Charged Particle Identification Overview

Stefan Wallner (swallner@mpp.mpg.de)

Max Planck Institute for Physics

Belle II Physics Week October 18, 2024

MAX PLANCK INSTIT FOR PHYSICS

- Particle of various species are produced at Belle II and need to be distinguished
- For example, τ can decay to electrons, muons, pions, and kaons; which can be separated only by experimentally identifying the species of the particles
	- **► Requires charged particle identification (PID)**
- Fest lepton-flavor universality in $\tau^- \to \ell^- \bar{\nu}_{\ell} \nu_{\tau}$ decays
	- $R_{\mu} = \frac{\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau}(\gamma))}{\mathcal{B}(\tau^- \to e^- \bar{\nu}_{e} \nu_{\tau}(\gamma))}$ $\mathcal{B}(\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau(\gamma))$
		- \triangleright Most precise test of μe universality in τ decays from a single measurement at Belle II_{[JHEP 08 (2024)} 205]
		- \triangleright Consistent with Standard Model expectation
		- \triangleright Strongly relies on PID

- \triangleright Particle of various species are produced at Belle II and need to be distinguished
- For example, τ can decay to electrons, muons, pions, and kaons; which can be separated only by experimentally identifying the species of the particles
	- **► Requires charged particle identification (PID)**
- Fest lepton-flavor universality in $\tau^- \to \ell^- \bar{\nu}_{\ell} \nu_{\tau}$ decays

$$
R_{\mu} = \frac{\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_{\mu} \nu_{\tau}(\gamma))}{\mathcal{B}(\tau^- \to e^- \bar{\nu}_e \nu_{\tau}(\gamma))}
$$

- Most precise test of μe universality in τ decays from a single measurement at Belle II[\[JHEP 08 \(2024\) 205\]](https://doi.org/10.1007/JHEP08(2024)205)
- Consistent with Standard Model expectation
- \triangleright Strongly relies on PID

[Introduction](#page-1-0)

- \blacktriangleright Tracks of charged particles measured in tracking detectors (PXD, SVD, CDC)
	- \blacktriangleright Measurement of track position and momentum
- \triangleright Six species of charged particles that are "stable" within the Belle II detector
	- \blacktriangleright e^{\pm} , μ^{\pm} , π^{\pm} , K^{\pm} , $\overline{\rho}$, \overline{d}
- \triangleright Requires additional experimental measurement to identify the species of the track
	- ➥ PID
- \triangleright Measure quantity that differs for the six particle
	- \triangleright Mass
	- \blacktriangleright Type of interaction
- **Translate to a classification variable** \mathcal{L}_h **representing**

[Introduction](#page-1-0)

- \blacktriangleright Tracks of charged particles measured in tracking detectors (PXD, SVD, CDC)
	- \blacktriangleright Measurement of track position and momentum
- \triangleright Six species of charged particles that are "stable" within the Belle II detector
	- \blacktriangleright e^{\pm} , μ^{\pm} , π^{\pm} , K^{\pm} , $\overline{\rho}$, \overline{d}
- \blacktriangleright Requires additional experimental measurement to identify the species of the track
	- ➥ PID
- \blacktriangleright Measure quantity that differs for the six particle species
	- \blacktriangleright Mass
	- \blacktriangleright Type of interaction
- **Translate to a classification variable** \mathcal{L}_h **representing** how likely it is that the particle is of species h

[Introduction](#page-1-0)

- [Physics Principles and PID Detectors](#page-6-0)
- [Using PID for Physics Analysis](#page-28-0)
- [PID Performance](#page-40-0)
- [Correcting for PID Effects](#page-61-0)
- [Outlook](#page-76-0)

[Summary](#page-79-0)

Physics Principles and PID Detectors

$$
\left\langle -\frac{\mathrm{d} \mathcal{E}}{\mathrm{d} x} \right\rangle = K z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2 m_e c^2 b^2 \gamma^2 W_{\mathrm{max}}(\beta \gamma)}{I^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]
$$

- \blacktriangleright Electronic energy loss of charged particles (except e^{\pm}) described by Bethe-Bloch equation
- (also for e^{\pm}) and medium properties
- \triangleright For given measured momentum, the energy loss is different for different particle masses
	- \rightarrow Identification of particle species
- \triangleright Crossing points where energy loss is similar for different particle species
	- \rightarrow PID via energy loss works only in certain

$$
\left\langle -\frac{\mathrm{d} \mathcal{E}}{\mathrm{d} x} \right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 b^2 \gamma^2 W_{\mathrm{max}}(\beta \gamma)}{I^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]
$$

- \blacktriangleright Electronic energy loss of charged particles (except e^{\pm}) described by Bethe-Bloch equation
- Energy loss depends only on velocity of particle (also for e^{\pm}) and medium properties
- For given measured momentum, the energy loss is different for different particle masses
	- \rightarrow Identification of particle species
- \triangleright Crossing points where energy loss is similar for different particle species
	- \rightarrow PID via energy loss works only in certain

$$
\left\langle -\frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 b^2 \gamma^2 W_{\text{max}}(\beta \gamma)}{I^2} - \beta^2 - \frac{\delta(\beta \gamma)}{2} \right] = F(p; m)
$$

- \blacktriangleright Electronic energy loss of charged particles (except e^{\pm}) described by Bethe-Bloch equation
- \triangleright Energy loss depends only on velocity of particle (also for e^{\pm}) and medium properties
- \blacktriangleright For given measured momentum, the energy loss is different for different particle masses
	- **► Identification of particle species**
- \triangleright Crossing points where energy loss is similar for different particle species
	- \rightarrow PID via energy loss works only in certain momentum regions

CDC and SVD PID

 \triangleright Formulate a likelihood for the particle-species hypotheses h

$$
\log \mathcal{L}_h^{\mathrm{CDC}} = -\frac{\chi_h^2}{2} = -\frac{[\mathrm{d}E/\mathrm{d}x_{\mathrm{meas.}} - \mathrm{d}E/\mathrm{d}x_{\mathrm{pred.}}^h]^2}{2[\sigma_{\mathrm{pred.}}^h]^2}
$$

- In Using calibration data to determine $\mathrm{d}E/\mathrm{d}x_{\mathrm{pred.}}^h$ for each particle species h
- For example, good e/π separation for $p \geq 0.3$ GeV/c

CDC and SVD PID

- \triangleright Energy loss measured by ionization in CDC and SVD (and PXD)
- \blacktriangleright Formulate a likelihood for the particle-species hypotheses h

$$
\log \mathcal{L}_h^{\mathrm{CDC}} = -\frac{\chi_h^2}{2} = -\frac{[\mathrm{d}E/\mathrm{d}x_{\mathrm{meas.}} - \mathrm{d}E/\mathrm{d}x_{\mathrm{pred.}}^h]^2}{2[\sigma_{\mathrm{pred.}}^h]^2}
$$

In Using calibration data to determine $\mathrm{d}E/\mathrm{d}x_{\mathrm{pred.}}^h$ for each particle species h

For example, good e/π separation for $p \geq 0.3$ GeV/c

CDC and SVD PID

- \triangleright Energy loss measured by ionization in CDC and SVD (and PXD)
- \blacktriangleright Formulate a likelihood for the particle-species hypotheses h

$$
\log \mathcal{L}_h^{\mathrm{CDC}} = -\frac{\chi_h^2}{2} = -\frac{[\mathrm{d}E/\mathrm{d}x_{\mathrm{meas.}} - \mathrm{d}E/\mathrm{d}x_{\mathrm{pred.}}^h]^2}{2[\sigma_{\mathrm{pred.}}^h]^2}
$$

- In Using calibration data to determine $\mathrm{d}E/\mathrm{d}x_{\mathrm{pred.}}^h$ for each particle species h
- For example, good e/π separation for $p \geq 0.3$ GeV/c

[Physics Principles and PID Detectors](#page-6-0)

[Cherenkov Radiation](#page-13-0)

Physics Principles

- \blacktriangleright Particles traversing a medium faster than the speed of light in the medium emit Cherenkov light
- \triangleright Cherenkov light emitted on a cone with opening angle 1

$$
\mathbf{S}\,\theta_{\mathrm{C}}=\frac{\mathbf{S}}{n\beta}
$$

- \triangleright For given measured momentum, the Cherenkov angle is different for different particle masses
	- \rightarrow Identification of particle species

cos θ^C =

▶ Minimal momentum to produce Cherenkov light

$$
p_{\rm th.} = \frac{m}{\sqrt{n^2 - 1}}
$$

 \triangleright Also number of Cherenkov photons sensitive to mass d^2N

[Physics Principles and PID Detectors](#page-6-0)

[Cherenkov Radiation](#page-13-0)

Physics Principles

- \blacktriangleright Particles traversing a medium faster than the speed of light in the medium emit Cherenkov light
- \triangleright Cherenkov light emitted on a cone with opening angle

 \blacktriangleright For given measured momentum, the Cherenkov angle is different for different particle masses

 $\frac{1}{n\beta} = G(p; m)$

 \rightarrow Identification of particle species

 $\cos\theta_{\rm C}=\frac{1}{R}$

 \blacktriangleright Minimal momentum to produce Cherenkov light

$$
p_{\rm th.}=\frac{m}{\sqrt{n^2-1}}
$$

Also number of Cherenkov photons sensitive to mass

$$
\frac{\mathrm{d}^2 N}{\mathrm{d} E \mathrm{d} x} = \frac{\alpha z^2}{\hbar c} \sin^2 \theta_C
$$

ARICH PID

- \triangleright Covers forward region
- \triangleright Cherenkov photons produced in silica aerogel radiator
- \blacktriangleright Measured by hybrid avalanche photo detectors
- \blacktriangleright Formulate likelihood log $\mathcal{L}_{h}^{\rm ARICH}$ for particle-species hypothesis h taking into account the probability for each individual pixel to be hit or not hit

- \triangleright Covers barrel region
- \triangleright Cherenkov photons produced in quartz transported via internal reflection and detected at the end
- \triangleright Time of propagation depends on Cherenkov angle and position where photons leave the bar
- \blacktriangleright Formulate likelihood log $\mathcal{L}_h^{\rm TOP}$

ARICH PID

- \triangleright Covers forward region
- \triangleright Cherenkov photons produced in silica aerogel radiator
- Measured by hybrid avalanche photo detectors
- \blacktriangleright Formulate likelihood log $\mathcal{L}_{h}^{\rm ARICH}$ for particle-species hypothesis h taking into account the probability for each individual pixel to be hit or not hit

- \triangleright Covers barrel region
- \triangleright Cherenkov photons produced in quartz transported via internal reflection and detected at the end
- \triangleright Time of propagation depends on Cherenkov angle and position where photons leave the bar
- \blacktriangleright Formulate likelihood log $\mathcal{L}_h^{\rm TOP}$

ARICH PID

- \triangleright Covers forward region
- \triangleright Cherenkov photons produced in silica aerogel radiator
- I Measured by hybrid avalanche photo detectors
- Formulate likelihood $\log \mathcal{L}_h^{\rm ARICH}$ for particle-species hypothesis h taking into account the probability for each individual pixel to be hit or not hit

- \triangleright Covers barrel region
- \triangleright Cherenkov photons produced in quartz transported via internal reflection and detected at the end
- \triangleright Time of propagation depends on Cherenkov angle and position where photons leave the bar
- \blacktriangleright Formulate likelihood log $\mathcal{L}_h^{\rm TOP}$

ARICH PID

- \blacktriangleright Covers forward region
- Cherenkov photons produced in silica aerogel radiator
- I Measured by hybrid avalanche photo detectors
- Formulate likelihood $\log \mathcal{L}_h^{\rm ARICH}$ for particle-species hypothesis h taking into account the probability for each individual pixel to be hit or not hit

TOP PID

- \blacktriangleright Covers barrel region
- \triangleright Cherenkov photons produced in quartz transported via internal reflection and detected at the end
- \triangleright Time of propagation depends on Cherenkov angle and position where photons leave the bar
- \blacktriangleright Formulate likelihood log $\mathcal{L}_{h}^{\text{TOP}}$

ARICH PID

- \blacktriangleright Covers forward region
- \triangleright Cherenkov photons produced in silica aerogel radiator
- I Measured by hybrid avalanche photo detectors
- Formulate likelihood $\log \mathcal{L}_h^{\rm ARICH}$ for particle-species hypothesis h taking into account the probability for each individual pixel to be hit or not hit

TOP PID

- \blacktriangleright Covers barrel region
- \triangleright Cherenkov photons produced in quartz transported via internal reflection and detected at the end
- \triangleright Time of propagation depends on Cherenkov angle and position where photons leave the bar
- \blacktriangleright Formulate likelihood log $\mathcal{L}_{h}^{\text{TOP}}$

Electron energy fully absorbed in ECAL

- \triangleright Ratio of in ECL deposited energy E and measured track momentum p is $E/p = 1$ for electrons
- \triangleright Other species leave only fraction of their energy in ECL
- **IDepends on track momentum**
- \blacktriangleright Formulate likelihood log $\mathcal{L}_{h}^{\text{ECAL}}$ based on the expected energy deposition in ECAL

- \blacktriangleright Electron energy fully absorbed in ECAL
- Ratio of in ECL deposited energy E and measured track momentum p is $E/p = 1$ for electrons
- \triangleright Other species leave only fraction of their energy in **ECL**
- ▶ Depends on track momentum
- \blacktriangleright Formulate likelihood log $\mathcal{L}_{h}^{\text{ECAL}}$ based on the expected energy deposition in ECAL

- \blacktriangleright Electron energy fully absorbed in ECAL
- Ratio of in ECL deposited energy E and measured track momentum p is $E/p = 1$ for electrons
- \triangleright Other species leave only fraction of their energy in **ECL**
- Depends on track momentum
- \blacktriangleright Formulate likelihood log $\mathcal{L}_{h}^{\text{ECAL}}$ based on the expected energy deposition in ECAL

[Physics Principles and PID Detectors](#page-6-0) [Muon ID in KLM](#page-23-0)

- \blacktriangleright Muons have a large penetration depth fully traversing the KLM
	- Bremsstrahlung suppressed by $\frac{1}{m_{\mu}^2}$ with respect to electrons
	- \blacktriangleright No strong interaction
- \triangleright In the KLM, muons have different
- Both used to formulate likelihood $\log \mathcal{L}_h^{\rm KLM}$ comparing the extrapolated track from inner detectors to KLM hits

- \blacktriangleright Muons have a large penetration depth fully traversing the KLM
	- Bremsstrahlung suppressed by $\frac{1}{m_{\mu}^2}$ with respect to electrons
	- \blacktriangleright No strong interaction
- \blacktriangleright In the KLM, muons have different
	- \blacktriangleright longitudinal penetration depth
	- \blacktriangleright transverse scattering
- Both used to formulate likelihood $\log \mathcal{L}_h^{\rm KLM}$ comparing the extrapolated track from inner detectors to KLM hits

$$
= p_1 p_2 (1-p_3 \varepsilon_3) (1-p_4 \varepsilon_4)
$$

L

- \blacktriangleright Muons have a large penetration depth fully traversing the KLM
	- Bremsstrahlung suppressed by $\frac{1}{m_{\mu}^2}$ with respect to electrons
	- \blacktriangleright No strong interaction
- \blacktriangleright In the KLM, muons have different
	- \blacktriangleright longitudinal penetration depth
	- \blacktriangleright transverse scattering
- Both used to formulate likelihood $\log \mathcal{L}_h^{\rm KLM}$ comparing the extrapolated track from inner detectors

- \blacktriangleright Muons have a large penetration depth fully traversing the KLM
	- Bremsstrahlung suppressed by $\frac{1}{m_{\mu}^2}$ with respect to electrons
	- \blacktriangleright No strong interaction
- \blacktriangleright In the KLM, muons have different
	- \blacktriangleright longitudinal penetration depth
	- \blacktriangleright transverse scattering
- Both used to formulate likelihood $\log \mathcal{L}_{h}^{\text{KLM}}$ comparing the extrapolated track from inner detectors to KLM hits

Belle II PID

- \blacktriangleright In total 6 subdetectors that yield PID information
	- \triangleright Different coverage of detector regions
	- \triangleright Different coverage (separation power) of momentum regions
- \blacktriangleright Each provides likelihood for all 6 hypotheses
	- \rightarrow In total 36 likelihoods

T[Using PID for Physics Analysis](#page-28-0)

[Using PID for Physics Analysis](#page-28-0) [Global and Binary Likelihoods](#page-29-0)

- \blacktriangleright Combine local detector likelihoods \mathcal{L}_h^d to the global PID probability \mathcal{P}_h
- \blacktriangleright Assuming detector likelihoods are independent

$$
\mathcal{P}_h = \frac{\prod_d \mathcal{L}_h^d}{\sum_{h'} \prod_d \mathcal{L}_{h'}^d}
$$

[Using PID for Physics Analysis](#page-28-0) [Global and Binary Likelihoods](#page-29-0)

- \blacktriangleright Combine local detector likelihoods \mathcal{L}_h^d to the global PID probability \mathcal{P}_h
- \triangleright Assuming detector likelihoods are independent

$$
\mathcal{P}_h = \frac{\prod_d \mathcal{L}_h^d}{\sum_{h'} \prod_d \mathcal{L}_{h'}^d}
$$

[Using PID for Physics Analysis](#page-28-0) [Global and Binary Likelihoods](#page-29-0)

- \blacktriangleright Combine local detector likelihoods \mathcal{L}_h^d to the global PID probability \mathcal{P}_h
- \triangleright Assuming detector likelihoods are independent

$$
\mathcal{P}_h = \frac{\prod_d \mathcal{L}_h^d}{\sum_{h'} \prod_d \mathcal{L}_{h'}^d}
$$

- \blacktriangleright Accessible [in basf2](https://software.belle2.org/light-2409-toyger/sphinx/analysis/doc/Variables.html#pid) via ID variables
	- \triangleright electronID = \mathcal{P}_e ; muonID = P_μ ; pionID = P_π ; kaonID = P_κ ; protonID = P_σ ; deuteronID = P_d
- \triangleright Sometimes, subdetectors need to be excluded from PID for better performance, e.g.

$$
\text{muonID_noSVD} = \frac{\prod_{d \notin \{\text{SVD}\}} \mathcal{L}_h^d}{\sum_{h'} \prod_{d \notin \{\text{SVD}\}} \mathcal{L}_{h'}^d}
$$

- \blacktriangleright Accessible [in basf2](https://software.belle2.org/light-2409-toyger/sphinx/analysis/doc/Variables.html#pid) via ID variables
	- \triangleright electronID = \mathcal{P}_e ; muonID = P_μ ; pionID = P_π ; kaonID = P_κ ; protonID = P_σ ; deuteronID = P_d
- \triangleright Sometimes, subdetectors need to be excluded from PID for better performance, e.g.

$$
\text{muonID_noSVD} = \frac{\prod_{d \notin \{SVD\}} \mathcal{L}_h^d}{\sum_{h'} \prod_{d \notin \{SVD\}} \mathcal{L}_{h'}^d}
$$

Binary PID

- If only a certain subset of species needs to be separated by PID in physics analysis, normalize PID probability to only this subset
- If pions need to be separated only from kaons use binary π/K PID probability

$$
P_{\pi/K} = \frac{\prod_d \mathcal{L}_{\pi}^d}{\prod_d \mathcal{L}_{\pi}^d + \prod_d \mathcal{L}_{K}^d} = \frac{P_{\pi}}{P_{\pi} + P_{K}}
$$

In basf2, this reads $pionID/(pionID+kaonID)$

- Simple combination of detector likelihoods, $\prod_d \mathcal{L}_d^h$ is imperfect
	- Ignores correlations among detector likelihoods; does not use full information; approximations in likelihoods
	- **►** Train MVA method on simulated data to yield better PID variables

- \triangleright Use CDC, TOP, ARICH, KLM likelihoods
- \triangleright Use ECL E/p and cluster shape observables
-

- \triangleright Use all likelihoods from all 6 subdetectors
- \triangleright Use measured track momentum and charge
- Improve performance for K/π separation for low fake rates

- Simple combination of detector likelihoods, $\prod_d \mathcal{L}_d^h$ is imperfect
	- Ignores correlations among detector likelihoods; does not use full information; approximations in likelihoods
	- **►** Train MVA method on simulated data to yield better PID variables

LeptonID BDT

- ▶ Use CDC, TOP, ARICH, KLM likelihoods
- \triangleright Use ECL E/p and cluster shape observables
- Improve performance for electron ID $p < 1$ GeV/ c

- \triangleright Use all likelihoods from all 6 subdetectors
- \triangleright Use measured track momentum and charge
- Improve performance for K/π separation for low fake rates

- Simple combination of detector likelihoods, $\prod_d \mathcal{L}_d^h$ is imperfect
	- Ignores correlations among detector likelihoods; does not use full information; approximations in likelihoods
	- \rightarrow Train MVA method on simulated data to yield better PID variables

LeptonID BDT

- ▶ Use CDC, TOP, ARICH, KLM likelihoods
- \triangleright Use ECL E/p and cluster shape observables
- \blacktriangleright Improve performance for electron ID $p < 1$ GeV/ c

PID Neural Network for K/π separation

- \blacktriangleright Use all likelihoods from all 6 subdetectors
- Use measured track momentum and charge
- Improve performance for K/π separation for low fake rates

- \blacktriangleright PID setting depends on the data production
- \blacktriangleright PID recommendations can be found on [PID Wiki page](https://xwiki.desy.de/xwiki/bin/view/BI/Belle%20II%20Internal/Physics%20Performance%20Webhome/Charged%20PID%20performance/Charged%20PID%20Recommendations/)

- \blacktriangleright PID setting depends on the data production
- ▶ PID recommendations can be found on [PID Wiki page](https://xwiki.desy.de/xwiki/bin/view/BI/Belle%20II%20Internal/Physics%20Performance%20Webhome/Charged%20PID%20performance/Charged%20PID%20Recommendations/)

Recommendations for Release06 data (MC15ri, MC15rd, proc13+prompt)

[PID Performance](#page-40-0)

- Correctly estimating PID effects is crucial for physics analysis
- Study the PID performance in real data and simulation
	- Efficiency to identify particle of species s: $P(s \rightarrow s)$
	- ► Fake rate to wrongly identify particle of species s as particle-species hypothesis h: $P(s \rightarrow h)$
- I Requires sample of tracks where species is known without detector PID information
	- \rightarrow Use known decays of particles, where the species of the daughter particles is know for the dominant decay mode and where all other decay modes are strongly suppressed

- \triangleright Correctly estimating PID effects is crucial for physics analysis
- Study the PID performance in real data and simulation
	- Efficiency to identify particle of species s: $P(s \rightarrow s)$
	- ► Fake rate to wrongly identify particle of species s as particle-species hypothesis h: $P(s \rightarrow h)$
- \triangleright Requires sample of tracks where species is known without detector PID information
	- \rightarrow Use known decays of particles, where the species of the daughter particles is know for the dominant decay mode and where all other decay modes are strongly suppressed

$$
D^{*,+} \longrightarrow D^0 \pi^+_{slow}
$$

$$
\downarrow_{K^- \pi^+}
$$

- Two-body D^0 decays
	- The negative decay product is almost always a K^-
	- The positive decay product is almost always a π^-
- Analogously for \bar{D}^0 decays
- Select \overleftrightarrow{D}^0 signal and distinguish D^0 from $\overline{D}{}^0$ in $D^{*,\pm} \to \overleftrightarrow{D}^0 \pi_{\text{slow}}^{\pm}$ decays
	- -
		-

$$
D^{*,+} \longrightarrow D^0 \pi^+_{slow}
$$

$$
\downarrow_{K^- \pi^+}
$$

- Two-body D^0 decays
	- The negative decay product is almost always a K^-
	- The positive decay product is almost always a π^-
- Analogously for \bar{D}^0 decays
- ▶ Select \bar{D}^0 signal and distinguish D^0 from \bar{D}^0 in $D^{*,\pm} \to \overline{D}^0 \pi_{\text{slow}}^{\pm}$ decays
	- Reconstructed D^0 masses separates signal from
		- \triangleright Statistical background subtraction using [sPlot](https://doi.org/10.1016/j.nima.2005.08.106) technique
	- \triangleright Covers large kinematic region

$$
D^{*,+} \longrightarrow D^0 \pi^+_{slow}
$$

$$
\downarrow_{K^- \pi^+}
$$

- Two-body D^0 decays
	- The negative decay product is almost always a K^-
	- The positive decay product is almost always a π^-
- Analogously for \bar{D}^0 decays
- ▶ Select \bar{D}^0 signal and distinguish D^0 from \bar{D}^0 in $D^{*,\pm} \to \overline{D}^0 \pi_{\text{slow}}^{\pm}$ decays
	- Reconstructed D^0 masses separates signal from background
		- \blacktriangleright Statistical background subtraction using [sPlot](https://doi.org/10.1016/j.nima.2005.08.106) technique

$$
D^{*,+} \longrightarrow D^0 \pi^+_{slow}
$$

$$
\downarrow_{K^- \pi^+}
$$

- Two-body D^0 decays
	- The negative decay product is almost always a K^-
	- The positive decay product is almost always a π^-
- Analogously for \bar{D}^0 decays
- ▶ Select \bar{D}^0 signal and distinguish D^0 from \bar{D}^0 in $D^{*,\pm} \to \overline{D}^0 \pi_{\text{slow}}^{\pm}$ decays
	- Reconstructed D^0 masses separates signal from background
		- \blacktriangleright Statistical background subtraction using [sPlot](https://doi.org/10.1016/j.nima.2005.08.106) technique
	- Covers large kinematic region

[PID Performance](#page-40-0)

[Performance Samples](#page-41-0)

$$
\blacktriangleright
$$
 K^0_S mainly decay to pions

 \triangleright Covering mainly low-momentum region

Λ sample for pions and protons

 $\Lambda \to p \pi^-$

 $K^0_{\rm S} \rightarrow \pi^- \pi^+$

- \blacktriangleright Λ decays mainly to pions and kaons
- Separate proton from pion by kinematics (Armenteros plot)

$$
\tau^-\to\pi^-\pi^-\pi^+
$$

- \triangleright Identify two same-charge pions
- \triangleright Used for pion to lepton fake rate

$$
\bigvee_{\overline{A_{a_{r}a_{r}s_{t}t}}}
$$

[PID Performance](#page-40-0)

 \mathcal{K}_S^0 sample for pions

[Performance Samples](#page-41-0)

- \blacktriangleright K_S⁰ mainly decay to pions
- \triangleright Covering mainly low-momentum region

Λ sample for pions and protons

 $\Lambda \to p \pi^-$

 $K^0_{\rm S} \rightarrow \pi^- \pi^+$

- \blacktriangleright Λ decays mainly to pions and kaons
- Separate proton from pion by kinematics (Armenteros plot)

τ sample for pions

$$
\tau^-\to\pi^-\pi^-\pi^+
$$

- I dentify two same-charge pions
- \blacktriangleright Used for pion to lepton fake rate

J/ψ sample for electrons and muons

$$
J/\psi\to\ell^-\ell^+
$$

Efficiency

 \blacktriangleright Efficiency is the fraction of true particles of species s that pass a certain PID cut $P_s > t$ where t is the PID threshold

$$
P(s \to s) = \frac{\#_s (P_s > t)}{\#_s \text{(all)}}
$$

 \blacktriangleright For example, the kaon efficiency for a kaonID cut of 0.6 is

$$
P(K \to K) = \frac{\#_K(P_K > 0.6)}{\#_K(\text{all})}
$$

 \triangleright The fake rate or misidentification rate is the fraction of true particles of species s that pass a certain PID cut $P_h > t$ for hypothesis h

$$
P(s \to h) = \frac{\#_s (P_h > t)}{\#_s \text{(all)}}
$$

 \triangleright For example, the pion to kaon fake rate is for a kaonID cut of 0.6 is

$$
P(\pi \to K) = \frac{\#_{\pi}(P_K > 0.6)}{\#_{\pi}(\text{all})}
$$

Efficiency

 \blacktriangleright Efficiency is the fraction of true particles of species s that pass a certain PID cut $P_s > t$ where t is the PID threshold

$$
P(s \to s) = \frac{\#_s (P_s > t)}{\#_s \text{(all)}}
$$

 \blacktriangleright For example, the kaon efficiency for a kaonID cut of 0.6 is

$$
P(K \to K) = \frac{\#_K(P_K > 0.6)}{\#_K(\text{all})}
$$

Fake rate

 \blacktriangleright The fake rate or misidentification rate is the fraction of true particles of species s that pass a certain PID cut $P_h > t$ for hypothesis h

$$
P(s \to h) = \frac{\#_s (P_h > t)}{\#_s \text{(all)}}
$$

 \blacktriangleright For example, the pion to kaon fake rate is for a kaonID cut of 0.6 is

$$
P(\pi \to K) = \frac{\#_\pi (P_K > 0.6)}{\#_\pi \text{(all)}}
$$

- \triangleright Overall good K/π separation
- \blacktriangleright Improved separation using PIDNN
- Increase in efficiency for $p \leq 1$ GeV/c
- \triangleright Good separation in barrel and forward region in
- **PID** performance is a function of $(p, \cos \theta, q)$

- \triangleright Overall good K/π separation
- \blacktriangleright Improved separation using PIDNN
- Increase in efficiency for $p \leq 1$ GeV/c
	- Due to dE/dx measurement in CDC
- \triangleright Good separation in barrel and forward region in
- **PID** performance is a function of $(p, \cos \theta, q)$

- \triangleright Overall good K/π separation
- \blacktriangleright Improved separation using PIDNN
- Increase in efficiency for $p \leq 1$ GeV/c
	- Due to dE/dx measurement in CDC
- \triangleright Good separation in barrel and forward region in
- I PID performance is a function of $(p, cos θ, q)$ + 10⁻¹ 10⁻¹

- \triangleright Overall good K/π separation
- \blacktriangleright Improved separation using PIDNN
- Increase in efficiency for $p \leq 1$ GeV/c
	- Due to dE/dx measurement in CDC
- \triangleright Good separation in barrel and forward region in $\cos \theta \gtrsim -0.5$
- **PID** performance is a function of $(p, \cos \theta, q)$

- \blacktriangleright Overall good K/π separation
- \blacktriangleright Improved separation using PIDNN
- Increase in efficiency for $p \leq 1$ GeV/c
	- \blacktriangleright Due to dE/dx measurement in CDC
- \triangleright Good separation in barrel and forward region in $\cos\theta \gtrsim -0.5$
- PID performance is a function of $(p, \cos \theta, q)$

 ℓ/π separation

\triangleright Very good e/π separation due to ECL

- ► Good electron efficiency (\approx 95%)
- ▶ Low pion fake rate $(≤ 1\%)$

\blacktriangleright Very good μ/π separation

ℓ/π separation

\triangleright Very good e/π separation due to ECL

- ► Good electron efficiency (\approx 95%)
- ▶ Low pion fake rate $(≤ 1\%)$

\blacktriangleright Very good μ/π separation

- \blacktriangleright For $p \geq 1$ GeV/c
- For $p \leq 1$ GeV/c, particle does not reach KLM
	-

ℓ/π separation

- \triangleright Very good e/π separation due to ECL
	- ► Good electron efficiency (\approx 95%)
	- ▶ Low pion fake rate $(≤ 1\%)$
- \blacktriangleright Very good μ/π separation
	- For $p \geq 1$ GeV/c
	- For $p \leq 1$ GeV/c, particle does not reach KLM
		- \blacktriangleright Worse μ/π separation as $m_\mu \approx m_\pi$

- \triangleright Not all particle tracks can be identified
	- **► Not all decays are reconstructed and selected**
	- **► Number of measured decays smaller than actual** number of decays
	- \rightarrow Acceptance / efficiency
- \triangleright Acceptance is non-uniform in phase-space of the
	- \rightarrow Causes deformation of measured distribution
- \triangleright Acceptance correction done using detector Monte Carlo (MC) simulation of signal process
	- \rightarrow Requires detector simulation to match real detector performance

- **► Not all decays are reconstructed and selected**
- **► Number of measured decays smaller than actual** number of decays
- ➥ Acceptance / efficiency
- \triangleright Acceptance is non-uniform in phase-space of the particle
	- ➥ Causes deformation of measured distribution
- \triangleright Acceptance correction done using detector Monte Carlo (MC) simulation of signal process
	- \rightarrow Requires detector simulation to match real detector performance

- \triangleright Not all particle tracks can be identified
	- **► Not all decays are reconstructed and selected**
	- **►** Number of measured decays smaller than actual number of decays
	- ➥ Acceptance / efficiency
- \triangleright Acceptance is non-uniform in phase-space of the particle
	- ➥ Causes deformation of measured distribution
- \triangleright Acceptance correction done using detector Monte Carlo (MC) simulation of signal process
	- \rightarrow Requires detector simulation to match real detector performance

Angular distribution

- **► Not all decays are reconstructed and selected**
- **► Number of measured decays smaller than actual** number of decays
- ➥ Acceptance / efficiency
- \triangleright Acceptance is non-uniform in phase-space of the particle
	- ➥ Causes deformation of measured distribution
- \triangleright Acceptance correction done using detector Monte Carlo (MC) simulation of signal process
	- \rightarrow Requires detector simulation to match real detector performance

Angular distribution of all and selected $\tau^\mp\to\pi^\mp\pi^\mp\pi^\pm\,{}^\shortparallel\overline{\nu_{\!\tau}}$

- \triangleright Overall fair agreement on few %-level
- Agreement depends on $(p, \cos \theta, q)$

- \triangleright Simulation needs to be corrected for real-data/simulation disagreement
- Extract correction factor for each identified particle as a function of $(p, \cos \theta, p)$ from performance samples of real and simulated data

-
- -
	-
	-

- \triangleright Simulation needs to be corrected for real-data/simulation disagreement
- Extract correction factor for each identified particle as a function of $(p, \cos \theta, p)$ from performance samples of real and simulated data

Offline reweighting and SysVar package

- Lepton ID: [Correction tables](https://xwiki.desy.de/xwiki/bin/view/BI/Belle%20II%20Internal/Physics%20Performance%20Webhome/Charged%20PID%20performance/Charged%20PID%20Recommendations/Recommendations%20for%20Lepton%20ID%20-%20Moriond2024/) at fixed working points (PID cut thresholds) available
- In Hadron ID: Correction tables can be extracted from the [Systematic Corrections Framework](#page-0-1)
	- \triangleright At analyst-defined working point
	- \triangleright Analyst can define additional track selection criteria that may affect PID performance
- \triangleright The correction tables can be applied to simulated data using the SysVar package (see [basf2 documentation\)](https://software.belle2.org/development/sphinx/analysis/doc/OfflineReweighting.html#charged-particle-identification-corrections)

- \triangleright Simulation needs to be corrected for real-data/simulation disagreement
- Extract correction factor for each identified particle as a function of $(p, \cos \theta, p)$ from performance samples of real and simulated data

Offline reweighting and SysVar package

- \triangleright Lepton ID: [Correction tables](https://xwiki.desy.de/xwiki/bin/view/BI/Belle%20II%20Internal/Physics%20Performance%20Webhome/Charged%20PID%20performance/Charged%20PID%20Recommendations/Recommendations%20for%20Lepton%20ID%20-%20Moriond2024/) at fixed working points (PID cut thresholds) available
- ▶ Hadron ID: Correction tables can be extracted from the [Systematic Corrections Framework](#page-0-1)
	- \blacktriangleright At analyst-defined working point
	- \triangleright Analyst can define additional track selection criteria that may affect PID performance

 \triangleright The correction tables can be applied to simulated data using the SysVar package (see [basf2 documentation\)](https://software.belle2.org/development/sphinx/analysis/doc/OfflineReweighting.html#charged-particle-identification-corrections)

- \triangleright Simulation needs to be corrected for real-data/simulation disagreement
- Extract correction factor for each identified particle as a function of $(p, \cos \theta, p)$ from performance samples of real and simulated data

Offline reweighting and SysVar package

- \triangleright Lepton ID: [Correction tables](https://xwiki.desy.de/xwiki/bin/view/BI/Belle%20II%20Internal/Physics%20Performance%20Webhome/Charged%20PID%20performance/Charged%20PID%20Recommendations/Recommendations%20for%20Lepton%20ID%20-%20Moriond2024/) at fixed working points (PID cut thresholds) available
- ▶ Hadron ID: Correction tables can be extracted from the [Systematic Corrections Framework](#page-0-1)
	- \blacktriangleright At analyst-defined working point
	- \triangleright Analyst can define additional track selection criteria that may affect PID performance
- \triangleright The correction tables can be applied to simulated data using the SysVar package (see [basf2 documentation\)](https://software.belle2.org/development/sphinx/analysis/doc/OfflineReweighting.html#charged-particle-identification-corrections)

Considerations for analysts

- \triangleright Lepton ID samples only for fixed PID working points
	- \rightarrow You need to tune your selection to the available working points
- \triangleright Additional track selection criteria, e.g. cut on nCDCHits, may affect the PID performance
	- \rightarrow Lepton ID correction tables available only for no additional track criteria
	- ➥ Hadron ID correction tables must be tuned to your additional track criteria
		- Systematic Corrections Framework per default applies cut on nCDCHits>20
- Recommended PID variables, cuts, correction tables, ... differ between releases (data productions)
	- \triangleright Check [PID recommendations](https://xwiki.desy.de/xwiki/bin/view/BI/Belle%20II%20Internal/Physics%20Performance%20Webhome/Charged%20PID%20performance/Charged%20PID%20Recommendations/)

Considerations for analysts

- \triangleright Lepton ID samples only for fixed PID working points
	- \rightarrow You need to tune your selection to the available working points
- ▶ Additional track selection criteria, e.g. cut on nCDCHits, may affect the PID performance
	- **►** Lepton ID correction tables available only for no additional track criteria
	- **►** Hadron ID correction tables must be tuned to your additional track criteria
		- ▶ Systematic Corrections Framework per default applies cut on nCDCHits>20
- **In Recommended PID variables, cuts, correction tables, ... differ between releases (data productions)** \triangleright Check [PID recommendations](https://xwiki.desy.de/xwiki/bin/view/BI/Belle%20II%20Internal/Physics%20Performance%20Webhome/Charged%20PID%20performance/Charged%20PID%20Recommendations/)

Considerations for analysts

- \triangleright Lepton ID samples only for fixed PID working points
	- \rightarrow You need to tune your selection to the available working points
- \triangleright Additional track selection criteria, e.g. cut on nCDCHits, may affect the PID performance
	- \rightarrow Lepton ID correction tables available only for no additional track criteria
	- **►** Hadron ID correction tables must be tuned to your additional track criteria
		- ▶ Systematic Corrections Framework per default applies cut on nCDCHits>20
- ▶ Recommended PID variables, cuts, correction tables, ... differ between releases (data productions)
	- \blacktriangleright Check [PID recommendations](https://xwiki.desy.de/xwiki/bin/view/BI/Belle%20II%20Internal/Physics%20Performance%20Webhome/Charged%20PID%20performance/Charged%20PID%20Recommendations/)

Systematic Uncertainties

 \blacktriangleright

- \triangleright Real-data/simulation corrections have statistical and systematic uncertainty
	- \blacktriangleright Finite performance-sample size
	- Incertainties from background subtraction (sPlot method, background modeling, ...) \blacktriangleright ...
- Incertainties provided with correction tables and propagated via the SysVar package
- **Dominating systematic uncertainty for some analyses (e.g. lepton-flavor universality in** τ **decays)**
- \triangleright Many improvements possible
	- \blacktriangleright Take into account correlations in lepton ID systematic uncertainties
	- \blacktriangleright Improve background subtraction

Systematic Uncertainties

- \triangleright Real-data/simulation corrections have statistical and systematic uncertainty
	- \blacktriangleright Finite performance-sample size
	- Incertainties from background subtraction (sPlot method, background modeling, ...) \blacktriangleright ...
- Incertainties provided with correction tables and propagated via the SysVar package
- Dominating systematic uncertainty for some analyses (e.g. lepton-flavor universality in τ decays)
- Many improvements possible
	- \blacktriangleright Take into account correlations in lepton ID systematic uncertainties
	- \blacktriangleright Improve background subtraction

 \blacktriangleright

Toutlook

[Outlook](#page-76-0)

Release08 data (proc16/MC16) and beyond

- Neural network PID will be extended and to all species
	- \blacktriangleright Can be used already now for [release 06 \(proc13/MC15\) data](https://xwiki.desy.de/xwiki/bin/view/BI/Belle%20II%20Internal/Physics%20Performance%20Webhome/Charged%20PID%20performance/PIDNN%20for%206%20Hypotheses/)
- Also lepton ID corrections will be provided via the Systematic Corrections Framework
- Improvements in detector likelihoods (algorithm and calibration)
	- \triangleright Convolutional neural network for FCL reconstruction
	- \triangleright KLM reconstruction using neural networks
	- Improved CDC/SVD calibrations taking into account time after injection \blacktriangleright ...

[Outlook](#page-76-0)

Release08 data (proc16/MC16) and beyond

- Neural network PID will be extended and to all species
	- \blacktriangleright Can be used already now for [release 06 \(proc13/MC15\) data](https://xwiki.desy.de/xwiki/bin/view/BI/Belle%20II%20Internal/Physics%20Performance%20Webhome/Charged%20PID%20performance/PIDNN%20for%206%20Hypotheses/)
- Also lepton ID corrections will be provided via the Systematic Corrections Framework
- Improvements in detector likelihoods (algorithm and calibration)
	- \triangleright Convolutional neural network for FCL reconstruction
	- KLM reconstruction using neural networks
	- Improved CDC/SVD calibrations taking into account time after injection \blacktriangleright ...

Summary

- \triangleright PID information from various subdetectors covering different kinematic regimes
- ▶ Various PID variables available in basf2 (check recommendation)
- \triangleright Real-data/simulation corrections provided by PID group (check matching your analysis)
- \blacktriangleright If you have any questions, reach out to us
- ▶ You can contribute to improving our PID: Contact us for a [service task](https://gitlab.desy.de/belle2/performance/pid/pid-project-tracker/-/issues?sort=updated_desc&state=opened&first_page_size=40)

Links / References

- \triangleright [Wiki of PID performance group](https://xwiki.desy.de/xwiki/bin/view/BI/Belle%20II%20Internal/Physics%20Performance%20Webhome/Charged%20PID%20performance/?srid=Wro2svdQ)
- [PID Recommendations](https://xwiki.desy.de/xwiki/bin/view/BI/Belle%20II%20Internal/Physics%20Performance%20Webhome/Charged%20PID%20performance/Charged%20PID%20Recommendations/)
- \blacktriangleright [List of service tasks](https://gitlab.desy.de/belle2/performance/pid/pid-project-tracker/-/issues?sort=updated_desc&state=opened&first_page_size=40)
- \blacktriangleright PID mailing list: [physics-performance-pid](https://lists.belle2.org/sympa/info/physics-performance-pid)
	- [PID performance-group meetings on Thursday](https://indico.belle2.org/category/16/)
- ▶ PID conveners: [Alessandro Gaz,](mailto:alessandro.gaz@pd.infn.it) [Stefan Wallner](mailto:swallner@mpp.mpg.de)

Backup

