Charged Particle Identification Overview

Stefan Wallner (swallner@mpp.mpg.de)

Max Planck Institute for Physics

Belle II Physics Week October 18, 2024

MAX PLANCK INSTITUTE FOR PHYSICS

- Particle of various species are produced at Belle II and need to be distinguished
- For example, τ can decay to electrons, muons, pions, and kaons; which can be separated only by experimentally identifying the species of the particles
 - ➡ Requires charged particle identification (PID)
- Test lepton-flavor universality in $\tau^- \rightarrow \ell^- \bar{\nu}_\ell \nu_\tau$ decays

 $R_{\mu} = rac{\mathcal{B}(au^- o \mu^- ar{
u}_{\mu}
u_{ au}(\gamma))}{\mathcal{B}(au^- o e^- ar{
u}_e
u_{ au}(\gamma))}$

- Most precise test of μe universality in au decays from a single measurement at Belle II [JHEP 08 (2024) 205]
- Consistent with Standard Model expectation
- Strongly relies on PID

- > Particle of various species are produced at Belle II and need to be distinguished
- For example, τ can decay to electrons, muons, pions, and kaons; which can be separated only by experimentally identifying the species of the particles
 - ➡ Requires charged particle identification (PID)
- ▶ Test lepton-flavor universality in $\tau^- \rightarrow \ell^- \bar{\nu}_\ell \nu_\tau$ decays

$$R_{\mu} = \frac{\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau}(\gamma))}{\mathcal{B}(\tau^- \to e^- \bar{\nu}_{e} \nu_{\tau}(\gamma))}$$

- Most precise test of μe universality in au decays from a single measurement at Belle II [JHEP 08 (2024) 205]
- Consistent with Standard Model expectation
- Strongly relies on PID

Introduction

- Tracks of charged particles measured in tracking detectors (PXD, SVD, CDC)
 - Measurement of track position and momentum
- Six species of charged particles that are "stable" within the Belle II detector
 - ► e^{\pm} , μ^{\pm} , π^{\pm} , K^{\pm} , (\overline{p}) , (\overline{d})
- Requires additional experimental measurement to identify the species of the track
 - ⇒ PID
- Measure quantity that differs for the six particle species
 - Mass
 - Type of interaction
- Translate to a classification variable L_h representing how likely it is that the particle is of species h

Introduction

- Tracks of charged particles measured in tracking detectors (PXD, SVD, CDC)
 - Measurement of track position and momentum
- Six species of charged particles that are "stable" within the Belle II detector
 - ► e^{\pm} , μ^{\pm} , π^{\pm} , K^{\pm} , \overline{p} , \overline{d}
- Requires additional experimental measurement to identify the species of the track

➡ PID

- Measure quantity that differs for the six particle species
 - Mass
 - Type of interaction
- Translate to a classification variable L_h representing how likely it is that the particle is of species h

1 Introduction

- 2 Physics Principles and PID Detectors
- **3** Using PID for Physics Analysis
- 4 PID Performance
- 5 Correcting for PID Effects
- 6 Outlook

7 Summary

Physics Principles and PID Detectors Energy loss

$$\left\langle -\frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 b^2 \gamma^2 W_{\mathrm{max}}(\beta\gamma)}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$$

- Electronic energy loss of charged particles (except e[±]) described by Bethe-Bloch equation
- Energy loss depends only on velocity of particle (also for e[±]) and medium properties
- For given measured momentum, the energy loss is different for different particle masses
 - Identification of particle species
- Crossing points where energy loss is similar for different particle species
 - PID via energy loss works only in certain momentum regions

Physics Principles and PID Detectors Energy loss

$$\left\langle -\frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 b^2 \gamma^2 W_{\mathrm{max}}(\beta \gamma)}{l^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$

- Electronic energy loss of charged particles (except e[±]) described by Bethe-Bloch equation
- Energy loss depends only on velocity of particle (also for e[±]) and medium properties
- For given measured momentum, the energy loss is different for different particle masses
 - Identification of particle species
- Crossing points where energy loss is similar for different particle species
 - PID via energy loss works only in certain momentum regions

Physics Principles and PID Detectors Energy loss

$$\left\langle -\frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \kappa z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 b^2 \gamma^2 W_{\mathrm{max}}(\beta \gamma)}{l^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right] = F(p; m)$$

- Electronic energy loss of charged particles (except e[±]) described by Bethe-Bloch equation
- Energy loss depends only on velocity of particle (also for e[±]) and medium properties
- For given measured momentum, the energy loss is different for different particle masses
 - ➡ Identification of particle species
- Crossing points where energy loss is similar for different particle species
 - PID via energy loss works only in certain momentum regions

Physics Principles and PID Detectors Energy loss

CDC and SVD PID

Formulate a likelihood for the particle-species hypotheses *h*

$$\log \mathcal{L}_h^{ ext{CDC}} = -rac{\chi_h^2}{2} = -rac{[\mathrm{d} E/\mathrm{d} x_{ ext{meas.}} - \mathrm{d} E/\mathrm{d} x_{ ext{pred.}}^h]^2}{2[\sigma_{ ext{pred.}}^h]^2}$$

▶ Using calibration data to determine dE/dx_{pred}^{h} for each particle species h

For example, good e/π separation for $p\gtrsim 0.3\,{
m GeV}/c$

Physics Principles and PID Detectors Energy loss

CDC and SVD PID

- Energy loss measured by ionization in CDC and SVD (and PXD)
- Formulate a likelihood for the particle-species hypotheses h

$$\log \mathcal{L}_h^{\rm CDC} = -\frac{\chi_h^2}{2} = -\frac{[\mathrm{d} E/\mathrm{d} x_{\rm meas.} - \mathrm{d} E/\mathrm{d} x_{\rm pred.}^h]^2}{2[\sigma_{\rm pred.}^h]^2}$$

▶ Using calibration data to determine dE/dx_{pred}^{h} for each particle species h

• For example, good e/π separation for $p \gtrsim 0.3 \, {\rm GeV}/c$

Physics Principles and PID Detectors Energy loss

CDC and SVD PID

- Energy loss measured by ionization in CDC and SVD (and PXD)
- Formulate a likelihood for the particle-species hypotheses h

$$\log \mathcal{L}_h^{ ext{CDC}} = -rac{\chi_h^2}{2} = -rac{[\mathrm{d} E/\mathrm{d} x_{ ext{meas.}} - \mathrm{d} E/\mathrm{d} x_{ ext{pred.}}^h]^2}{2[\sigma_{ ext{pred.}}^h]^2}$$

- Using calibration data to determine $dE/dx_{pred.}^{h}$ for each particle species h
- $\blacktriangleright\,$ For example, good e/π separation for $p\gtrsim 0.3\,{\rm GeV}/c$

Cherenkov Radiation

Physics Principles

- Particles traversing a medium faster than the speed of light in the medium emit Cherenkov light
- Cherenkov light emitted on a cone with opening angle

$$\cos heta_{
m C}=rac{1}{neta}$$

- For given measured momentum, the Cherenkov angle is different for different particle masses
 - ➡ Identification of particle species
- Minimal momentum to produce Cherenkov light

$$p_{\rm th.} = rac{m}{\sqrt{n^2 - 1}}$$

Also number of Cherenkov photons sensitive to mass

$$\frac{\mathrm{d}^2 N}{\mathrm{d}E\mathrm{d}x} = \frac{\alpha z^2}{\hbar c} \sin^2 \theta_{\mathrm{C}}$$

Cherenkov Radiation

Physics Principles

- Particles traversing a medium faster than the speed of light in the medium emit Cherenkov light
- Cherenkov light emitted on a cone with opening angle

 $\cos\theta_{\rm C}=\frac{1}{n\beta}=G(p;m)$

- For given measured momentum, the Cherenkov angle is different for different particle masses
 - ➡ Identification of particle species
- Minimal momentum to produce Cherenkov light

$$p_{\mathrm{th.}} = rac{m}{\sqrt{n^2-1}}$$

Also number of Cherenkov photons sensitive to mass

$$\frac{\mathrm{d}^2 N}{\mathrm{d}E \mathrm{d}x} = \frac{\alpha z^2}{\hbar c} \sin^2 \theta_{\mathrm{C}}$$

ARICH PID

- Covers forward region
- Cherenkov photons produced in silica aerogel radiator
- Measured by hybrid avalanche photo detectors
- Formulate likelihood log L^{ARICH} for particle-species hypothesis h taking into account the probability for each individual pixel to be hit or not hit

- Covers barrel region
- Cherenkov photons produced in quartz transported via internal reflection and detected at the end
- Time of propagation depends on Cherenkov angle and position where photons leave the bar
- Formulate likelihood log $\mathcal{L}_h^{\mathrm{TOP}}$

ARICH PID

- Covers forward region
- Cherenkov photons produced in silica aerogel radiator
- Measured by hybrid avalanche photo detectors
- Formulate likelihood log L^{ARICH} for particle-species hypothesis h taking into account the probability for each individual pixel to be hit or not hit

- Covers barrel region
- Cherenkov photons produced in quartz transported via internal reflection and detected at the end
- Time of propagation depends on Cherenkov angle and position where photons leave the bar
- Formulate likelihood log $\mathcal{L}_h^{\mathrm{TOP}}$

Cherenkov Radiation

ARICH PID

- Covers forward region
- Cherenkov photons produced in silica aerogel radiator
- Measured by hybrid avalanche photo detectors
- Formulate likelihood log L^{ARICH} for particle-species hypothesis h taking into account the probability for each individual pixel to be hit or not hit

- Covers barrel region
- Cherenkov photons produced in quartz transported via internal reflection and detected at the end
- Time of propagation depends on Cherenkov angle and position where photons leave the bar
- Formulate likelihood log $\mathcal{L}_h^{\mathrm{TOP}}$

ARICH PID

- Covers forward region
- Cherenkov photons produced in silica aerogel radiator
- Measured by hybrid avalanche photo detectors
- Formulate likelihood log L^{ARICH} for particle-species hypothesis h taking into account the probability for each individual pixel to be hit or not hit

- Covers barrel region
- Cherenkov photons produced in quartz transported via internal reflection and detected at the end
- Time of propagation depends on Cherenkov angle and position where photons leave the bar
- Formulate likelihood log $\mathcal{L}_h^{\mathrm{TOP}}$

ARICH PID

- Covers forward region
- Cherenkov photons produced in silica aerogel radiator
- Measured by hybrid avalanche photo detectors
- Formulate likelihood log L^{ARICH} for particle-species hypothesis h taking into account the probability for each individual pixel to be hit or not hit

- Covers barrel region
- Cherenkov photons produced in quartz transported via internal reflection and detected at the end
- Time of propagation depends on Cherenkov angle and position where photons leave the bar
- ► Formulate likelihood log $\mathcal{L}_h^{\mathrm{TOP}}$

Electron energy fully absorbed in ECAL

- Ratio of in ECL deposited energy E and measured track momentum p is E/p = 1 for electrons
- Other species leave only fraction of their energy in ECL
- Depends on track momentum
- ► Formulate likelihood log L^{ECAL}_h based on the expected energy deposition in ECAL

- Electron energy fully absorbed in ECAL
- Ratio of in ECL deposited energy E and measured track momentum p is E/p = 1 for electrons
- Other species leave only fraction of their energy in ECL
- Depends on track momentum
- ► Formulate likelihood log L^{ECAL} based on the expected energy deposition in ECAL

- Electron energy fully absorbed in ECAL
- Ratio of in ECL deposited energy E and measured track momentum p is E/p = 1 for electrons
- Other species leave only fraction of their energy in ECL
- Depends on track momentum
- Formulate likelihood log L^{ECAL} based on the expected energy deposition in ECAL

- Muons have a large penetration depth fully traversing the KLM
 - Bremsstrahlung suppressed by $\frac{1}{m_{\mu}^2}$ with respect to electrons
 - No strong interaction
- In the KLM, muons have different

Both used to formulate likelihood log L^{KLM}_h comparing the extrapolated track from inner detectors to KLM hits

Muons have a large penetration depth fully traversing

L

- Bremsstrahlung suppressed by $\frac{1}{m^2}$ with respect to electrons
- No strong interaction

Physics Principles

the KI M

- In the KLM, muons have different
 - Iongitudinal penetration depth
 - transverse scattering
- **b** Both used to formulate likelihood log $\mathcal{L}_{L}^{\text{KLM}}$

$$= p_1 p_2 (1 - p_3 \varepsilon_3) (1 - p_4 \varepsilon_4)$$

- Muons have a large penetration depth fully traversing the KLM
 - Bremsstrahlung suppressed by $\frac{1}{m_{\mu}^2}$ with respect to electrons
 - No strong interaction
- In the KLM, muons have different
 - Iongitudinal penetration depth
 - transverse scattering
- Both used to formulate likelihood log L^{KLM}_h comparing the extrapolated track from inner detectors to KLM hits

- Muons have a large penetration depth fully traversing the KLM
 - Bremsstrahlung suppressed by $\frac{1}{m_{\mu}^2}$ with respect to electrons
 - No strong interaction
- In the KLM, muons have different
 - Iongitudinal penetration depth
 - transverse scattering
- Both used to formulate likelihood log L^{KLM}_h comparing the extrapolated track from inner detectors to KLM hits

Belle II PID

- In total 6 subdetectors that yield PID information
 - Different coverage of detector regions
 - Different coverage (separation power) of momentum regions
- Each provides likelihood for all 6 hypotheses
 - ➡ In total 36 likelihoods

Using PID for Physics Analysis

Using PID for Physics Analysis Global and Binary Likelihoods

- Combine local detector likelihoods \mathcal{L}_h^d to the global PID probability \mathcal{P}_h
- Assuming detector likelihoods are independent

$$\mathcal{P}_h = \frac{\prod_d \mathcal{L}_h^d}{\sum_{h'} \prod_d \mathcal{L}_{h'}^d}$$

Using PID for Physics Analysis Global and Binary Likelihoods

- ▶ Combine local detector likelihoods \mathcal{L}_h^d to the global PID probability \mathcal{P}_h
- Assuming detector likelihoods are independent

$$\mathcal{P}_h = \frac{\prod_d \mathcal{L}_h^d}{\sum_{h'} \prod_d \mathcal{L}_{h'}^d}$$

Using PID for Physics Analysis Global and Binary Likelihoods

- ▶ Combine local detector likelihoods \mathcal{L}_h^d to the global PID probability \mathcal{P}_h
- Assuming detector likelihoods are independent

$$\mathcal{P}_h = \frac{\prod_d \mathcal{L}_h^d}{\sum_{h'} \prod_d \mathcal{L}_{h'}^d}$$

- Accessible in basf2 via ID variables
 - ▶ electronID = \mathcal{P}_e ; muonID = P_μ ; pionID = P_π ; kaonID = P_K ; protonID = P_ρ ; deuteronID = P_d
- Sometimes, subdetectors need to be excluded from PID for better performance, e.g.

$$\text{muonID_noSVD} = \frac{\prod_{d \notin \{\text{SVD}\}} \mathcal{L}_{h}^{d}}{\sum_{h'} \prod_{d \notin \{\text{SVD}\}} \mathcal{L}_{h'}^{d}}$$

- Accessible in basf2 via ID variables
 - ▶ electronID = \mathcal{P}_e ; muonID = P_μ ; pionID = P_π ; kaonID = P_K ; protonID = P_p ; deuteronID = P_d
- Sometimes, subdetectors need to be excluded from PID for better performance, e.g.

$$\text{muonID_noSVD} = \frac{\prod_{d\notin \{\text{SVD}\}} \mathcal{L}_{h}^{d}}{\sum_{h'} \prod_{d\notin \{\text{SVD}\}} \mathcal{L}_{h'}^{d}}$$

Binary PID

- If only a certain subset of species needs to be separated by PID in physics analysis, normalize PID probability to only this subset
- ▶ If pions need to be separated only from kaons use binary π/K PID probability

$$P_{\pi/K} = rac{\prod_d \mathcal{L}^d_\pi}{\prod_d \mathcal{L}^d_\pi + \prod_d \mathcal{L}^d_K} = rac{P_\pi}{P_\pi + P_K}$$

In basf2, this reads pionID/(pionID+kaonID)

- ▶ Simple combination of detector likelihoods, $\prod_d \mathcal{L}_d^h$ is imperfect
 - Ignores correlations among detector likelihoods; does not use full information; approximations in likelihoods
 - ➡ Train MVA method on simulated data to yield better PID variables

LeptonID BD**T**

- Use CDC, TOP, ARICH, KLM likelihoods
- Use ECL *E*/*p* and cluster shape observables
 Improve performance for electron ID
 p < 1 GeV/*c*

PID Neural Network for K/π separation

- Use all likelihoods from all 6 subdetectors
- Use measured track momentum and charge
- Improve performance for K/π separation for low fake rates

- ▶ Simple combination of detector likelihoods, $\prod_d \mathcal{L}_d^h$ is imperfect
 - Ignores correlations among detector likelihoods; does not use full information; approximations in likelihoods
 - ➡ Train MVA method on simulated data to yield better PID variables

LeptonID BDT

- Use CDC, TOP, ARICH, KLM likelihoods
- Use ECL E/p and cluster shape observables
- Improve performance for electron ID p < 1 GeV/c</p>

PID Neural Network for K/π separation

- Use all likelihoods from all 6 subdetectors
- Use measured track momentum and charge
- Improve performance for K/π separation for low fake rates

- ▶ Simple combination of detector likelihoods, $\prod_d \mathcal{L}_d^h$ is imperfect
 - Ignores correlations among detector likelihoods; does not use full information; approximations in likelihoods
 - ➡ Train MVA method on simulated data to yield better PID variables

LeptonID BDT

- Use CDC, TOP, ARICH, KLM likelihoods
- Use ECL E/p and cluster shape observables
- Improve performance for electron ID p < 1 GeV/c</p>

PID Neural Network for K/π separation

- Use all likelihoods from all 6 subdetectors
- Use measured track momentum and charge
- Improve performance for K/π separation for low fake rates

- PID setting depends on the data production
- PID recommendations can be found on PID Wiki page

Recommendations for Release06 data (MC15ri, MC15rd, proc13+prompt)

		Binary $(\ell/\pi$ or $K/\pi)$
electron	electronID_noSVD_noTOP, pidChargedBDTScore_e	binaryElectronID_noSVD_noTOP_pi, pidPairChargedBDTScore_e_pi
muon	muonID_noSVD, pidChargedBDTScore_mu	binaryMuonID_noSVD_pi, pidPairChargedBDTScore_mu_pi
pion	pionID	pionIDNN
kaon		
proton		protonID

- PID setting depends on the data production
- PID recommendations can be found on PID Wiki page

Recommendations for Release06 data (MC15ri, MC15rd, proc13+prompt)

	Global	Binary $(\ell/\pi \text{ or } K/\pi)$					
electron	electronID_noSVD_noTOP,	binaryElectronID_noSVD_noTOP_pi					
cicction	pidChargedBDTScore_e	pidPairChargedBDTScore_e_pi					
muon	muonID_noSVD,	<pre>binaryMuonID_noSVD_pi,</pre>					
muon	pidChargedBDTScore_mu	pidPairChargedBDTScore_mu_pi					
pion	pionID	pionIDNN					
kaon	kaonID	kaonIDNN					
proton		protonID					

PID Performance

- Correctly estimating PID effects is crucial for physics analysis
- Study the PID performance in real data and simulation
 - Efficiency to identify particle of species s: $P(s \rightarrow s)$
 - Fake rate to wrongly identify particle of species s as particle-species hypothesis h: $P(s \rightarrow h)$
- Requires sample of tracks where species is known without detector PID information
 - Use known decays of particles, where the species of the daughter particles is know for the dominant decay mode and where all other decay modes are strongly suppressed

- Correctly estimating PID effects is crucial for physics analysis
- Study the PID performance in real data and simulation
 - Efficiency to identify particle of species s: $P(s \rightarrow s)$
 - Fake rate to wrongly identify particle of species s as particle-species hypothesis h: $P(s \rightarrow h)$
- Requires sample of tracks where species is known without detector PID information
 - Use known decays of particles, where the species of the daughter particles is know for the dominant decay mode and where all other decay modes are strongly suppressed

$$D^{*,+} \longrightarrow D^0 \pi^+_{slow}$$

- ► Two-body *D*⁰ decays
 - The negative decay product is almost always a K⁻
 - The positive decay product is almost always a π^-
- Analogously for \overline{D}^0 decays
- ▶ Select \overleftarrow{D}^0 signal and distinguish D^0 from \overline{D}^0 in $D^{*,\pm} \rightarrow \overleftarrow{D}^0 \pi^{\pm}_{slow}$ decays
 - Reconstructed D⁰ masses separates signal from background
 - Statistical background subtraction using <u>sPlot</u> technique
 - Covers large kinematic region

$$D^{*,+} \longrightarrow D^0 \pi^+_{slow}$$

- ► Two-body *D*⁰ decays
 - The negative decay product is almost always a K⁻
 - The positive decay product is almost always a π^-
- Analogously for \overline{D}^0 decays
- ► Select \overleftarrow{D}^{0} signal and distinguish D^{0} from \overline{D}^{0} in $D^{*,\pm} \rightarrow \overleftarrow{D}^{0} \pi^{\pm}_{slow}$ decays
 - Reconstructed D⁰ masses separates signal from background
 - Statistical background subtraction using <u>sPlot</u> technique
 - Covers large kinematic region

$$D^{*,+} \longrightarrow D^0 \pi^+_{slow}$$

- ► Two-body *D*⁰ decays
 - The negative decay product is almost always a K⁻
 - The positive decay product is almost always a π^-
- Analogously for \overline{D}^0 decays
- Select $\stackrel{\overleftarrow{D}^{0}}{D}$ signal and distinguish D^{0} from \overline{D}^{0} in $D^{*,\pm} \rightarrow \stackrel{\overleftarrow{D}^{0}}{D} \pi^{\pm}_{slow}$ decays
 - Reconstructed D⁰ masses separates signal from background
 - Statistical background subtraction using <u>sPlot</u> technique

$$D^{*,+} \longrightarrow D^0 \pi^+_{slow}$$

- Two-body D⁰ decays
 - The negative decay product is almost always a K
 - The positive decay product is almost always a π^-
- Analogously for \overline{D}^0 decays
- Select $\stackrel{\overleftarrow{D}^{0}}{D}$ signal and distinguish D^{0} from \overline{D}^{0} in $D^{*,\pm} \rightarrow \stackrel{\overleftarrow{D}^{0}}{D} \pi^{\pm}_{slow}$ decays
 - Reconstructed D⁰ masses separates signal from background
 - Statistical background subtraction using <u>sPlot</u> technique
 - Covers large kinematic region

PID Performance

Performance Samples

$K_{\rm S}^0$ sample for pions

$$K_{
m S}^0
ightarrow \pi^- \pi^+$$

- \blacktriangleright $K_{\rm S}^0$ mainly decay to pions
- Covering mainly low-momentum region

$\boldsymbol{\Lambda}$ sample for pions and protons

$$\Lambda \to \mathbf{p}\pi^{-1}$$

- \blacktriangleright Λ decays mainly to pions and kaons
- Separate proton from pion by kinematics (Armenteros plot)

au sample for pions

$$\tau^-
ightarrow \pi^- \pi^- \pi^+$$

- Identify two same-charge pions
- Used for pion to lepton fake rate

PID Performance

Performance Samples

$K_{\rm S}^0$ sample for pions

$$K_{
m S}^0
ightarrow \pi^- \pi^+$$

- \blacktriangleright $K_{\rm S}^0$ mainly decay to pions
- Covering mainly low-momentum region

$\boldsymbol{\Lambda}$ sample for pions and protons

$$\Lambda
ightarrow \mathbf{p}\pi^{-}$$

- \blacktriangleright Λ decays mainly to pions and kaons
- Separate proton from pion by kinematics (Armenteros plot)

τ sample for pions

$$\tau^- \to \pi^- \pi^- \pi^+$$

- Identify two same-charge pions
- Used for pion to lepton fake rate

J/ψ sample for electrons and muons

$$J/\psi
ightarrow \ell^- \ell^+$$

Four-Lepton sample for electrons and muons	Two-Lepton sample for electrons and muons				
$e^-e^+ ightarrow e^-e^+\ell^-\ell^+$	$e^-e^+ \to \ell^-\ell^+(\gamma)$				

Efficiency

Efficiency is the fraction of true particles of species s that pass a certain PID cut P_s > t where t is the PID threshold

$$P(s
ightarrow s) = rac{\#_s(P_s > t)}{\#_s(ext{all})}$$

For example, the kaon efficiency for a kaonID cut of 0.6 is

$$P(K o K) = rac{\#_{\kappa}(P_{\kappa} > 0.6)}{\#_{\kappa}(ext{all})}$$

Fake rate

The fake rate or misidentification rate is the fraction of true particles of species s that pass a certain PID cut P_h > t for hypothesis h

$$P(s
ightarrow h) = rac{\#_s(P_h > t)}{\#_s(ext{all})}$$

For example, the pion to kaon fake rate is for a kaonID cut of 0.6 is

$$P(\pi
ightarrow K) = rac{\#_{\pi}(P_K > 0.6)}{\#_{\pi}(\mathrm{all})}$$

Efficiency

Efficiency is the fraction of true particles of species s that pass a certain PID cut P_s > t where t is the PID threshold

$$P(s
ightarrow s) = rac{\#_s(P_s > t)}{\#_s(ext{all})}$$

For example, the kaon efficiency for a kaonID cut of 0.6 is

$$P(K o K) = rac{\#_{\kappa}(P_K > 0.6)}{\#_{\kappa}(\mathrm{all})}$$

Fake rate

The fake rate or misidentification rate is the fraction of true particles of species s that pass a certain PID cut P_h > t for hypothesis h

$$P(s
ightarrow h) = rac{\#_s(P_h > t)}{\#_s(ext{all})}$$

For example, the pion to kaon fake rate is for a kaonID cut of 0.6 is

$$P(\pi
ightarrow {\cal K}) = rac{\#_\pi(P_{\cal K}>0.6)}{\#_\pi({
m all})}$$

- Overall good K/π separation
- Improved separation using PIDNN
- Increase in efficiency for p ≤ 1 GeV/c
 Due to dE/dx measurement in CDC
- \blacktriangleright Good separation in barrel and forward region in $\cos\theta\gtrsim-0.5$
- ▶ PID performance is a function of $(p, \cos \theta, q)$

- Overall good K/π separation
- Improved separation using PIDNN
- ▶ Increase in efficiency for $p \lesssim 1 \, {\rm GeV}/c$
 - Due to dE/dx measurement in CDC
- Good separation in barrel and forward region in $\cos \theta \gtrsim -0.5$
- ▶ PID performance is a function of $(p, \cos \theta, q)$

- Overall good K/π separation
- Improved separation using PIDNN
- ▶ Increase in efficiency for $p \lesssim 1 \, {\rm GeV}/c$
 - Due to dE/dx measurement in CDC
- Good separation in barrel and forward region in $\cos \theta \gtrsim -0.5$
- ▶ PID performance is a function of $(p, \cos \theta, q)$

- Overall good K/π separation
- Improved separation using PIDNN
- ▶ Increase in efficiency for $p \lesssim 1 \, {
 m GeV}/c$
 - Due to dE/dx measurement in CDC
- ▶ Good separation in barrel and forward region in $\cos \theta \gtrsim -0.5$
- ▶ PID performance is a function of $(p, \cos \theta, q)$

- ▶ Overall good K/π separation
- Improved separation using PIDNN
- ▶ Increase in efficiency for $p \lesssim 1 \, {\rm GeV}/c$
 - Due to dE/dx measurement in CDC
- ▶ Good separation in barrel and forward region in $\cos \theta \gtrsim -0.5$
- ▶ PID performance is a function of $(p, \cos \theta, q)$

pi efficiency table [%] for cut "pionIDNN > 0.5"										- 100		
	0.5	93.540.3	94.940.1	97.4±0.1	94.740.1	96.140.2	97.7±0.2	98.0±0.2	98.040.3		100	
	0.9 -	70.4±0.5		93.2±0.1	89.6±0.1	87.7±0.1	90.8±0.1	92.0±0.2	91.8±0.3			
	1.3	52.9±0.6		92.3±0.2	89.4±0.1	85.3±0.2	88.2±0.1	90.4±0.2	90.6±0.3		- 80	
	2.1	54.0±0.6		93.3±0.2	90.3±0.1	84.7±0.2	88.0±0.1	91.5±0.2	91.9±0.3		60	
ins	2.1 -	56.7±0.8		93.5±0.7	90.0±0.3	84.5±0.2	87.8±0.1	92.5±0.2	93.9±0.3		- 60	
d d	2.5	58.7±1.2	75.8±0.4	92.4±0.5	88.7±0.4	83.1±0.4	86.4±0.2	91.9±0.2	95.0±0.3		- 40	
	2.9		77.5±0.6	91240.4	87.1±0.3	82.04.0.3	85.840.4	91.9±0.5	95.4±0.8		40	
	3.3 -	28.0±21.8	76.0±1.9	09.6±0.6	86.0±0.4	81.9±0.3	88.1±0.4	92.0±0.5	95.7±0.8		- 20	
	41.	99.0±7.1	98.4±1.9	09.1±1.6	84.0±0.7	84.0±0.5	90.3±0.3	91.8±0.4	95.3±0.8		20	
	4.1 -	53.0±914.3	93.7±40.1	93.0±417.9	00.9±2.3	84.6±0.8	90.7±0.4	91.6±0.4	94.6±0.6		.0	
	0.866 -0.682 -0.4226 0.1045 0.225 0.5 0.766 0.8829 0.9563											
cosTheta bins												

ℓ/π separation

• Very good e/π separation due to ECL

- Good electron efficiency (\approx 95%)
- Low pion fake rate ($\lesssim 1\%$)

• Very good μ/π separation

* For $p \lesssim 1\,{
m GeV}/c$, particle does not reach KLM

ℓ/π separation

• Very good e/π separation due to ECL

- Good electron efficiency ($\approx 95\%$)
- Low pion fake rate ($\lesssim 1$ %)

• Very good μ/π separation

▶ For $p \gtrsim 1 \, \text{GeV}/c$

For $p \lesssim 1 \,\text{GeV}/c$, particle does not reach KLM

 \blacktriangleright Worse μ/π separation as $m_\mu \approx m_\pi$

ℓ/π separation

- Very good e/π separation due to ECL
 - Good electron efficiency ($\approx 95\%$)
 - Low pion fake rate ($\lesssim 1$ %)
- ▶ Very good μ/π separation
 - ▶ For $p \gtrsim 1 \, \text{GeV}/c$
 - For $p \lesssim 1 \,\mathrm{GeV}/c$, particle does not reach KLM
 - \blacktriangleright Worse μ/π separation as $m_\mu pprox m_\pi$

- Not all particle tracks can be identified
 - ➡ Not all decays are reconstructed and selected
 - Number of measured decays smaller than actual number of decays
 - ► Acceptance / efficiency
- Acceptance is non-uniform in phase-space of the particle
 - Causes deformation of measured distribution
- Acceptance correction done using detector Monte Carlo (MC) simulation of signal process
 - Requires detector simulation to match real detector performance

- ➡ Not all decays are reconstructed and selected
- Number of measured decays smaller than actual number of decays
- ► Acceptance / efficiency
- Acceptance is non-uniform in phase-space of the particle
 - Causes deformation of measured distribution
- Acceptance correction done using detector Monte Carlo (MC) simulation of signal process
 - Requires detector simulation to match real detector performance

pi efficiency table [%] for cut "pionIDNN > 0.5"										- 100
0.9	93.540.3	94.940.1	97.4±0.1	947401	96.1±0.2	97.7±0.2	98.0±0.2	98.01.0.3		100
1.2			93.2±0.1	89.6±0.1	87.7±0.1	90.8±0.1	92.0±0.2	91.8±0.3		
1.5			92.3±0.2	89.4±0.1	85.3±0.2	88.2±0.1	90.4±0.2	90.6±0.3		- 80
2.7 -			93.3±0.2	90.3±0.1	84.7±0.2	88.0±0.1	91.5±0.2	91.9±0.3		60
2.1. 			93.5±0.7	90.0±0.3	84.5±0.2	87.8±0.1	92.5±0.2	93.9±0.3		- 60
G 2.5		75.8±0.4	92.4±0.5	88.7±0.4	83.1±0.4	86.4±0.2	91.9±0.2	95.0±0.3		40
2.9		77.5±0.6	91240.4	87.1±0.3	82.04.0.3	85.840.4	91.9±0.5	95.4±0.8		- 40
3.3 -	28.0±21.8	76.0±1.9	09.6±0.6	86.0±0.4	81.9±0.3	88.1±0.4	92.0±0.5	95.7±0.8		
3.7.	99.0±7.1	98.4±1.9	09.1±1.6	84.0±0.7	84.0±0.5	90.3±0.3	91.8±0.4	95.3±0.8		- 20
4.1 -	53.0±914.3	93.7±40.1	93.0±417.9	00.9±2.3	84.6±0.8	90.7±0.4	91.6±0.4	94.6±0.6		
4.5 -0.866 -0.682 -0.4226 -0.1045 0.225 0.5 0.766 0.8829 0.9563										- 0
cosTheta bins										

Not all particle tracks can be identified

- ► Not all decays are reconstructed and selected
- ► Number of measured decays smaller than actual number of decays
- ➡ Acceptance / efficiency
- Acceptance is non-uniform in phase-space of the particle
 - Causes deformation of measured distribution
- Acceptance correction done using detector Monte
 - Requires detector simulation to match real

- ➡ Not all decays are reconstructed and selected
- Number of measured decays smaller than actual number of decays
- ► Acceptance / efficiency
- Acceptance is non-uniform in phase-space of the particle
 - Causes deformation of measured distribution
- Acceptance correction done using detector Monte Carlo (MC) simulation of signal process
 - Requires detector simulation to match real detector performance

pi efficiency table [%] for cut "pionIDNN > 0.5"										100
0.5	93.540.3	94.940.1	97.4±0.1	94740.1	96.1±0.2	97.7±0.2	98.0±0.2	98.040.3		- 100
1.2			93.2±0.1	89.6±0.1	87.7±0.1	90.8±0.1	92.0±0.2	91.8±0.3		
1.5			92.3±0.2	89.4±0.1	85.3±0.2	88.2±0.1	90.4±0.2	90.6±0.3		- 80
21-			93.3±0.2	90.3±0.1	84.7±0.2	88.0±0.1	91.5±0.2	91.9±0.3		- 60
SL 2.1 -			93.5±0.7	90.0±0.3	84.5±0.2	87.8±0.1	92.5±0.2	93.9±0.3		- 60
G 2.9		75.8±0.4	92.4±0.5	88.7±0.4	63.1±0.4	86.4±0.2	91.9±0.2	95.0±0.3		- 40
33.		77.5±0.6	912:40.4	87.1±0.3	82.0±0.3	85.840.4	91.9±0.5	95.4±0.8		40
37-	28.0±21.8	76.0±1.9	89.6±0.6	86.0±0.4	81.9±0.3	88.1±0.4	92.0±0.5	95.7±0.8		- 20
4.1 -	99.0±7.1	98.4±1.9	09.1±1.6	84.0±0.7	84.0±0.5	90.3±0.3	91.8±0.4	95.3±0.8		20
45.	53.0±914.3	93.7±40.1	93.0±417.9	00.9±2.3	84.6±0.8	90.7±0.4	91.6±0.4	94.6±0.6		0
-0.866 -0.682 -0.4226 -0.1045 0.225 0.5 0.766 0.8829 0.9563 cosTheta bins										

Angular distribution of all and selected $\tau^{\mp} \rightarrow \pi^{\mp}\pi^{\mp}\pi^{\pm} \, {}^{i}\overline{\nu}_{r},$

Compare PID performance from detector MC simulation with real-data using performance samples

- Overall fair agreement on few %-level
- Agreement depends on $(p, \cos \theta, q)$

- Simulation needs to be corrected for real-data/simulation disagreement
- Extract correction factor for each identified particle as a function of (p, cos θ, p) from performance samples of real and simulated data

Offline reweighting and SysVar package

- Lepton ID: Correction tables at fixed working points (PID cut thresholds) available
- Hadron ID: Correction tables can be extracted from the Systematic Corrections Framework
 - At analyst-defined working point
 - Analyst can define additional track selection criteria that may affect PID performance
- The correction tables can be applied to simulated data using the SysVar package (see <u>basf2 documentation</u>)

- Simulation needs to be corrected for real-data/simulation disagreement
- Extract correction factor for each identified particle as a function of (p, cos θ, p) from performance samples of real and simulated data

Offline reweighting and SysVar package

- ► Lepton ID: <u>Correction tables</u> at fixed working points (PID cut thresholds) available
- ▶ Hadron ID: Correction tables can be extracted from the Systematic Corrections Framework
 - At analyst-defined working point
 - Analyst can define additional track selection criteria that may affect PID performance
- The correction tables can be applied to simulated data using the SysVar package (see <u>basf2 documentation</u>)

- Simulation needs to be corrected for real-data/simulation disagreement
- Extract correction factor for each identified particle as a function of (p, cos θ, p) from performance samples of real and simulated data

Offline reweighting and SysVar package

- Lepton ID: <u>Correction tables</u> at fixed working points (PID cut thresholds) available
- ▶ Hadron ID: Correction tables can be extracted from the Systematic Corrections Framework
 - At analyst-defined working point
 - Analyst can define additional track selection criteria that may affect PID performance

The correction tables can be applied to simulated data using the SysVar package (see <u>basf2 documentation</u>)

- Simulation needs to be corrected for real-data/simulation disagreement
- Extract correction factor for each identified particle as a function of (p, cos θ, p) from performance samples of real and simulated data

Offline reweighting and SysVar package

- Lepton ID: <u>Correction tables</u> at fixed working points (PID cut thresholds) available
- ▶ Hadron ID: Correction tables can be extracted from the Systematic Corrections Framework
 - At analyst-defined working point
 - Analyst can define additional track selection criteria that may affect PID performance
- The correction tables can be applied to simulated data using the SysVar package (see <u>basf2 documentation</u>)

Considerations for analysts

- Lepton ID samples only for fixed PID working points
 - ➡ You need to tune your selection to the available working points
- Additional track selection criteria, e.g. cut on nCDCHits, may affect the PID performance
 - Lepton ID correction tables available only for no additional track criteria
 - Hadron ID correction tables must be tuned to your additional track criteria
 - Systematic Corrections Framework per default applies cut on nCDCHits>20
- Recommended PID variables, cuts, correction tables, ... differ between releases (data productions)
 - Check <u>PID recommendations</u>

Considerations for analysts

- Lepton ID samples only for fixed PID working points
 - ➡ You need to tune your selection to the available working points
- ► Additional track selection criteria, e.g. cut on nCDCHits, may affect the PID performance
 - ➡ Lepton ID correction tables available only for no additional track criteria
 - ➡ Hadron ID correction tables must be tuned to your additional track criteria
 - Systematic Corrections Framework per default applies cut on nCDCHits>20
- Recommended PID variables, cuts, correction tables, ... differ between releases (data productions)
 Check <u>PID recommendations</u>

Considerations for analysts

- Lepton ID samples only for fixed PID working points
 - ➡ You need to tune your selection to the available working points
- ► Additional track selection criteria, e.g. cut on nCDCHits, may affect the PID performance
 - ➡ Lepton ID correction tables available only for no additional track criteria
 - ➡ Hadron ID correction tables must be tuned to your additional track criteria
 - Systematic Corrections Framework per default applies cut on nCDCHits>20
- Recommended PID variables, cuts, correction tables, ... differ between releases (data productions)
 - Check <u>PID recommendations</u>

Systematic Uncertainties

....

- Real-data/simulation corrections have statistical and systematic uncertainty
 - Finite performance-sample size
 - Uncertainties from background subtraction (sPlot method, background modeling, ...)
 ...
- Uncertainties provided with correction tables and propagated via the SysVar package
- \blacktriangleright Dominating systematic uncertainty for some analyses (e.g. lepton-flavor universality in au decays)
- Many improvements possible
 - ▶ Take into account correlations in lepton ID systematic uncertainties
 - Improve background subtraction

Systematic Uncertainties

- Real-data/simulation corrections have statistical and systematic uncertainty
 - Finite performance-sample size
 - Uncertainties from background subtraction (sPlot method, background modeling, ...)
 ...
- Uncertainties provided with correction tables and propagated via the SysVar package
- **b** Dominating systematic uncertainty for some analyses (e.g. lepton-flavor universality in τ decays)
- Many improvements possible
 - ▶ Take into account correlations in lepton ID systematic uncertainties
 - Improve background subtraction

Outlook

Outlook

Release08 data (proc16/MC16) and beyond

- Neural network PID will be extended and to all species
 - Can be used already now for release 06 (proc13/MC15) data
- Also lepton ID corrections will be provided via the Systematic Corrections Framework
- Improvements in detector likelihoods (algorithm and calibration)
 - Convolutional neural network for ECL reconstruction
 - KLM reconstruction using neural networks
 - Improved CDC/SVD calibrations taking into account time after injection

Outlook

Release08 data (proc16/MC16) and beyond

- Neural network PID will be extended and to all species
 - Can be used already now for release 06 (proc13/MC15) data
- Also lepton ID corrections will be provided via the Systematic Corrections Framework
- Improvements in detector likelihoods (algorithm and calibration)
 - Convolutional neural network for ECL reconstruction
 - KLM reconstruction using neural networks
 - Improved CDC/SVD calibrations taking into account time after injection

...

Summary

- ▶ PID information from various subdetectors covering different kinematic regimes
- Various PID variables available in basf2 (check recommendation)
- Real-data/simulation corrections provided by PID group (check matching your analysis)
- If you have any questions, reach out to us
- You can contribute to improving our PID: Contact us for a service task

Links / References

- Wiki of PID performance group
- PID Recommendations
- List of service tasks

- PID mailing list: physics-performance-pid
 - PID performance-group meetings on Thursday
- PID conveners: <u>Alessandro Gaz</u>, <u>Stefan Wallner</u>

Backup

