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LIMITS 

EXIST…
… only in your 
mind 

Limits in the real world
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They are the other side of the nobler, but far more rare, medal side of discovery. 
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Limits in our real HEP world
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They are the other side of the nobler, but far more rare, medal side of discovery. 
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Limits in our real HEP world
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They are the other side of the nobler, but far more rare, medal side of discovery.

We perform a search and find just nothing. If we can’t go to Stockholm, 
let’s at least try to go on PRL! 
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Limits in our real HEP world
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Beside healing powers (and jokes) the history of physics is full of null results that turned out to suggest 
new directions (think of Michelson-Morley), to stop wrong ones (supersymmetry? ☺ [half] joking again), or to 
shape the path towards new searches (LEP vs LHC, light dark matter, …)  → Limits are important.
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Limits

Michelson-Morley Xenon – DM search
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Let’s fully restrict here to our case: dark-sector physics (new BSM particles) or  LFV/BNV decays. 
We search for a positive signal over a background that can (and often is) or cannot be close to zero.

→  Limits are always upper limits.  

 

We want to make statements about the largest possible value of a signal for a certain target 
probability.

7

Limits
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This is an introductory lecture to limit setting

Not exhaustive
→ Important methods are not covered (Feldman-Cousins, PCL, …)
→Others are only sketched (Bayesian priors, …)

The main goal is to give you a starting point 
→To be used for further deepening and exploration of the topic, if needed
→To handle the many available tools in a responsible way, and not as black box

Complemented by the Thursday tutorial

Limit setting: a how to
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Limiting relative frequency

P(A) fraction of times A occurs in the limit of 
infinite-times measurements

Very intuitive

Well suited for intrinsic repeatable experiments 
(eg collisions)

Problematic for unique phenomena (eg Big Bang)

Subjective probability

P(A) degree of belief that A is true. Probability 
associated with a hypothesis as a measure of degree 
of belief 

Very intuitive as well

It includes the relative frequency interpretation 
(considering as a hypothesis the statement that an 
experiment will give a specific outcome a certain 
fraction of times)

9

Interpretation/definition of probability
Frequentist Bayesian 
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Interpretation/definition of probability
Frequentist Bayesian 

Win probabilities

78%                          22%
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More on the frequentist-Bayesian duality
Frequentist, aka ‘classic’ 

R.Fisher J.Neyman E.Pearson

• Probability that an experiment will yield a particular result

• Frequentist has to to do with P(data|theory) : probability 
to observe the data under the assumption that the theory 
is true. 

• Probability of observations are quoted as a function of the 
theory parameters. These are NOT probabilities of the 
theory. Think of the probability to observe the Higgs 
boson, if it exists and if it has SM properties.
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More on the frequentist-Bayesian duality
Bayesian 

• Bayes also start from P(data|theory), but then uses the Bayes’ 
theorem:  P(theory|data)  P(data|theory) x P(theory).

• Posterior probability that the theory is correct after looking at 
data: degree of belief in the theory. Think of the probability that 
the SM Higgs boson is true, once you observed the mass peak.

• Power of Bayes’ theorem: it relates the quantity of interest, the 
probability that the hypotheis is true given the data, to the 
more accessible term, the probability that we would have 
observed the measured data if the hypothesis was true.  

• The price to pay is the introduction of P(theory): prior 
probability that the theory is true. No golden rules for that.

Even though Bayes was (posthumously) credited of the 
theorem, it is generally recognized that was Laplace to 
rediscover and use it ‘seriously’ (celestial mechanics)

Rev. Bayes P.S.Laplace

Bayes’ theorem relates P(A|B) and P(B|A) 
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Excluding a signal hypothesis implies (much) milder requests than claiming its discovery.
Typical values are 5-10% for exclusion () and 10-7 for discovery (p-value).
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Back on limits

Limits are one-sided intervals with an associated probability content.

Typical statement: s < sup @ 90(95)% CL

Limits are measurements, but not high precision measurements:
• You can indicatively think at 15% precision on sup

• Proficiently used to make approximations

Confidence level → frequentist

Credibility level → Bayesian


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Duality at work

L( x |  ) = P(data|theory) is the likelihood. 

Bayesians see the likelihood as the only way experimental data affects inference, providing a direct 
connection between prior and posterior. Data are always observed data, what they are, whatever they are. 

In contrast, most of the frequentist constructions require not only the likelihood for the actual data, but also 
for all possible data that might have been observed.

data model parameters

Bayesian limits tell about the model probability. Probability / degree-of-belief that the true value of 
the parameter is outside  a fixed interval set by sup.

Frequentist limits tell about the probability of repeated (real, gedanken, toy, …) experiments 
assuming the model. The confidence interval set by sup  is a random variable and fluctuates 
experiment by experiment. 
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Parameters that enter in our inference, but are not the goal of the measurement.

We distinguish parameter(s) of interest (PoI) from nuisance parameters.

Example: we search for signal (typically a peak in a mass distribution) over the background. We estimate 
the background as a necessary step of the search, often providing useful informations (MC accuracy, 
…), but we don’t care about it per se. The background is a nuisance parameter. 

The list is of course much longer: detector resolutions, shape modeling, systematic uncertainties, …

How do we treat them? 

15

Nuisance parameters
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Parameters that enter in our inference, but are not the goal of the measurement.

We distringuish parameter(s) of interest (PoI) from nuisance parameters.

Example: we search for signal (typically a peak in a mass distribution) over the background. We estimate the 
background as a necessary step of the search, often providing useful informations (MC accuracy, …), but we don’t 
care about it per se. The background is a nuisance parameter. 

The list is of course much longer: detector resolutions, shape modeling, systematic uncertainties, …

Some treatment must be absolutely devised 

16

Nuisance parameters
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Limit setting in practice: a simple example
Poissonian event counting 

We search for a signal process on top of a background process.
This is often a counting experiment with small number of events.

No full signal/background discrimination → we measure the total 
number of events only. 

Signal, background and signal+background  counts follow  
Poissonian distributions with expected values s, b and  s+b.

We observe Nobs events.
Let’s suppose for now b is known with no uncertainty.

Nobs=0

b 0.2

Nobs=1

b 0.1

Counts in mass windows

If Nobs roughly compatible with b,   our goal is to find an upper limit sup on s at, say, 95% CL. 
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Limit setting in practice: a simple example
Poissonian event counting: frequentist 

Find the value sup such that the probability to observe Nobs events or less is   

Solve numerically (or analytically!) for sup  

 = 1-CL=0.05

Does it remind something to you? 

→ Inversion of the p-value test for the s+b hypothesis  

s+b hypothesis
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Limit setting in practice: a simple example
Poissonian event counting: frequentist 
A semi-analytically solution is actually available

sup

b

Nobs

More generally, for b0, Nobs 0

  

Notable case:  b=0, Nobs=0

sup = -log   3.0  

 = P(n  Nobs) = e-sup
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Sometimes a strength factor  =  / ref  is introduced and used to quote limits, when there is a 
special reference cross section to which to compare (ie SM for the SM Higgs boson). Rarely the 
case in Belle II, but we can always pick up a specific coupling/cross section and refer to it.

20

Limit setting in practice: a simple example

s, sup are (expected)  numbers of signal event

 N =   Lint connects number of events with cross section  , efficiency  and integrated 
luminosity Lint  

 
is the upper limit on the cross section, which defines in turn a limit on the coupling: usually g2

Neglecting smaller effects 
(correlations, systematics, …)
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Coverage is the fraction of intervals (probability) that the exclusion range set by the upper limit 
does not contain (cover) the parameter when the model  is true.

Ideally, one expects this to be CL.

As such, it is a frequentist concept, and automatically plugged in the frequentist construction.
Due to approximations and/or intentional departures from the pure frequentism, there can be 
cases of over or under coverage.

In the Bayesian case, coverage is anyway an auspicable feature, and needs to be checked. 

More on limits: coverage
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For underfluctuations of Nobs , sup can result negative: confidence interval is empty   

Nobs =0 , b=3.2           =0.05 (95% CL) → sup -0.2

Not an uncommon case for limits near a physical boundary.

The interval is designed to cover the true  value 95% of the times, and this case belongs to the remaining 5%. 

Math is ok, but the result is unphysical.

Bayesian avoids this, because the prior of s, however chosen, will be 0 for s<0.

22

Limit setting in practice: a simple example
Poissonian event counting: frequentist 
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Limit setting in practice: spurious exclusions
Poissonian event counting: frequentist 

Imagine we get a limit on  < 0 for some mA.
Let’s close an eye about the unphysicality. 

• Should we be happy that the constraint is so tight?
• Would this mean that games are over for that mA?
• Would really SM ( =0) be excluded in that region??
• Should we believe at all in this result?
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Limit setting in practice: spurious exclusions
Poissonian event counting: frequentist 

Imagine we get a limit on  < 0 for some mA.
Let’s close an eye about the unphysicality. 
 
• Should we be happy that the constraint is so tight?
• Would this mean that games are over for that mA?
• Would really SM ( =0) be excluded in that region??
• Should we believe at all in this result?

The answers are of course NO. 
This is a real problem that we want to solve (we will ☺ )
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Bayesian limits

Hypothesis (model) H=H(s)

Prior model probability (H)

Likelihood L(x|H)

Posterior probability h(H|x)

Likelihood L(x|H)

Posterior h(H|x)

Prior (H)

P

s
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Bayesian limits

Hypothesis (model) H=H(s)

Prior model probability (H)

Likelihood L(x|H)

Posterior probability h(H|x)

P

s

Upper limit on s by integrating over 
models, with fixed data , such that the 
posterior probability of the excluded 
theories is CL=1-

Likelihood L(x|H)

Posterior h(H|x)

Prior (H)

sup

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Limit setting in practice: a simple example
Poissonian event counting: Bayesian 

The limit on s is found by integrating with fixed Nobs , such that the posterior probability of the 
excluded theories is CL=1-

and then solve for sup 

Remember: b is known with no uncertainty (for now) 

Posterior probability with Poisson likelihood
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We have to define a prior (s) for the signal

(s) = 
1 s0

0 s<0

flat prior

• Not normalized (‘improper prior’), but the Poissonian likelihood penalizes high s because of Nobs.

• Reasonable, since it reflects our degree of belief in the signal  (non-negative), expresses ignorance about 
the rest, and is widely used as a reference for counting experiments.

• Criticized,  because it does not represent a degree of belief and the probability of having s in any finite 
interval approaches zero.

28

Limit setting in practice: a simple example
Poissonian event counting: Bayesian 

Posterior  likelihood → posterior peak 
coincides with maximum likelihood estimators.
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sup

b

More generally, for b0, Nobs 0

  

Nobs

29

Limit setting in practice: a simple example
Poissonian event counting: Bayesian 

Flat prior (s) 

Nobs=0 → limits on cross section scale linearly with the  
luminosity.
 

Notable case: Nobs=0  →   sup = -log   3.0 

does not depend on b 

b  Lint
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sup

b

sup

b

Nobs  Nobs  

frequentist Bayesian

Bayesian limits in general greater (conservative?) than frequentist and never go negative
30

Limit setting in practice: a simple example
Frequentist vs Bayesian 
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Bayesian priors
Dependence on prior is undoubtly the main weakness of Bayesian methods

Flat prior (s) often used. But flat on what? 
• Flat in s → flat in cross section →  not flat in coupling. 
• In general, not flat for functions of the parameter.

Not the only possible choice. A log-flat prior would express our belief (wherever it comes from) that 
the probability of a non-zero signal extends uniformly over orders of magnitude: (s)1/s.

On the other hand, dependence of final results upon the assumed prior is often negligible or small 
(remember: limits are not precision measurements!)
• This dependence have to be always checked: sensitivity analysis.
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Attempts to subtract  some degree of subjectivity by deriving the prior probabilities from formal 
rules: to satisfy certain invariance principles or to provide maximum information gain.
 Often called ‘objective priors’ (not to be taken too literally), as opposed to ‘subjective priors’.  

They don’t fully express a degree of belief: useful in comparing results obtained with subjective 
priors,  producing intervals whose (even frequentist) properties can be studied. 

Jeffreys’ priors

Fisher information matrix

This is shown to lead to invariance under  transformation of parameters. For Poisson( ) 

32

More on Bayesian priors

In our case →
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Conceptually (but not necessarily computationally) trivial extension to the case of non-fixed b: 
introducing uncertainties, both statistical and systematic, on the background 

We introduce  a prior b(b) for the background: eg Gaussian, to parametrize systematic uncertainties 
of size b on the background b taken from Monte Carlo

… and then we marginalize 

33

Bayesian limits with non-fixed background

As for the signal, b0. Not guaranteed by a Gaussian, unless b is small compared to b. Otherwise, one is 
forced to truncate and renormalize. Does this still represent true uncertainty?
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More on Bayesian priors for the background
Example (simplified!): we search 
for a resonance that decays in 
+-, we estimate the 
background looking at e+- + e-+ 
with k taking into account the 
different PID and combinatorial.

Here is an alternative.

The estimate of the background comes from a control sample.
We search for signal in a Poisson(s+b) distribution and we evaluate the 
background in a Poisson(kb) distribution, with a (known) scale factor k.

Posterior (b) after looking at e  events 

If the ‘original’ 0(b) is assumed flat, then (b), which is the background 
prior for the +- search, is a Gamma distribution, with better properties 
than the Gaussian
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Inelastic dark matter + dark Higgs h

Expected background  0. 
Measured directly in data through sidebands. 
Mass windows of width 1-5 MeV. Sideband is the full mass 
spectrum excluding the mass window. 
Ratio of sideband width to mass window width f  1000. 

35

Priors for the background: a Belle II example

sideband 

mass window

Search for a peak h → +- , +-- , K+K-



Physics week 2024 Limit setting: a how to – E. Graziani

Inelastic dark matter + dark Higgs h Search for a peak h → +- , +-- , K+K-

36

Priors for the background: a Belle II example

sideband 

mass window

Assume uniform background. 
Expected background in sideband bSB →  nuisance parameter
Expected background in mass window bSB/f

Count events Nobs and Nobs
SB in mass window and sideband

Even with 0 observed events in the sideband (in Monte Carlo too!) and in the signal window, this is 
perfectly manageable and accounts for all statistical fluctuations through the two Poissonians.    
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95% CL

Inelastic dark matter + dark Higgs h

37

Priors for the background: a Belle II example

Assume uniform background, but add a systematic 
uncertainty  to keep into account possible departures 
from uniformity. 

bSB/f→ bSB(1+ )/f       () Gaussian with width 

Include in the model and marginalize

Simple, isn’t it?  ☺

prior posterior
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Bayesian limits: summary
Very well suited for counting experiments

Clear framework for the treatment of nuisance parameters and thus systematic uncertainties
• Marginalize, marginalize, marginalize, …

Main issue: subjectivity in the choice of priors
• Use the flat prior
• Compare results with at least another prior: log-flat, Jeffreys, …

Models (likelihoods) can easily get very complicated
• Very rarely (semi)-analytically solvable
• You need some tool to perform numerical multidimensional integrations: most of them based on 

Monte Carlo Markov Chains aka MCMC: BAT (Bayesian Analysis Toolkit), BPULE (Bayesian 
Poissonian Upper Limit Estimator)

• ... and then you have the pyhf world 

Coverage to be checked: typically with toys
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Back to frequentist: spurious exclusions
Poissonian event counting: frequentist (reprise) 

Imagine we get a limit on  < 0 for some mA.
Let’s close an eye about the unphysicality. 

• Should we be happy that the constraint is so tight?
• Would this mean that games are over for that mA?
• Would really SM ( =0) be excluded in that region??
• Should we believe at all in this result?

The answers are of course NO. 
This is a real problem that we want to solve (we will ☺ )
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Limit setting in practice: spurious exclusions
Limit  sup<0, in presence of a physics boundary s0.

Problem of excluding parameter values with not sufficient information to distinguish between the b 
and s+b hypotheses (small signal rates, background signal, lack of discrimination due to physics or 
experimental resolution). 

Ideally, we would prefer that, in these cases, the signal is not excluded. 

To spot the problem, we can always compare the ‘observed’ limit with the ‘expected’ one, based on b 

and the set of all possible outcomes N. If they differ consistently, with sexpected>> sobserved, the problem 
is likely there. 

Fortunately, we have (at least) one solution: the modified frequentist CLs method
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… or, following authors’ words, ‘frequentist-motivated’ CLs method 

«Excluding zero signal tends to say more about the probability of observing a similar or stronger 
exclusion in future experiments with the same expected signal and background than about the non-
exixtence of the signal itself» (A. Read)

We are way more interested in statements about existence/non-existence of the signal rather than 
obtaining results  sensitive to fluctuations of the background above a (hypothetical) signal.  

The idea is to normalize the confidence level CLs+b to the confidence level CLb observed for the 
background-only hypothesis.

and reject the hypothesis if CLs . 

41

Modified frequentist CLs method
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Formulated by A.Read et al < 2000, at the time of the Higgs search at LEP

42

f(Q)

Q

Qobs

Modified frequentist CLs method

CLs+b and CLb are pure frequentist probabilities, 
but not their ratio (hence ‘modified’)

Based on the distributions of: 

Q(s+b)= -2 log L(s+b)

Q(b) = -2 log L(b)

Well separated distributions → 1-CLb small → CLb1
CLs  CLs+b the ordinary p-value of s+b hypothesis   



Physics week 2024 Limit setting: a how to – E. Graziani 43

Modified frequentist CLs method

CLs+b and CLb are pure frequentist probabilities, 
but not their ratio (hence ‘modified’)

f(Q)

Q

Qobs

Formulated by A.Read et al < 2000, at the time of the Higgs search at LEP

The price to pay is that results are more conservative

Based on the distributions of: 

Q(s+b)= -2 log L(s+b)

Q(b) = -2 log L(b)

Close distributions → 1-CLb large → CLb small
Prevents small  CLs, avoiding exclusion if sensitivity is low



Physics week 2024 Limit setting: a how to – E. Graziani 44

Modified frequentist CLs method
Formulated by A.Read et al < 2000, at the time of the Higgs search at LEP

One of the original motivations for CLs was to identify a generalization of frequentist upper 
limits for counting experiments that corresponded to the Bayesian result with a flat prior.

It shouldn’t come as a surprise that for fixed b one 
gets an identical result to the Bayesian case
(Didn’t we say that Bayesian is more conservative?)

This is reassuring in both directions
• Frequentist CLs         →   Bayesian
• Bayesian (flat prior) →   frequentist
notably, in the low-statistics (difficult) case 

• Being a modified frequentist method, CLs does 
not fully guarantee the coverage.  

• In particular, it is known to lead to over-coverage.
• Obtained limits are anyway conventionally 

declared at the nominal CL. 

What about coverage?



Physics week 2024 Limit setting: a how to – E. Graziani 45

Modified frequentist CLs method

Based on the distributions of: 

allows an immediate generalization beyond the case of 
the pure counting experiment  

• Background fitted directly in data assuming 
smoothness

• Signal searched  as an excess over background 
through fitting 

Typically maximum-likelihood fits

Z→  search

Q(s+b)= -2 log L(s+b)

Q(b) = -2 log L(b)
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Modified frequentist CLs method

ALP search in B→K(*)a (a → )

=0.1, 
90% CL

p
-v

al
u
e

Nsig

Nsig < 9.28 @ 90%CL

How to read a CLs limit: a recent Belle example 

In addition to the observed results,  the median 
and the  1 and  2 values expected for the b 
only hypothesis are also shown.



Physics week 2024 Limit setting: a how to – E. Graziani 47

Modified frequentist CLs method
Possibly the most famous exclusion ever. 

For each mH find the CLs upper limit on 

Add median and  1 (green) and  2 
(yellow) bands for =0 hypothesis
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Nuisance parameters:  frequentist case
Differently from the Bayesian case, where the treatment of the nuisance parameters is very clearly 
defined (marginalization, with only computing issues, if any) there is no general and crystal clear 
approach to do it in the frequentist case. 

Nuisance parameters  systematics

Ideally, one would like to add the effect of the nuisance parameters to the likelihood model and 
proceed. But the model becomes more complex and high dimensional.

Two main approaches:

• Hybrid frequentist – Bayesian

• Likelihood profile
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Hybrid frequentist – Bayesian approach     (Cousins – Highlands)

Marginalize the likelihood integrating over (all ,or part of) the nuisance parameters  and then use it in 
a frequentist way

The obvious draw back is that a marginalized hybrid likelihood is no longer a ‘real’ likelihood in the 
frequentist meaning, since  would not change if we repeated the experiment

Anyway, in many cases numerical studies with toys show that this approach gives very similar results. 
These checks should always be done to validate the method in specific applications. 
For example: for a p-value in the b-only hypothesis from a marginalized likelihood, one should check 
that is flat-distributed for the background. 

49

Nuisance parameters:  frequentist case
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Likelihood profile 

50

Nuisance parameters:  frequentist case

Replace the likelihood with a ‘profiled’ likelihood, using the values of the nuisance parameters that 
maximize  L(s, )  for each s, and then use the profiled likelihood as much as the original likelihood.

Reduces the dimensionality of the problem. Again, the profiled-likelihood is not a true likelihood, but turns 
out to be a very good approximation in many cases.

Achieved through the profile likelihood ratio normalized to the value of the likelihood at its maximum, i.e. 
with the values estimated from a ML fit

and then study Q=-2 log  (s) distributions f(Q). 

Fix s, fit 

Fit both s and 
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Likelihood profile 
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Nuisance parameters:  frequentist case

p-value calculations for the s+b and b hypotheses require hard integrations. Two approaches available:

• For sufficiently large data sample, the Q distributions f(Q) are asymptotically known through Wilk’s 
theorem and independent on the nuisance parameters: integrals can be performed directly.
➢ Actual distributions are distorted wrt 2

➢ Have a look at Eur.Phys.J.C71:1554,2011 (arXiv) for more details (parametrized as a function of 
 strength factor): more complicated Q test statistics are often used.

• Alternatively, they can be evaluated with ensemble of pseudo-experiments, so called toy 
Montecarlo experiments (or shortly toys), randomizing the involved global observables, including 
those associated to nuisance parameters.  
➢ Asymptotic functions not assumed. But, knowing that they are approximately independent on 

, allows not to compute p-values for all . 
➢ Have a look also at D.Tonelli’s lecture some PWs ago for more details

https://arxiv.org/abs/1007.1727v3
https://indico.belle2.org/event/3058/contributions/15802/
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CLs with nuisance parameters

CLs with asymptotic method 

CLs with Montecarlo toys 

Q

Qobs

Both approaches implemented in HistFactory.
Available in Roostat/Roofit and pyhf.
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

x x| x,

|x

Homo
Apriorius

Homo
Pragmaticus

Homo
Frequentistus

Homo
Sapiens

Homo
Bayesianus

@ Mike West

Limit setting: summary
Hope that you have now sufficient information 
to understand where to locate yourself.

Location can change,  depending on the 
analysis/problem. Adaptability is what 
Homo Sapiens used to survive until our 
days.

Thursday 17 October

More clear ideas from the 
dedicated pyhf tutorial.
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