal coupling expected if connection to the strong CP problem.

A ALP-photon coupling is generated in the broken phase $g_{aB}\cos^2\theta+g_{aW}\sin^2\theta$

This is the main coupling that has been considered for phenomenological studies of ALPs in the sub-GeV scale.

ALP EFTs at high intensity/energy experiments

see e.g. Brivio et al, 1701.05379 Bauer et al, 1708.00443, 1808.10323, …

High energy colliders

see e.g. Calibbi et al, 2006.04795 Panci et al, 2209.03371, …

(LHC, Tevatron, LEP, future colliders) Low energy flavor experiments (Mu3e, MEG-II, …)

 ${\cal L} \supset -\frac{g_{ag}}{4} \, a \, G^a_{\mu\nu} \tilde{G}^{a\mu\nu} - \frac{g_{aW}}{4} \, a \, W^a_{\mu\nu} \tilde{W}^{a\mu\nu} - \frac{g_{aB}}{4} \, a \, B_{\mu\nu} \tilde{B}^{\mu\nu} + i g_{af} (\partial_\mu a) (\bar{f} \gamma^\mu \gamma_5 f)$

Fixed target (beam dump) experiments (proton, electron, photons)

see e.g., Dobrich et al, 1512.03069 Harland-Lang et al, 1902.04878, …

Meson factories (pion, Kaon, and B-mesons)

see e.g., Bauer et al, 2110.10698 Altmannshofer, Dror, SG, 2209.00665, …

Two classes of ALP production

Neutral & charged current meson decays to ALPs

Flavor changing neutral current Charged current

They arise in models with

- * ALPs mixed with SM neutral pions (e.g. $K^+ \rightarrow \pi^+\pi^0 \Rightarrow K^+ \rightarrow \pi^+a$)
- * ALPs coupling to W or tops

* ALPs coupling to leptons (higher loop) $K_L \rightarrow \pi^0 a$ $\rightarrow \pi^+ a$ K^+ \bm{B} $\;\rightarrow\;Ka$ w Flavor violating ALPs

They arise in models with

- ALPs mixed with SM neutral pions (e.g. $\pi^+ \to \ell^+ \nu \pi^0 \Rightarrow \pi^+ \to \ell^+ \nu a$)

S.Gori **Most studied** (both th. and exp.) ¹⁶

ALPs coupled to photons

Fit of either the recoil mass or the γγ invariant mass

$$
M^2_{\rm recoil} = s - 2\sqrt{s}E^{\rm c.m.}_{\rm recoil}
$$

$$
\left[\frac{g_{a\gamma\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu}\right]
$$

ALPs coupled to photons

ALPs coupled to gluons

$$
c_{GG}\frac{\alpha_S}{4\pi}\frac{a}{f}G^a_{\mu\nu}\tilde{G}^{\mu\nu,a}
$$

ALPs coupled to gluons

Non-minimal models

1. Inelastic Dark Matter (non-minimal freeze out) 2. L_{μ} - L_{τ} theories ("flavor specific" theories)

1.

Inelastic Dark Matter

Inelastic DM (IDM) models were initially proposed to explain the DAMA anomaly, while being consistent with Dark Matter direct detection bounds from CDMS

Tucker-Smith, Weiner, 0101138

$$
-\mathcal{L} \supset m_D \eta \xi + \frac{1}{2} \delta_{\eta} \eta^2 + \frac{1}{2} \delta_{\xi} \xi^2 + \text{h.c.}
$$
 2-component Weyl spinors
with opposite charge under U(1)

$$
\chi_1 = i(\eta - \xi)\sqrt{2},
$$

$$
\chi_2 = (\eta + \xi)\sqrt{2}
$$

1.

Inelastic Dark Matter

Inelastic DM (IDM) models were initially proposed to explain the DAMA anomaly, while being consistent with Dark Matter direct detection bounds from CDMS

Tucker-Smith, Weiner, 0101138

$$
-\mathcal{L} \supset m_D \eta \xi + \frac{1}{2} \delta_{\eta} \eta^2 + \frac{1}{2} \delta_{\xi} \xi^2 + \text{h.c.} \qquad \text{2-component Weyl spinors with opposite charge under U(1)}\nThe only relevant interaction is inelastic: $\chi_1 = i(\eta - \xi)\sqrt{2},$
\n
$$
\mathcal{L} \supset \frac{i e_D m_D}{\sqrt{m_D^2 + (\delta_{\xi} - \delta_{\eta})^2/4}} A'_{\mu} (\bar{\chi}_1 \gamma^{\mu} \chi_2 - \bar{\chi}_2 \gamma^{\mu} \chi_1) \qquad \chi_2 = (\eta + \xi)\sqrt{2}
$$
\nThe elastic piece is very small $(\delta_{\eta,\xi} \ll m_D)$:
\n
$$
\mathcal{L} \supset \frac{e_D (\delta_{\xi} - \delta_{\eta})}{\sqrt{4m_D^2 + (\delta_{\xi} - \delta_{\eta})^2}} A'_{\mu} (\bar{\chi}_2 \gamma^{\mu} \chi_2 - \bar{\chi}_1 \gamma^{\mu} \chi_1)
$$
\n
$$
\frac{\chi_2}{\sqrt{4m_D^2 + (\delta_{\xi} - \delta_{\eta})^2}} A'_{\mu} (\bar{\chi}_2 \gamma^{\mu} \chi_2 - \bar{\chi}_1 \gamma^{\mu} \chi_1)
$$
\nEasy to get it small

\nTwo states close in mass: $\Delta \equiv \frac{m_2 - m_1}{m_1} \sim \frac{\delta_{\xi} + \delta_{\eta}}{m_D} \ll 1$ since it is a U(1)' breaking effect
$$

1.

Inelastic Dark Matter

Inelastic DM (IDM) models were initially proposed to explain the DAMA anomaly, while being consistent with Dark Matter direct detection bounds from CDMS

Tucker-Smith, Weiner, 0101138

$$
-\mathcal{L} \supset m_D \eta \xi + \frac{1}{2} \delta_{\eta} \eta^2 + \frac{1}{2} \delta_{\xi} \xi^2 + \text{h.c.}
$$
 2-component Weyl spinors with opposite charge under U(1)²
The only relevant interaction is inelastic: $\chi_1 = i(\eta - \xi)\sqrt{2}$,

$$
\mathcal{L} \supset \frac{ie_D m_D}{\sqrt{m_D^2 + (\delta_{\xi} - \delta_{\eta})^2/4}} A'_{\mu} (\bar{\chi}_1 \gamma^{\mu} \chi_2 - \bar{\chi}_2 \gamma^{\mu} \chi_1)
$$
 $\chi_2 = (\eta + \xi)\sqrt{2}$
The elastic piece is very small $(\delta_{\eta,\xi} \ll m_D)$:

$$
\mathcal{L} \supset \frac{e_D (\delta_{\xi} - \delta_{\eta})}{\sqrt{4m_D^2 + (\delta_{\xi} - \delta_{\eta})^2}} A'_{\mu} (\bar{\chi}_2 \gamma^{\mu} \chi_2 - \bar{\chi}_1 \gamma^{\mu} \chi_1)
$$
 Easy to get it small
Two states close in mass: $\Delta \equiv \frac{m_2 - m_1}{m_1} \sim \frac{\delta_{\xi} + \delta_{\eta}}{m_D} \ll 1$ since it is a U(1)²
breaking effect
Abundance of χ_1 and χ_2 is determined $\star \chi_1 \chi_2$ co-annihilation,

Abundance of χ_1 and χ_2 is determined by two coupled Boltzmann equations, that keep into account:

- χ¹ χ2 co-annihilation,
- \star χ_2 f \to χ_1 f inelastic scattering,

$$
\begin{array}{c}\n\cdot & \chi_2 \rightarrow \chi_1 + SM \text{ decays}\n\end{array}
$$

IDM displaced signatures

IDMs are rather hidden to direct detection experiments Also CMB constraints are relaxed The prime avenue to probe IDM is at high intensity experiments

(see, however, Bramante et al., 1608.02662)

IDM displaced signatures

New opportunities for B-factories 1.

New proposed search for Belle-II:

(Photon) + displaced tracks + missing energy

New opportunities for B-factories 1.

New proposed search for Belle-II:

(Photon) + displaced tracks + missing energy

A new gauge symmetry for DM? 2. Lμ - Lτ

Simple example:

dark matter is a Dirac fermion charged under $L_{\mu} - L_{\tau}$, $q_{\chi} g' \bar{\chi} \gamma^{\mu} \chi Z'_{\mu}$

Altmannshofer, SG, Profumo, Queiroz 1609.04026 (see also Kile et al. 1411.1407; Kim et al. 1505.04620; Baek 1510.02168 ...)

This symmetry is also motivated by neutrino mass model building + anomalies in data ($b \rightarrow sI, (g-2)_{\mu}$)

S.Gori 23 If $m_Z < 2m_{DM}$, the Z' will decay exclusively to muons, taus, and neutrinos

A new gauge symmetry for DM? 2. Lμ - Lτ

Simple example:

dark matter is a Dirac fermion charged under $L_{\mu} - L_{\tau}$, $q_{\chi} g' \bar{\chi} \gamma^{\mu} \chi Z'_{\mu}$

Altmannshofer, SG, Profumo, Queiroz 1609.04026 (see also Kile et al. 1411.1407; Kim et al. 1505.04620; Baek 1510.02168 ...)

Possible signals at:

Tests at neutrino experiments: CCFR, CHARM experiments

Neutrino induced $\mu^+\mu^-$ production in the Coulomb field of a heavy nucleus: "neutrino trident production"

Z' contribution to the cross section: $\frac{\left(1+4s_W^2+\frac{2v^2(g)}{M_{Z'}^2}\right)}{1+(1+4s_W^2)^2}$ $\overline{\sigma_{\sf SM}}$ (in the approximation of heavy Z') Measurements in the early '90s by CCFR and CHARM:

 $\sigma/\sigma_{\text{SM}} = 0.82 \pm 0.28$

(CCFR, PRL66 (1991) 3117)

Not 100% clear how solid this measurement is

Searches at the LHC

Bounds from the measured $Z\rightarrow 4\mu$ branching ratio

Recent dedicated CMS + ATLAS searches for the L_{μ} - L_{τ} gauge boson, (1808.03684, 2402.15212)

(Updated) Altmannshofer, SG, Martin-Albo, Sousa, Wallbank, 1902.06765

Combination with W \rightarrow Z' $\mu \nu \rightarrow (\mu \mu) \mu \nu$

Searches at B-factories

B-factories can search for the light Z' produced with muons

Additional Belle II search 2212.03066 for $e^+e^- \rightarrow \mu^+\mu^- + Z$ ', $Z' \rightarrow \nu \nu$ (*) (particularly relevant for $m_{Z'} < 2m_{\mu}$)

(Updated) Altmannshofer, SG, Martin-Albo, Sousa, Wallbank, 1902.06765

Searches at fixed target experiments 2.

High intensity fixed target experiments can produce an invisible Z'

(Updated) Altmannshofer, SG, Martin-Albo, Sousa, Wallbank, 1902.06765

Borexino Tests at neutrino experiments

Bounds from measurements of solar neutrino-electron scattering

tiny momentum transfer \Rightarrow Z' can mix with the SM photon

relevant constraint at low masses from the Borexino experiment

(Updated) Altmannshofer, SG, Martin-Albo, Sousa, Wallbank, 1902.06765

Belle II probes a mass range that is not probed otherwise

What we have learnt

Dark sectors are ubiquitous.

DM and the strong CP problem are two of the several motivations.

Experimental targets arise in these models (i.e. how small the couplings we should aim to probe are)

Minimal models

- **▶** dark photon
- **▶ dark scalar**
- **▶ sterile neutrino**
- axion-like-particles (several independent couplings with the SM)

Beyond the minimal models

Inelastic Dark Matter
L_μ - L_τ

 $*L_{\mu}$ - L_{τ}

semivisible

visible

invisible

PHENOMENOLOGYENOMENOLOG

The challenge for the LHC

To be sensitive to light scalars and Higgs exotic decays, dedicated studies of trigger strategies are needed!

Let us take, for example, the challenging decay mode $h \rightarrow 4b$

From the LHC Higgs cross section working group, Yellow report 4, 1610.07922

Risk of loosing the signal already at the trigger level

LHC production of the dark scalar

The production cross section_ $_{\rm s}$ = production_ $_{\rm SM\ Higgs}$ *sin²($\theta_{\rm S}$) Same production modes as for the SM Higgs

Only a few LHC searches have been performed. Examples are bbs, $s \rightarrow \mu\mu$ $qgs, s \rightarrow \mu\mu$ qgs, $s \rightarrow yy$ bbs, s →tautau

Higgs exotic decays to dark scalars

L^μ - Lτ and dark matter

L_μ - L_τ model + Dirac fermion DM

Altmannshofer, SG, Profumo, Queiroz, 1609.04026

Towards fully probing this model.

Only DM in \sim (5-20)GeV is still viable