Introduction to the level1 trigger

2024/10/8 KEK Taichiro Koga

Trigger?

-"Trigger" in particle physics (wikipedia)

-a **trigger** is a system that uses criteria to rapidly decide which <u>events</u> in a <u>particle detector</u> to keep when only a small fraction of the total can be recorded.

collision w/o interaction not recorded

beam background sometimes recorded

Example of cosmic trigger with scintillator

- -Let's detect cosmic muon with two scintillators and an oscilloscope
- -If we record waveform by hand, we can not see cosmic due to low rate -Expected #cosmic signal per a record
 - = (oscilloscope timing window) \times (cosmic rate) = ~100ns \times ~1Hz= 10⁻⁷
- -Most of recorded data is garbage

Example of cosmic trigger with scintillator

- -Add cosmic trigger to take coincidence of two scintillator signals -Discriminator: convert analogue to digital
- -Coincidence: take AND of digital signals
- -Delay: delay analog signal for waiting coincidence
- -Most of recorded data is cosmic

Example of cosmic trigger with scintillator

- -Most of recorded data is cosmic **event rate**, data size reduction

Recent level1 trigger system

-Basic concept is the same as cosmic example:

-①Digital conversion on detector front end boards

limited by buffer size

- -2 Digital calculation on Trigger boards
- -③Buffer on detector front end board to wait <u>a few μ s</u> until trigger comes

-To provide trigger within a few μ s latency, FPGA is used for 2

FPGA

-"Field Programmable Gate Arrays" (FPGA): programmable integrated circuits

-I/O: PIN for input and output

-Logic cell: combination of LUT(combination circuit) and Flip flop(synchronous circuit)

-Internal writing: connect Logic cell, IO

Digital calculation on FPGA

-"Field Programmable Gate Arrays" (FPGA): programmable integrated circuits

-Any combinations of above circuits can be implemented on FPGA.

-The number of available circuit is limited by size of FPGA and latency worse accuracy than software in general. major challenge.

FPGA technology

-FPGA performance has been improved in recent ~20years commercially -~2times circuit size (logic cell) in each 3~4 years !!

-Trigger performance has been improved and accordingly -advanced, complex algorithm with large resource

AMD Xilinx Emulation Virtex And Versal Lines For 17 Years

Trigger in various experiments: collider

- -Level1(0) Trigger: Hardware (electric circuit)
- -High-level Trigger: Software (computer)

-No level1 (Streaming DAQ) is modern movement, but not covered in this talk

DATA FLOW

	beam crossing rate	Level1 trigger rate (FPGA)	High level trigger rate (CPU/GPU)
ATLAS	40MHz	100kHz	1kHz
<u>LHCb</u>	40MHz	1MHz	12.5kHz, 0.6GB/s
<u>LHCb</u> upgrade	30MHz	no Level1 !	2-5 GB/s
Belle II	250MHz	30kHz	<u>5~10kHz, 1.8GB/s</u>

Belle II level1 trigger

Event rate at Belle II

-Expected event rate at target luminosity

-Maximum trigger rate at Belle II DAQ is 30kHz

 \rightarrow trigger system is needed to reject background with S/N = ~1

Bhabha scattering

Requirement for Belle II level1 trigger

-Belle II TDR in 2010: <u>https://arxiv.org/abs/1011.0352</u>

-Belle II: 40times higher luminosity than Belle [-maximum trigger rate is increased accordingly -latency is increased by upgrade of detector FE with large buffer

	requirement for BelleII	requirement for Belle
Efficiency	~100% for BB pair	~100% for BB pair
Maximum trigger rate	~30kHz	~0.5kHz
Latency	5.0µs	2.2µs
Deadtime	no deadtime	no deadtime
Event timing resolution	10ns	~16ns

Belle II level1 trigger system

- -CDC, ECL: main triggers for charged particles and gamma
- -KLM: trigger muon
- -TOP: measure event timing
- -GRL,GDL: matching of sub-triggers, final trigger decision

 \square : board

Universal Trigger board (UT)

-Main board used by different sub-triggers commonly -Large IO with optical transceiver

-Large FPGA resource

History of UT development

Name	Year	Main FPGA	#Logic cell	Main IO	
UT (test)	2006	Spartan3	50k(?)	LVDS 448ch	V
UT2 (test)	2008	Virtex5 LX220T	220k	GTP 3.1x32Gbps	
UT3	2011	Virtex6 HX380T,565T	380~ 570k	GTX 6.2x40Gbps GTH 11x24Gbps	
UT4	2018	Virtex Ultrascale XCVU080/160	1000~ 2000k	GTH 16x32Gbps GTY 25x32Gbps	

Trigger system in Ehut

Trigger system in Ehut

Sub trigger logic (CDCTRG,ECLTRG)

CDC detector

CDC Trigger

-Role: Trigger charged particles

-Three kind of track with different θ region:

- -full track (f,y)
 -short track (s)
- -inner track (i)

CDC trigger: CDC front end

https://iopscience.iop.org/article/10.1088/1748-0221/12/06/C06014 -digitize analogue signal on CDCFE 電荷量 ASD FADC discriminator threshold ピークパルス高 integrated charge (if >6 ADC or not) TDC

-Only part of information is sent to CDCTRG -wire hit existence (0 or 1): 5 of 6 layers in each super layer axial -wire hit timing (2ns precision TDC): 1 of 6 layers in each super layer stereo -integrated charge (0 or 1 ADC): 5 of 6 layers in each super layer

wire hit, ADC super layer0 super layer1 ... TDC

21

CDC trigger: MGR

-merge signal from four CDCFE-send merged signal to TSF

https://docs.belle2.org/record/439/files/BELLE 2-NOTE-TE-2016-013.pdf

CDC trigger: Track segment finder (TSF)

- -Find bunch of wire hits (Track segment, TS) to reduce noise and data size -require 4 of 5 layer hits in each super layer
 - -pt>~0.35 GeV is required: curing track is not reconstructed at this stage

CDC trigger: 2D tracking

-Transform wire hit pattern inside TS to Hough plane (pt, ϕ). Only axial layer. -pt: 34bin in [0.3-10] GeV, ϕ : 160 bin in [0-360] degree -#wires>=20 is required (now >=16) in Hough peak https://docs.belle2.org/record/3592/

->98% efficiency at barrel, pt>0.4 GeV

Hough plane event display #wire phase3 BG MC True track 100 120 True track φ_0 region1 Simulated single charged particle Reconstructed 2D tracks axial 2D tracking stereo -S

files/BELLE2-MTHESIS-2023-012.pdf

CDC trigger: 3D tracking

-3D track fitting to measure z position, by using neural network
 -input: 2D track(φ_{rel}, α), central wire hit timing of TSF
 -output: z,θ of 3D track

-Training is done at offline with offline reconstructed track

beam BG rejection

-beamBG is coming from large Z vertex with low momentum

CDC trigger: performance

-Major trigger conditions: -#track>=1, p>0.7GeV (stt) -#track>=2, opening angle Δφ>90deg. (fyo) -#track>=3 (ffy)

-~95% efficiency per track is achieved

-large run dependency due to CDC gas gain, dead channel etc: At maximum ~10% change of efficiency. (much improved in 2024)

ECL detector

-Electromagnetic calorimeter
-measure photon and charged particles
-excellent energy resolution with CsI
-high angular acceptance

ECL trigger: Shaper DSP

(): number of boards 52 VME around detector **Detector** E-hut CsI(TI)+PD **SDSP** GRL(1) тмм FAM +PreAmp ETM (576) (52) (7) (8736)GDL(1) (1)HSLB(1)

-Shaper DSP:

one Trigger cell (TC)

Take analog sum of 16 crystals (Trigger cell)

-Different shaper is used for ECL and ECLTRG -200ns faster shaper for ECLTRG -measured energy can be different from ECL

-Waveform fit (only once by using a template) to estimate energy, timing

ECL trigger: TMM, ETM

-TMM: merge and send all TC energy and timing to a UT4

-ETM: Combine next TCs to reconstruct a cluster

- >100MeV required to TCs: main reason of energy difference btw. ECL and ECLTRG

-if two TCs are combined, 22cm × 44cm × 30cm size. Big.

ECL trigger: performance

Major trigger condition:
 -hie: energy sum>1GeV in 2<=θ_{ID}<=15
 -c4: #cluster>=4 in 2<=θ_{ID}<=15
 -several combination of cluster and energy (Imlxx)

-~1% level data/MC agreement -most stable trigger: small run dependency

32

99.5% matching efficiency

GDL

- -GDL: Global decision logic
- -ITD: adjust delay and persistence of input
- -FTDL: calculate if trigger condition is 1 or 0 -trigger condition = AND, OR of input bit (output bit) -in total, ~200 trigger conditions
- -PSNM: apply prescale in each trigger condition -prescale=10: fire a trigger if the trigger condition is satisfied 10 times
- -TMDL: combine trigger condition and event timing

Veto

Bhabha veto with ECL trigger

- -Two back-to-back high energy electrons are produced by Bhabha. Large cross-section: ~50kHz.
- -If following condition satisfied at ECLTRG, "Bhabha veto" is fired: [E1>4.5GeV, E2>3.0GeV, 160< $\Delta \phi_{CM}$ <200deg, 165< $\Sigma \theta_{CM}$ <190deg] ->~80% Bhabha rejection
- -This veto is applied to most of trigger bits

New Bhabha veto with ECL trigger

-new Bhabha veto for energy sum 1GeV trigger: ~90% Bhabha rejection -additional veto: (#cluster==1 at endcap) OR (#cluster==2, lower energy at endcap)

->Will be activated if trigger rate reaches DAQ limit

Injection veto

-Huge background appear just after beam injection -Belle II BG level is high every turn(10μs), when the injected beam pass through Belle II

-trigger is vetoed for a while after beam is injected to main ring ->~99% BG rejected

-Veto causes large DAQ deadtime of 5~15% -several efforts were done since 2019

Belle II Injection veto

-Injection veto structure

-①~0.5ms after injection: veto trigger entirely (since Belle)

- 20.5~10ms after injection: veto trigger 3~4µs around injected bunch (2019)

-310~30ms after injection: veto trigger 1~2µs around injected bunch (2020)

Belle II Injection veto

-Active injection veto (2024)

-check occupancy of ECLTRG(#TC hit) and CDCTRG(#wire hit)

-if occupancy is lower than threshold, take data even after beam injection

-~5% dead time reduction, 10~20% trigger rate increase.

Data quality may be affected \rightarrow please analyze the 2024 data carefully !

#CDCTRG wire hits

Trigger rate and condition

present TRG status

-Status @ 2024/6/10

- We almost ac -thanks to ma	hieved initial requireme iny efforts in LS1	new feature turned on: tighter prescale, CDCTRG ADC, new 3D, stt disabled	
item	requirement	presen	t status
Trigger rate	<30kHz @ L=6.0 × 10 ³⁵ cm ⁻² s ⁻¹	~5.5kH @ L=3.	z (~2.5kHz w/ new feature) 8 × 10^{34} cm ⁻² s ⁻¹
Latency	4.4µs	4.4µs	;;
Event timing resolution	10ns	~8ns	=
Efficiency	>99% for BB pair	>99% fo >95% fo dark se	or BB pair 😆 or ττ pair 🤣 earch trigger 🤣

Level1 trigger rate fraction @ 2024

-exp33run250, Total L1 rate=~7kHz, Luminosity=~3.5 × 10³⁴ -injection BG ~1kHz, storageBG,luminosity~6kHz

event triggered by upper bits are excluded in lower bits in table

Category	bit	Raw rate (kHz)	Exclusive rate (kHz)
CDC	ffy: #full track>=3, $ z <20$ cm	0.60	0.60
standard bits	fyo: #full track>=2, $\Delta \phi$ >90deg, $ z <20$ cm	0.89	0.48
ECL	c4: #cluster>=4	0.40	0.21
standard bits	hie: Energy sum>1GeV	1.36	1.03
KLM τ/dark	klmb2b, eklmb2b, beklm: Back to back sector hits	0.46	0.40
	cdcklm, seklm, ecleklm: #CDC-KLM, ECL-KLM matching>=1	0.45	0.22
CDC τ/dark	<pre>stt: #full track>=1, z <15cm, p>0.7GeV syo: #full track>=1, #short track>=1, Δφ>90deg, z <20cm fy30: #full track>=2, Δφ>30deg, z <20cm</pre>	1.91 1.21 1.16	0.93 0.43 0.07
ECL τ/dark	ImI: several combination of #cluster and energy	2.92	1.65
	eclmumu: back to back low energy hit	0.63	0.01
Calibration	PID	0.24	0.09
	other (Bhabha, γγ, random, trg)	1.87	0.92
Total L1	OR of all bits	7.0	7.0

List of output bits: B physics

-Traditional condition same as Belle

2021c

Physics target	bit name	condition	Raw rate (kHz)	Exclusive rate (kHz)
BB pair	ffy fyo c4 hie	CDC #2track>=3, NNtrack>=1 with z <20cm >=1 CDC #2track>=2, NNtrack>=1 with z <20cm >=1, Δφ>90deg ECL #cluster>=4, 2<=θid<=15 ECL Energy sum>1GeV, 2<=θid<=15	1.40 1.03 0.13 0.69	1.40 0.47 0.08 0.56

Expected efficiency of generic BB (MC)

	BitName	eff(%)		BitName	eff(%)	BitName	eff(%)
Г	fff	0/ 11		hie	95.11	lmi0	81.02
Ч		04.11		lowe	99.79	lmi1	0.94
	ffs	46.41		lowe -	20.04	lml2	0.03
	fee	15 18		iume	30.24	lml3	0
	155	10.10		hade	38.24	lml4	0.01
	SSS	3.98		c2	100	lml5	0
Г	ffo	95.03		c3	100	lml6	1.82
	faa	1.24		c4	99.99	lmi7	0.02
	ISO	1.34		c5	99.98	lml8	12.12
	SSO	14,04		lefle	00.00	lml9	27.82
	fzo	95.03		eciolio	90.34	lmi10	30.16
	120	00.00		eclbst	0	lmi12	0
	fyo	0		g_high	95.11	Iml13	0

Trigger menu for dark/low-multi

-TRG-DAQ workshop 2022, physics-TRG session

-In backup, definition of conditions are shown.

Analyses	triggers
Z' invisibile, dark Higgs	fy30, <mark>cdcklm</mark> , stt
Ζ'→ττ, μμ	fff/ffy, cdcklm,stt (fy30, fyo)
A' invisible (single γ)	hie, Iml6, Iml16 (Iml1, prescaled)
A' visible without γ	stt, fyo, hie
X17/ A' visible + γ	dpee (Iml,,hie, c2hie)
ALP $\rightarrow \gamma \gamma$ (3 γ final state)	hie (high mass), ggsel (low mass)
ALP $\rightarrow \gamma \gamma$ fusion (ee $\rightarrow \gamma \gamma$ e)	Iml2, hie (stt, Iml1 barrel)
Single $\pi^0/\eta/\eta'$ (ee $\rightarrow \gamma \gamma$ e)	hie (stt)
$\mu\mu(\gamma)$ control sample (for invisible A' +)	stt, beklm, cdcklm (fyo, syo)
IDM + Dark Higgs	hie (Iml12, stt [stt4/5])
$\pi\pi\gamma$ for HVP	hie, (ff, stt)
$\pi\pi\pi^{0}\gamma$ for HVP	hie, bha3d (lml1)
Dark showers	stt_stt-ecl_bie for electrons (displaced VTX)

Triggers

Triggers used now or in already planned extensions of analyses to the full dataset (and beyond)

7

CDC ECL KLM

Physics analysis

When you start physics analysis

-If your physics mode has high multiplicity, high efficiency is expected -we expect no need to take care trigger so much for your analysis

-Nevertheless, it is recommended to check trigger efficiency of data
-In 2022, degradation of CDCTRG was seen by CDC gain drop, dead ch etc.
-In 2024, active injection veto has been turned on.
There might be impact on physics performance.

When you start physics analysis

- -If your physics mode has low multiplicity, you should care trigger.
 - -0. contact trg-performance group to consult with it. Read Sphinx.
 - -1. choose high efficient trigger bit for your physics mode
 - -2. estimate trigger efficiency of your signal by using MC:

$$\epsilon = rac{N_{
m ffy}}{N_{
m all}}$$

where $N_{
m all}$ is the number of all generated events, and $N_{
m ffy}$ is the number of $__{
m ffy}$ satisfied events

-3. check data/MC agreement with reference bit, independent from signal bit: -because N_{all} can not be estimated by data

$$\epsilon_{\mathrm{exp}} = \frac{N_{\mathrm{fff}} \mathrm{and} (N_{\mathrm{hie}} \mathrm{ or } N_{\mathrm{c4}})}{N_{\mathrm{hie}} \mathrm{ or } N_{\mathrm{c4}}}$$

signal bit

-4. apply correction and/or estimate systematics

When you start physics analysis

Past documents to estimate trigger efficiency:
 -mumu efficiency study: <u>https://docs.belle2.org/record/4023/</u>
 -tau efficiency study: <u>https://docs.belle2.org/record/1944?ln=en</u>
 -single photon efficiency study: <u>https://docs.belle2.org/record/1972?ln=en</u>

-Especially, $\mu\mu\gamma$ is a good control sample to estimate trigger efficiency - γ is triggered by ECL, μ can be used for study CDC,KLM (vice versa)

Trigger informatin on basf2

-On mdst, trigger information is stored on TRGSummary class. Event variables are available for user. (<u>Sphinx</u>)

-\$basf2 variables.py will show list of the available variables -ex. if L1PSNM(hie)==1, event is triggered by hie. if ==0, not triggered.

L1FTDL(name)	L1 Trigger [Eventbased] Returns the FTDL (Final Trigger Decision Logic, before prescale) status of the trigger bit with the given name.
L1Input(name)	[Eventbased] Returns the input bit status of the trigger bit with the given name.
L1PSNM(name)	[Eventbased] Returns the PSNM (Prescale And Mask, after prescale) status of the trigger bit with the given name.
L1Prescale(name)	[Eventbased] Returns the PSNM (prescale and mask) prescale of the trigger bit with the given name.

-Example of implementation on your steering file

tools =	['L1FTDL(hie)']
tools+=	['L1FTDLBit(c4)']
tools+=	['L1FTDLBit(ffy)']
tools+=	['L1FTDLBit(fyo)']
output =	<pre>register_module('VariablesToNtuple')</pre>
output.pa	aram('varīables', tools)
output.pa	aram('treeName', 'tree')
main.add	module(output)

-XWith run-independent MC, prescale configuration and trigger menu can be different from data. Please be careful. 50

Summary

-Introduce trigger

-various importance with various experiments
 -hardware(FPGA) and/only software(computer) trigger for collider

-Belle II trigger

- -CDC, ECL, KLM, TOP with φ matching
- -Unique logics on FPGA
- -Many trigger conditions with B, τ and low multi physics

backup

Optical transceiver technology

-Optical transceiver performance has been in improved recent ~20years -~2times bandwidth in each 3~4 years !!

-Trigger performance has been improved accordingly -receive detailed data from detector frontend

Universal Trigger board

dip switch for vme address

Universal Trigger board

Universal Trigger board

-LVDS board

Pipeline processing

-"Pipeline processing" is used for all logic to achieve no deadtime requirement

-All Belle II trigger logic is implemented by using the pipeline processing -...except for KLM/TOP Merger

TSIM

-Trigger logic is simulated on basf2 software, in order to estimate trigger efficiency of signal and background. (Trigger simulation, TSIM.)

-Since MC14, most of trigger logic has been implemented with good data/MC agreement

-Example of tau 1x1 study

Systematics of TRG for tau 1x1 analysis

Sys	е	μ
Data-MC	0.05	0.05
Ref trig	0.11	0.34
Exp dep	0.13	0.26
Total (%)	0.124	0.437

CDC trigger: inner track, short track

-Short(inner) track is reconstructed with coincidence of 5(3) TSFs on GRL -short: Look up table is made to search required ϕ pattern -inner: just require three TSFs in ±4 wire in ϕ

Not initially planned at Belle II but added since 2020
 large θ acceptance for low multi physics and two photon
 no z measurement: high trigger rate

KLM

-KLM:KL/μ検出器 「-μの同定 -κլ⁰の検出

-鉄+プラスチックシンチレータ or RPCのサンドイッチ構造 × 15 -Bellell でendcapとbarrelの一部をプラシンへ交換 (放射線による不感への耐性)

KLM Trigger

-Search muon in each sector

-Simply count number of hits: if #hit>7, it is judged as muon

-Tracking development is on-going

61

Dimuon efficiency performance

-High efficiency for Dimuon with wide angle coverage

Event timing determination

- -Trigger timing is determined by ECLTRG, CDCTRG, TOPTRG
- -ECLTRG: timing of the highest energy TC
- -CDCTRG: median of the fastest timing of TS associated with 2D track -priority: ①ECLTRG ②CDCTRG ③TOPTRG
- -Better timing resolution than requirement of 10ns

Short term upgrade

-advanced trigger logic to reduce background trigger rate

-new FPGA(UT4,UT5) to improve CDCTRG tracking, by using all wire hits

-new tracking algorithm (deep learning, high level Hough transformation)

Long term upgrade

-Upgrade trigger with Detector upgrade

-new CDC frontend board (~2026): send TDC and ADC of all wires

- -new ECL readout board (long shutdown 2?): read Crystal one by one
- -new VXD (long shutdown 2 ?): implement VXD trigger functionality

List of output bits: muon

-CDC-KLM, ECL-KLM matching trigger

Physics	bit name	condition Raw		w rate	Exclusive
target		(kHz		Iz)	rate (kHz)
Single	cdcklm1-2	CDC-BKLM matching>=10.27CDC-EKLM matching>=10.42		7	0.15
muon	ecleklm1			2	0.30
Physics target	bit name	condition		Raw rate (kHz)	Exclusive rate (kHz)
Muon pair	mu_b2b eklm2 beklm lml10 eclmumu	#BKLM cluster>=2, Δφ>90 deg. #EKLM cluster>=2 #EKLM cluster=1, #BKLM cluster=1 ECL 160 $<\Delta\phi_{CM}$ < 200 deg, 160 $<\Sigma\theta_{CM}$ < 200deg, no 2GeV(CM) CL in an event ECL 160 $<\Delta\phi_{CM}$ < 200 deg, 165 $<\Sigma\theta_{CM}$ < 190deg, E<2GeV		0.35 0.04 0.20 0.49 0.30	0.32 0.04 0.18 0.36

List of output bits: τ

-CDC-KLM, ECL-KLM matching trigger

2021c

Physics target	bit name	condition	Raw rate (kHz)	Exclusive rate (kHz)
τ	stt	CDC #full track>=1, $ z <15$ cm, p>0.7GeV	1.74	0.96
	syo	CDC #full track>=1, $ z <15$ cm, #short track>=1, $\Delta \phi$ >90deg.	0.74	0.38
	yioiecl1	CDC #full track>=1, $ z <15$ cm, #inner track>=1, $\Delta \phi$ >90deg.	0.37	0.08
	Iml12	NCL \geq 3, at least 1 CL \geq 500 MeV(Lab)) (with θ ID = 2 - 16)	0.17	0.03
	ecltaub2b3	under commissioning	-	-

List of output bits: lowmulti/dark -Mainly ECL based photon trigger

-Mainly E	2021c						
Physics target	bit name	condition	Raw rate (kHz)	Exclusive rate (kHz)			
Z'	fy30	CDC #full track>=2, Δφ>30deg, # z <20cm >=1	1.59	0.14			
ISR,π0 FF	lml2	ECL one $CL \ge 2$ GeV(CM) with θ ID = 2, 3, 15 or 16	0.18	0.01			
single γ	lml6	ECL only one CL \ge 1 GeV(CM) with θ ID = 4 - 15 and no other CL \ge 300 MeV(Lab) anywhere	0.18	0.03			
single γ	lml7	ECL only one $CL \ge 1$ GeV(CM) with θ ID = 2, 3, or 16 and no other $CL \ge 300$ MeV(Lab) anywhere	0.15	0.04			
ALP	lml8	ECL 170° < $\Delta\varphi$ CM< 190° , both CL > 250 MeV(Lab), no 2GeV(CM) CL in an event	0.08	0.05			
ALP	lml9	ECL 170° < $\Delta \phi$ CM< 190°, one CL < 250 MeV(Lab), one CL > 250 MeV(Lab), no 2GeV(CM) CL in an event	0.34	0.28			
dark photon	lml16	ECL only one $CL \ge 0.5$ GeV(CM) with θ ID = 6-11 and no other $CL \ge 300$ MeV(Lab) anywhere, #CDC full track==0	0.32	0.23			
The second secon							

Change of prescale

List of high-rate physic trigger bits

discarded bit name	alternative bit name	Change of logic	Raw rate reduction (kHz)	Exclusive rate reduction (kHz)	Physics target	
stt	sttecl	apply CDC-ECL matching	2.0->1.0	1.0->0.4	tau	
cdcklm seklm	ycdcklm ecleklm	require NN track	1.1->0.53	0.83->0.36	single μ(barrel) single μ(endcap)	
syo, syb	syoecl, sybecl	apply CDC-ECL matching	1.8->0.40	0.46->0.10 CDC-EC	tau, PID L matching	
yioiecl1		disable	0.5->0	0.3->0	endcap two track	
hie	hie3	additional Bhabha veto to endcap	2.0->1.2 new Bh	1.5->0.8 abha veto	B, τ, single photon with E>1GeV	
lml2		prescale by 10	0.61->?	0.34->?	γ with wide θ range	
lml7		disable	0.38->0	0.25->0	single photon sideband	
lml9		disable	0.67->0	0.49->0	ALP	
lml10	eclmumu	acceptance affected	1.1->0.63	0.70->0.51	μμ	
lml13		disable				
lml16		prescale by 10	1.0->0.1	0.66->0.6	single photon with E>0.5GeV	

CDC

ECL

KLM

TSIM

-TSIM has been developed and can be used for physics analysis

-KLMTRG core logic modified with release06 to be consistent with firmware -most of trigger bits are implemented with release06 -~5% data/MC agreement for signal efficiency estimation (tau)

-Useful links

-Available and missing trigger bits in TSIM release05

-How to generate signal MC with release06

- example code

- release-06-00-05 or later with global tag of "L1_config_exp_22_run_290"

-Available event variables

-L1FTDL(name),L1FTDLBit(bitnumber) returns if the output bit satisfied w/o prescale.
-L1PSNM(name),L1PSNMBit(bitnumber) returns if the output bit satisfied w/ prescale.
-L1Input(name),L1InputBit(bitnumber) returns if the input bit satisfied
-source code: analysis/variables/src/TriggerVariables.cc

-Make Jira ticket and notify us if you have any TRG software request $\ensuremath{\mathfrak{O}}$