Searching for the dark sector in *B* decays

Slavomira Stefkova Belle II Physics Week October 18th, 2024

<u>sstefkov@uni-bonn.de</u>

UNIVERSITÄT BONN

meV eV keV MeV GeV TeV PeV Hidden/Dark **WIMPS QCD** axion Sector

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Searching for Light Dark Matter

Adapted from arXiv:1707.04591

meV eV keV MeV GeV TeV PeV Hidden/Dark **QCD** axion Sector

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Adapted from arXiv:1707.04591

- Ordinary matter in our universe is outnumbered by dark matter 5:1 (in mass) 0
- All evidence so far relies only on gravity including the primary measurement ($\Omega_h \chi^2 = 0.12$) 0 [Planck, 1807.06209]
- Best explanations of relic density require additional interactions with SM particles 0
- Due to the lack of WIMP signatures, light dark matter (m < 10 GeV) increasingly appealing 0

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Light Dark Matter @ Accelerators

Light Dark Matter @ Accelerators Focus on **portal interactions** with DM mediator \mathbf{X} ($\mathcal{O}_{SM} \times \mathcal{O}_{DS}$)

- **Vector portal**: $-\frac{\kappa_Y}{2}F'_{\mu\nu}B^{\mu\nu}$ (\rightarrow Dark Photons (A'), Z' bosons)
- **Higgs portal**: $(\lambda_2 \phi + \lambda_4 \phi^2) H^+ H (\rightarrow \text{Axion Like Particles (ALPs)})$

° **Axion portal**:
$$-\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}, \frac{\delta_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^5\psi$$
 (→

• Sterile neutrino portal: $y_N LHN$ (\rightarrow Sterile Neutrinos)

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Dark Higgsstrahlung/Scalars)

Light Dark Matter @ Accelerators Focus on **portal interactions** with DM mediator \mathbf{X} ($\mathcal{O}_{SM} \times \mathcal{O}_{DS}$)

- Vector portal: $-\frac{\kappa_Y}{2}F'_{\mu\nu}B^{\mu\nu}$ (\rightarrow Dark Photons (A'), Z' bosons)
- **Higgs portal**: $(\lambda_2 \phi + \lambda_4 \phi^2) H^+ H (\rightarrow \text{Axion Like Particles (ALPs)})$

° **Axion portal**:
$$-\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}, \frac{\delta_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^5\psi$$
 (→

• Sterile neutrino portal: $y_N LHN$ (\rightarrow Sterile Neutrinos)

Further guidance for light DM in reach of Belle II: ° Residual annihilations $\chi \overline{\chi} \to f \overline{f}$ have to suppressed at late times (low temperatures) to be compatible with cosmo bounds

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Dark Higgsstrahlung/Scalars)

Belle II Physics Week 2024

SM

Belle II detector + *BB***-event**

- Very clean environment
- On average: 11 tracks
- Known initial state kinematics
- ° Near 100% efficiency for B decays
- Sensitive to lower energy deposits

- ^o SuperKEKB (7 GeV $e^-/4$ GeV e^+)
- General purpose detector
- Taking data since 2019
- ° Collected ~ 500 fb^{-1} to date
 - ° 580 mil. $B\bar{B}$ pairs

Reconstruction Techniques Efficiency

$\epsilon \sim 0.1 - 1\%$

Exclusive hadronic (HAD)

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Purity, Resolution

Different reconstruction techniques lead to nearly orthogonal data samples

B-meson tools

Tools:

- $^{\circ}$ Large number of *B*-mesons which **do not need to be triggered**
- Good charged particle identification (kaons, pions, protons, electrons, muons)
- Good knowledge about missing energy due to clean environment
- Good neutral particle identification (photons, pions)

B-meson tools

Tools:

- $^{\circ}$ Large number of *B*-mesons which **do not need to be triggered**
- Good charged particle identification (kaons, pions, protons, electrons, muons)
- Good knowledge about missing energy due to clean environment
- Good neutral particle identification (photons, pions)

This allows us all to look for final states with these particles

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

B-meson tools

Tools:

- $^{\circ}$ Large number of B-mesons which do not need to be triggered
- Good charged particle identification (kaons, pions, protons, electrons, muons)
- Good knowledge about missing energy due to clean environment
- Good neutral particle identification (photons, pions)

This allows us all to look for final states with these particles

Secret tip: We want SM processes to be small and/or well separable as not to be problematic background

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Belle II Physics Week 2024

UNIVERSITÄT BONI

Belle II has the possibility to search for $B^0 \rightarrow \nu \bar{\nu}$: • SM expectations are very low $\mathscr{B}(B^0 \to \nu \bar{\nu}) \sim < 10^{-11}$ [EPJC 81 5, 388(2021)]

- - Strong helicity suppression
- BaBar: $\mathscr{B}(B^0 \to \nu \bar{\nu}) < 2.4 \times 10^{-5} @ 90\% C.L [PRD 86, 051105(R) (2012)]$
- Belle: $\mathscr{B}(B^0 \to \nu \bar{\nu}) < 7.8 \times 10^{-5} @ 90 \% C.L [PRD 102, 012003 (2020)]$
- Can search using hadronic and semileptonic tagging: $\epsilon \sim \text{few percent}$ 0

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

SM $R^{0} \rightarrow \nu \bar{\nu}$

Challenges:

- Clean environment
- Good understanding of neutrals
- Separating variables, e.g E_{ECL} = amount of energy not associated to the hadronic *B*-decays needs to well understood

Dark Sector Scenarios:

- Overview of light dark models that could interfere: [PRD 82, 034005 (2010)] 0
- 0 CP asymmetries

$$\mathcal{L}_{SM-DM}^{int} = -\lambda$$

Useful parametrisation: SM extended by additional singlet fermions [EPJC 81 5, 388 (2021)] 0

Heavy: scalar X charged under both QCD and "dark QCD" around a TeV scale, and this mediator has a Yukawa coupling to quarks and dark quarks [JHEP 02, 011 (2022)] \rightarrow bonus: would also lead to

$\Lambda_{ij}d_{iR}Q_jX + h.c$

Invisible + track(s)

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

$e.g.B^+ \rightarrow K^+ + INV$

Belle II Physics Week 2024

UNIVERSITÄT

Belle II searched for $B^+ \rightarrow K^+ \nu \bar{\nu}$ [PRD 109, 075006 (2024)]:

- Roughly 10% uncertainty due to hadronic form factors 0

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Invisible + track(s)

• SM $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = 5.5 \times 10^{-6} [PRD 107, 1324 \ O14511 \ (2023), PRD 107, 119903 \ (2023)]$

Belle II searched for $B^+ \rightarrow K^+ \nu \bar{\nu}$ [PRD 109, 075006 (2024)]:

• SM $\mathscr{B}(B^+ \to K^+ \nu \bar{\nu}) = 5.5 \times 10^{-6} [PRD 107, 1324 \ O14511 \ (2023), PRD 107, 119903 \ (2023)]$

Roughly 10% uncertainty due to hadronic form factors 0

Challenges:

- Clean environment
- Good understanding of 0 neutrals
- Separating variables needs to well understood
- Keep high tracking efficiency

Invisible + track(s)

Scalar decay of $S \rightarrow \chi \chi$:

- Requires $m_S > 2m_{\gamma}$

• Belle

Scalar Mediators

o Parameter space heavily ruled out with right relic density ruled out by direct detection + BABAR

$$\mathscr{L} \supset -\frac{1}{2}m_{\phi}^2\phi^2 - m_{\chi}\bar{\chi}\chi - \lambda_3\phi H^{\dagger}H - y_{\chi}\bar{\chi}\chi\phi$$

Reinterpreted $B^+ \rightarrow K^+ \nu \bar{\nu}$

Scalar Mediator

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

[PRD 109, 075006 (2024)]

 $a \rightarrow a + c$

$$\begin{aligned} \mathscr{L} \supset \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{m_{a}}{2} a^{2} + \frac{\partial^{\mu} a}{f_{a}} \sum_{f} \frac{c_{f}}{2} \bar{f} \gamma_{\mu} \gamma_{5} f + \frac{c_{\chi}}{2} \frac{\partial^{\mu} a}{f_{a}} \bar{\chi} \gamma_{\mu} \gamma_{5} \chi \\ + c_{GG} \frac{g_{s}^{2}}{(4\pi)^{2}} \frac{a}{f_{a}} G_{\mu\nu}^{A} \tilde{G}^{A,\mu\nu} + c_{BB} \frac{g'^{2}}{(4\pi)^{2}} \frac{a}{f_{a}} B_{\mu\nu} \tilde{B}^{\mu\nu} + c_{WW} \frac{g^{2}}{(4\pi)^{2}} \frac{a}{f_{a}} W_{\mu\nu}^{A} \tilde{W}^{A} \end{aligned}$$

 $W^{A}_{\mu
u} ilde{W}^{A,\mu
u}$

Pseudoscalar mediator with fermionic DM avoids direct detection:

• Special type of pseudoscalar: axionlike particle defined by shift symmetry $a \rightarrow a + c$

 10^{2} 10^{1} 10^{0} -> 10⁻¹ ^g / (√)^g / ^g ^g / 10⁻² ^g / 10⁻³ 10^{-4} 10^{-5} 10^{-2} 10^{-2}

Belle II Physics Week 2024

20

Pseudoscalar ALPs

Simplified sensitivity study probing different m_A scenarios for $m_a \in (5 \text{MeV}, 4.6 \text{GeV})$:

- 0

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

With $0.5ab^{-1}$ limit on $\mathscr{B}(B^+ \to K^+ a) < 10^{-5} @ 90 \text{ C} \cdot \text{L} \cdot \to \text{expect 1}$ order of magnitude improvement

With 50 ab^{-1} limit on $\mathscr{B}(B^+ \to K^+ a) < 10^{-7} @ 90 \% C \cdot L \to expect 2$ orders of magnitude improvement

[JHEP 04, 131 (2023)]

Reinterpreted $B^+ \rightarrow K^+ \nu \bar{\nu}$

Pseudoscalar ALPs

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Main outcome:

- In terms of the ALP decay constant, implies 0 $F_V = 2f/gV = 3.1^{+1.0}_{-0.5} \times 10^{-8}$ for $m_a = 2$ GeV
- Upper limit from $B \to K^*a$ $F_A = 2f/gA > = 1.7 \times 10^{-8} @ 2\sigma$

Sterile Neutrinos

[JHEP 12, 118 (2021)]

Changes the branching fraction as a function of q^2

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

00

[EPJC 83 12, 1135 (2023)]

23

Model shown for $\mu_X = 1$, $m_X = 2$ GeV.

$$\mathcal{B}(B^+ o K^+ X) \in [0.34, 1.4] imes 10^{-5} \ m_X \in [1.9, 2.7] \ {
m GeV}$$

• Consistent with results of arXiv:2311.14629 [hep-ph], arXiv:2312.12507 [hep-ph]

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Belle II Reinterpretation

Invisible + track(s)

Ì Î

Belle II will provide its own reinterpretation as $B^+ \to K^+ X$, see Lorenz Gartner talk this week

Belle II Physics Week 2024

 $m_X \, [\text{GeV}]$

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Non- $b \rightarrow s$ transitions

[PRD 109 1, 016008 (2024)]

Ì Ì

Belle II Physics Week 2024

UNIVERSITÄT BONI

B-mesogenesis

See $\stackrel{Y_B}{\text{more in } G} \approx 8.7 \times 10^{\circ}$	$\frac{-5}{\text{illy}} \xrightarrow{BR}{\text{Elors}} B$	$B + \psi_R + M) \sum_{q=s,d}$	a Aq Is Week	Pr
Operator and decay	Initial state	Final state	ΔM (MeV	0
$\mathcal{O}_{ud} = \psi b u d$	B_d	$\psi + n(udd)$	4340.1	Ŭ
$\bar{b} \rightarrow \psi u d$	B_s	$\psi + \Lambda(uds)$	4251.2	0
	B^+	$\psi + p(duu)$	4341.0	
	Λ_b	$ar{\psi}+\pi^0$	5484.5	10 ⁻² -
$\mathcal{O}_{us} = \psi b u s$	B_d	$\psi + \Lambda(usd)$	4164.0	0
$\bar{b} \rightarrow \psi us$	B_s	$\psi + \Xi^0(uss)$	4025.0	0
	B^+	$\psi + \Sigma^+(uus)$	4090.0	ل ال ال
	Λ_b	$\bar{\psi} + K^0$	5121.9	₹ 10 ⁻³ -
$\mathcal{O}_{cd} = \psi bcd$	B_d	$\psi + \Lambda_c + \pi^- (cda)$	2853.6	$\hat{<}^{10^{-4}}$
$\tilde{b} \rightarrow \psi c d$	B_s	$\psi + \Xi_c^0(cds)$	2895.0	⇒ ↑
	B^+	$\psi + \Lambda_c^+(dcu)$	2992.9	- le
	Λ_b	$ar{\psi}+ar{D}^0$	3754.7	ш Ъ 10 ⁻⁵ -
$\mathcal{O}_{cs} = \psi b cs$	B_d	$\psi + \Xi_c^0(csd)$	2807.8	l at
$\ddot{b} \rightarrow \psi cs$	B_s	$\psi + \Omega_c(css)$	2671.7	
,	B^{+}	$\psi + \Xi_c^+(csu)$	2810.4	add
~	Λ_b	$\bar{\psi} + D^- + K^+$	3256.2	□ 10-6
				E F
				L.
				1.0

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Invisible + track(s)

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

$e \cdot g \cdot B \to KX(X \to Y^+Y^-)$

Belle II Physics Week 2024

UNIVERSITÄT BON

First Search for $B \rightarrow KS$ @ Belle II

Search Strategy: *long-lived scalar particle* = *LLP* that decays visibly into pair of charged particles $x^+x^-, x \in (e, \mu, \pi, K)$:

- ^o Both $B^+ \to K^+$ LLP and $B^0 \to K^{*0}[K^+\pi^0]S$
- ^o Bump hunt in the invariant mass m_{IIP} for each lifetime separately
 - ^o Separately for $x \in (e, \mu, \pi, K)$
 - ^o Separately for different lifetimes ($0.001 < c\tau < 400$ cm)
 - ^o Vertex radial distance dr > 0.05 & dr > 0.2 cm around reson.
- Used first **189 fb**-1 data

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

 K^+

First Search for $B \rightarrow KS$ @ Belle II

Experimental challenges:

- Simulation generation for all mass hypotheses and lifetimes
- ^o Performance with displaced vertex signature \rightarrow use $K_{\rm S}^0$ as guinea pig

• PID

- Reconstruction efficiency
- $^{\circ} m_{LLP}$ shape
- Low count fitting

Fits to other channels also available on <u>HEPdata</u> repository

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

[PRD 108, L111104(2023)]

First Results for $B \rightarrow KS$ @ Belle II

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

[PRD 108, L111104(2023)]

Results (Step 0):

- Extract model independent limits
- Different colors represent independent lifetime!

First Results for $B \rightarrow KS$ @ Belle II

Results (Step1):

• B-meson & scalar BF fixed to the theoretical predictions from [PRD 101, 095006 (2020)] and [JHEP 01 (2019) 150] \rightarrow extract exclusion contours for $B \rightarrow K +$ Scalar Mediator

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

First Results for $B \rightarrow KS$ @ Belle II

Results (Step 2): Reinterpretation with [J. Phys. G 47, 010501 (2020)] and [PRD 83, 054005] (2011)] \rightarrow extract exclusion contours for $B \rightarrow K + ALP$

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Constraints from LHCb Constraints from E949 Constraints CHARM Limit from **Belle II**

What are next options?

- **1. Other channels with** *K*:
- $B \rightarrow Kaa'(a \rightarrow ll')$
- More ideas in <u>Kohsaku Tobioka slide from</u> <u>this week</u>
 - $B \to Ka(a \to \pi^+\pi^-\pi^0)$
- 2. Test others than $\mathcal{B} \xrightarrow{Ka(\mathfrak{A} \to \eta\pi^+\pi^-)}_{KX(\pi^-\pi^+\pi^-)} KK\pi, \phi\phi, \gamma\gamma)$

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

 $B \to Ka$ Kohsaku Tobioka slide from this week

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Signature 4.

$e \cdot g \cdot B \to KX(X \to \gamma\gamma)$

Search Strategy: long-lived pseudoscalar = ALP that decays visibly into pair of photons $\gamma\gamma$:

^o Bump hunt in the invariant mass m_a for each lifetime separately **Experimental challenges:**

- Simulation generation for all mass hypotheses and lifetimes
- Limited acceptance for photons
- $^{\circ}$ Degrading resolution of $M_{\gamma\gamma}$ with increasing lifetime
- Interpolation stability between the masses
- O Modelling close to SM resonant windows (e.g.

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

$$(3 \pi^0, \eta_c)$$

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

• So far only limit from BaBar

Belle II Physics Week 2024

UNIVERSITÄT

In conclusion

- Belle II : excellent place to search for different signatures and 0 reinterpret them in many models
- We are only at the beginning of the journey

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

[PRD 108, L111104(2023)]

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Belle II Physics Week 2024

UNIVERSITÄT <mark>BONN</mark>

Searching for Dark Sector in Belle II

Approach 1: a trace of a new particle from *B*-meson decay Trick: Summing the energy

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Approach 2: created out of nowhere in the detector from *B*-meson decay and then decay in the SM

UNIVERSITÄT

[PhysRevD.104.035028]

- observations
- genesis from B-Meson give rise to distinctive signals at collider experiments

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

B-mesogenesis

• Baryogenesis is required in order to produce an initial excess of baryons over antibaryons consistent with

 \circ *B*-mesogenesis paradigm explains baryonic + dark matter of the Universe \rightarrow baryo- and dark matter $_{\odot}$ A new dark anti-baryon is proposed $\,\Psi$ which can also explain the Baryon Asymmetry of the Universe

UNIVERSITÄT

Slavomira Stefkova, <u>slavomira.stefkova@uni-bomude</u>

Signatures

High pT jets and missing energy

Scalar Mediators @ Belle II

Scalar mediator + fermionic DM avoids strong CMB constraints through velocity-suppressed $\langle \sigma v \rangle \sim v^2$ (p-wave) annihilation $\langle \sigma v \rangle \sim v^2$ $\mathcal{L} \supset -\frac{1}{2}m_{\phi}^{2}\phi^{2} - m_{\chi}\bar{\chi}\chi - \lambda_{3}\phi H^{\dagger}H - y_{\chi}\bar{\chi}\chi\phi$

Mixing after EW symmetry breaking h_{125} and a new scalar S $\circ Sf\bar{f} \text{ couplings } \sim \frac{m_f}{m_f} sin\theta$ $vSff \rightarrow \dot{sin}\theta$ Direct production from e^+e^- suppressed $\rightarrow beavy$ quark loops in *B*-meson decays

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

В

$$\frac{m_f}{-}\sin\theta$$

Pseudoscalar mediator with fermionic DM avoids direct detection

Special type of pseudoscalar: Axion 4ike particle defined by shift symmetry $a \rightarrow a + c$

$$\begin{aligned} \mathscr{L} \supset \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{m_a}{2} a^2 + \frac{\partial^{\mu} a}{f_a} \sum_{f} \frac{c_f}{2} \bar{f} \gamma_{\mu} \gamma_5 f + \frac{c_{\chi}}{2} \frac{\partial^{\mu} a}{f_a} \bar{\chi} \gamma_{\mu} \gamma_5 \chi \\ + c_{GG} \frac{g_s^2}{(4\pi)^2} \frac{a}{f_a} G_{\mu\nu}^A \tilde{G}^{A,\mu\nu} + c_{BB} \frac{{g'}^2}{(4\pi)^2} \frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu} + c_{WW} \frac{g^2}{(4\pi)^2} \frac{a}{f_a} W^A_{\mu\nu} \tilde{W}^{A,\mu\nu} \end{aligned}$$

- Production mechanism I $B \to Ka(\to \gamma\gamma)$ Production mechanism II $B \to Ka(\to inv)W^{A}_{\mu}$
- Production mechanism III $B \rightarrow Ka(\rightarrow hadro$

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

$$\tilde{W}^{A,\mu\nu}$$

 $\tilde{W}^{A,\mu\nu}$
 $\tilde{W}^{A,\mu\nu}$

Pseudoscalar ALPs @ Belle II

JHEP 04 (2023) 131

fixed to $C_{ff}(\Lambda) = 1$ and $C_{WW}(\Lambda) = 1$ at the cutoff scale $\Lambda = 4\pi \text{TeV}$

Branching ratios for ALP decays $a \to X$ in the C_{ff} scenario (left) and the C_{WW} scenario (right). The ALP couplings are

44

Pseudoscalar ALPs @ Belle II [JHEP 04 (2023) 131] $\mathcal{B}(B^+ \to K^+ a) = 0.25 \left(c_{ff}(\Lambda) + 0.0032 c_{WW}(\Lambda) \right)^2 \frac{f_0^2(m_a^2)}{f_0^2(0)} \frac{\lambda^{1/2}(m_B^2, m_K^2, m_a^2)}{m_B^2 - m_K^2}$ $m_a = 50 \text{ MeV}$ $f_0 = \text{scalar FF}$ ALP coupling to fermions c_{ff} : ALP coupling to gauge bosons c_{WW} : $\lambda(a, b, c) = a^{2} + b^{2} + c^{2} - 2(ab + ac + bc)$ **Current bounds:** 10^{2} 10³ BaBar yy 10^{1} BaBar inv. 10²

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Belle II Physics Week 2024

UNIVERSITÄT BONI

 10^{-4}

Search for $B \rightarrow K + invisible @ Belle II$

So far no direct measurement of $B \rightarrow KX$

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

• However Belle II searched for $B^+ \to K^+ \nu \bar{\nu}$ and can be reinterpreted in these dark scalar models [PhysRevD.109.075006]

$B \rightarrow KS$ scalar predictions

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

LHCb 3 fb^{-1}

Invisible Decays of J/psi and Psi(2S)

https://arxiv.org/pdf/1303.7465 (Conversely, a low-mass U(1) gauge boson U could enhance the invisible decay rates of quarkonium states by several orders of magnitude by coupling to LDM particles [12, 13]. The U boson could decay into a pair of spin-1/2 Majorana (χχ), spin-1/2 Dirac (χχ), or spin-0 (φφ) LDM particles particles

Rare *B* decays:

o GIM suppressed flavour changing neutral currents (FCNC)

 $\rightarrow b \rightarrow s/d(\gamma)$

o forbidden at tree level, allowed at loop level

O electroweak decays, radiative electroweak decays

 $\circ m_{\nu}^2/M_W^2$ suppressed lepton flavour violating decays

• Helicity suppressed purely leptonic decays

Rare B Decays

Rare *B* decays:

o GIM suppressed flavour changing neutral currents (FCNC)

 $\rightarrow b \rightarrow s/d(\gamma)$

o forbidden at tree level, allowed at loop level

O electroweak decays, radiative electroweak decays

• m_{ν}^2/M_W^2 suppressed lepton flavour violating decays

• Helicity suppressed purely leptonic decays

Very sensitive to NP since SM contribution small!

Rare B Decays

Rare *B* decays:

o GIM suppressed flavour changing neutral currents (FCNC)

 $\rightarrow b \rightarrow s/d(\gamma)$

o forbidden at tree level, allowed at loop level

- **O electroweak decays, radiative electroweak decays**
- m_{ν}^2/M_W^2 suppressed lepton flavour violating decays
- Helicity suppressed purely leptonic decays

Very sensitive to NP since SM contribution small!

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Rare B Decays

CP observables

LHC

• *pp* collisions at 7,8,13 TeV

- b-quarks produced by gluon fusion
- All *b*-hadron species (*b*-baryons)
- Highly boosted topology
- $\sigma_{bb} = 100 \ \mu b$
- Noise/Signal=1000 0

Accelerators

- e^+e^- energy-asymmetric collisions at $\sqrt{s} = 10.58$ GeV (on-resonance data)
- 60 MeV below to constrain $e^+e^- \rightarrow q\bar{q}$ (continuum) bkgs 0 (off-resonance data)
- $B\bar{B}$ produced via $\Upsilon(4(S))$ 0
- Exclusive $B\bar{B}$ production 0
- Asymmetric beam energy \rightarrow boost
- $\sigma_{bb} = 1.1 \text{ nb}$
- Noise/Signal=4 Ο

 $1 \text{ fb}^{-1} = 1 \text{ ab}^{-1}$

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Accelerators

- Approximate rule:

The Three Beasts

LHCb

- LHC (*pp* collisions at 7,8,13 TeV)
- Forward-looking spectrometer
- Taking data since 2011
- Collected 9 fb^{-1} data so far
 - $4x10^{12} b\bar{b}$ pairs
 - B_{μ} (40%), B_{d} (40%), B_{s} (10%), B_c and b-baryons (10%)

- General purpose detector
- **o** Took data from 1999-2010
- Collected **711** fb^{-1} data

 \circ 770 mil. $B\bar{B}$ pairs

LHCSkiczko266, April 14 • KEKB (8 GeV $e^{-}/3.5$ GeV e^{+})

Belle II

- SuperKEKB (7 GeV $e^-/4$ GeV e^+)
- General purpose detector
- Taking data since 2019
- Collected **362** \mathbf{fb}^{-1} data in Run 1 • 370 mil. $B\bar{B}$ pairs
- Resumed data-taking this year after ~ 1.5y long shut-down

Increasing instantaneous luminosity is the key!

LHCb

- LHC (*pp* collisions at 7,8,13 TeV)
- Forward-looking spectrometer
- Taking data since 2011 0
- Collected 9 fb^{-1} data so far
 - \circ 4x10¹² $b\bar{b}$ pairs
 - B_{μ} (40%), B_{d} (40%), B_{s} (10%),

 B_c and b-baryons (10%)

• Plan: 300 fb^{-1}

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

- KEKB (8 GeV e^{-/} 3.5 GeV e⁺)
- General purpose detector
- **o** Took data from 1999-2010
- Collected **711** fb^{-1} data

• 770 mil. $B\bar{B}$ pairs

Belle

Belle II

- SuperKEKB (7 GeV $e^-/4$ GeV e^+)
- General purpose detector
- Taking data since 2019
- Collected **362 fb**⁻¹ **data in Run 1** • 370 mil. $B\overline{B}$ pairs
- Resumed data-taking this year after ~ 1.5y long shut-down
- Plan: 50 ab^{-1}

- Rather busy environment
- On average 100 tracks
- ${\rm O}$ Longitudinal momentum of the B not known
- Lower trigger efficiency in general

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Belle II

- Very clean environment
- On average: 11 tracks
- **o** Known initial state kinematics
- Near 100% efficiency for *B* decays
- Sensitive to lower energy deposits

Neutral Performance

	Belle II	L
γ detection efficiency	99.9%	
$\sigma(E)/E$	$\frac{2.2\%}{\sqrt{E}} \bigoplus 1\%$	$\frac{10\%}{\sqrt{E}}$
π^0 reconstruction	Better mass resolution	Worse m

Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Charged Track Performance

Efficiency

.2

0.8

0.6

0.4

0.2

1.4

.2

0.8

0.6

0.4

Efficiency

	Belle II	LHCb
Muon trigger efficiency	100 %	90 %
Muon ID efficiency	95 %	97 %
$\pi ightarrow \mu$ mislD	7 %	1-3%

	Belle II	LHCb
Kaon ID efficiency	90 %	95 %
$K ightarrow \pi$ mislD	5 %	5 %

	Belle II	LHCb
Total $B^+ \to K^+ \mu^+ \mu^-$	30 %	5 %
efficiency		
Total $B^+ \to K^+ e^+ e^-$	30 %	< 5 %
efficiency		

LHCb is very good with muons Belle II has similar sensitivity for e and μ Slavomira Stefkova, <u>slavomira.stefkova@kit.edu</u>

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

UNIVERSITÄT

Better with *multiple muons/* charged tracks that can be vertexed

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

Better with higher number of γ and ν

Belle II Physics Week 2024

60

UNIVERSITÄT

- Hermetic detector 0
- Sensitive to lower energy/charge deposits
- Known initial state kinematics 0

Slavomira Stefkova, <u>slavomira.stefkova@uni-bonn.de</u>

- Single arm spectrometer
- Longitudinal momentum of the *B* not known

