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Introduction

I Particle of various species are produced at Belle II and need to be distinguished

I For example, τ can decay to electrons, muons, pions, and kaons; which can be separated only by
experimentally identifying the species of the particles

å Requires charged particle identification (PID)

I Test lepton-flavor universality in τ− → `−ν̄`ντ decays

Rµ =
B(τ−→µ−ν̄µντ (γ))
B(τ−→e−ν̄eντ (γ))

I Most precise test of µ− e universality in τ decays from a single measurement at Belle II[JHEP 08 (2024) 205]

I Consistent with Standard Model expectation
I Strongly relies on PID
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Introduction

I Tracks of charged particles measured in tracking
detectors (PXD, SVD, CDC)
I Measurement of track position and momentum

I Six species of charged particles that are “stable”
within the Belle II detector

I e±, µ±, π±, K±, p
(−)

, d
(−)

I Requires additional experimental measurement to
identify the species of the track

å PID

I Measure quantity that differs for the six particle
species
I Mass
I Type of interaction

I Translate to a classification variable Lh representing
how likely it is that the particle is of species h
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Physics Principles and
PID Detectors
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Physics Principles and PID Detectors
Energy loss 〈

−dE

dx

〉
= Kz2 Z

A

1

β2

[
1

2
ln

2mec
2b2γ2Wmax(βγ)

I 2
− β2 − δ(βγ)

2

]

= F (p;m)

Physics Principles

I Electronic energy loss of charged particles
(except e± ) described by Bethe-Bloch equation

I Energy loss depends only on velocity of particle
(also for e±) and medium properties

I For given measured momentum, the energy loss is
different for different particle masses

å Identification of particle species

I Crossing points where energy loss is similar for
different particle species

å PID via energy loss works only in certain
momentum regions
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Physics Principles and PID Detectors
Energy loss

CDC and SVD PID

I Energy loss measured by ionization in CDC and SVD (and PXD)

I Formulate a likelihood for the particle-species hypotheses h

logLCDC
h = −χ

2
h

2
= −

[dE/dxmeas. − dE/dxhpred.]
2

2[σh
pred.]

2

I Using calibration data to determine dE/dxh
pred. for each particle species h

I For example, good e/π separation for p & 0.3 GeV/c

SVD
CDC

TOP

ECL

KLM

ARICH
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Physics Principles and PID Detectors
Cherenkov Radiation

Physics Principles

I Particles traversing a medium faster than the speed of
light in the medium emit Cherenkov light

I Cherenkov light emitted on a cone with opening angle

cos θC =
1

nβ

= G (p;m)

I For given measured momentum, the Cherenkov angle
is different for different particle masses

å Identification of particle species

I Minimal momentum to produce Cherenkov light

pth. =
m√

n2 − 1
I Also number of Cherenkov photons sensitive to mass

d2N

dEdx
=
αz2

~c
sin2 θC
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Physics Principles and PID Detectors
Cherenkov Radiation

ARICH PID

I Covers forward region

I Cherenkov photons produced in silica aerogel radiator

I Measured by hybrid avalanche photo detectors

I Formulate likelihood logLARICH
h for particle-species

hypothesis h taking into account the probability for
each individual pixel to be hit or not hit

TOP PID

I Covers barrel region

I Cherenkov photons produced in quartz transported
via internal reflection and detected at the end

I Time of propagation depends on Cherenkov angle and
position where photons leave the bar

I Formulate likelihood logLTOP
h

SVD
CDC

TOP

ECL

KLM

ARICH
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Physics Principles and PID Detectors
Electron ID in ECL

Physics Principles

I Electron energy fully absorbed in ECAL

I Ratio of in ECL deposited energy E and measured
track momentum p is E/p = 1 for electrons

I Other species leave only fraction of their energy in
ECL

I Depends on track momentum

I Formulate likelihood logLECAL
h based on the

expected energy deposition in ECAL

CDC (dE/dx)
+ PID detector

Electromagnetic
Calorimeter

photons

𝑒±

𝜇±

𝜋±, 𝐾±, 𝑝

KLM
Detector

𝑛
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Physics Principles and PID Detectors
Muon ID in KLM

Physics Principles

I Muons have a large penetration depth fully traversing
the KLM
I Bremsstrahlung suppressed by 1

m2
µ

with respect to

electrons
I No strong interaction

I In the KLM, muons have different
I longitudinal penetration depth
I transverse scattering

I Both used to formulate likelihood logLKLM
h

comparing the extrapolated track from inner detectors
to KLM hits

CDC (dE/dx)
+ PID detector

Electromagnetic
Calorimeter

photons

𝑒±

𝜇±

𝜋±, 𝐾±, 𝑝

KLM
Detector

𝑛
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Physics Principles and PID Detectors

Belle II PID

I In total 6 subdetectors that yield PID information
I Different coverage of detector regions
I Different coverage (separation power) of momentum

regions

I Each provides likelihood for all 6 hypotheses

å In total 36 likelihoods

SVD
CDC

TOP

ECL

KLM

ARICH
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Using PID for Physics Analysis
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Using PID for Physics Analysis
Global and Binary Likelihoods

Global PID

I Combine local detector likelihoods Ld
h to the global PID probability Ph

I Assuming detector likelihoods are independent

Ph =

∏
d Ld

h∑
h′
∏

d Ld
h′
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Using PID for Physics Analysis
Global and Binary Likelihoods

Global PID

I Accessible in basf2 via ID variables
I electronID = Pe ; muonID = Pµ; pionID = Pπ; kaonID = PK ; protonID = Pp; deuteronID = Pd

I Sometimes, subdetectors need to be excluded from PID for better performance, e.g.

muonID noSVD =

∏
d /∈{SVD} Ld

h∑
h′
∏

d /∈{SVD} Ld
h′
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Using PID for Physics Analysis
Global and Binary Likelihoods

Binary PID

I If only a certain subset of species needs to be separated by PID in physics analysis, normalize PID
probability to only this subset

I If pions need to be separated only from kaons use binary π/K PID probability

Pπ/K =

∏
d Ld

π∏
d Ld

π +
∏

d Ld
K

=
Pπ

Pπ + PK

I In basf2, this reads pionID/(pionID+kaonID)
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Using PID for Physics Analysis
Multivariant Approaches

I Simple combination of detector likelihoods,
∏

d Lh
d is imperfect

I Ignores correlations among detector likelihoods; does not use full information; approximations in
likelihoods

å Train MVA method on simulated data to yield better PID variables

LeptonID BDT

I Use CDC, TOP, ARICH, KLM likelihoods

I Use ECL E/p and cluster shape observables

I Improve performance for electron ID
p < 1 GeV/c

PID Neural Network for K/π separation

I Use all likelihoods from all 6 subdetectors

I Use measured track momentum and charge

I Improve performance for K/π separation for
low fake rates
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Using PID for Physics Analysis
PID Recommendations

I PID setting depends on the data production

I PID recommendations can be found on PID Wiki page

Recommendations for Release06 data (MC15ri, MC15rd, proc13+prompt)

Global Binary (`/π or K/π)

electron
electronID_noSVD_noTOP, binaryElectronID_noSVD_noTOP_pi,
pidChargedBDTScore_e pidPairChargedBDTScore_e_pi

muon
muonID_noSVD, binaryMuonID_noSVD_pi,

pidChargedBDTScore_mu pidPairChargedBDTScore_mu_pi

pion pionID pionIDNN

kaon kaonID kaonIDNN

proton protonID
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PID Performance
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PID Performance
Performance Samples

I Correctly estimating PID effects is crucial for physics analysis

I Study the PID performance in real data and simulation
I Efficiency to identify particle of species s: P(s → s)
I Fake rate to wrongly identify particle of species s as particle-species hypothesis h: P(s → h)

I Requires sample of tracks where species is known without detector PID information

å Use known decays of particles, where the species of the daughter particles is know for the
dominant decay mode and where all other decay modes are strongly suppressed
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PID Performance
Performance Samples

D∗ sample of kaons and pions

D∗,+ D0 π+
slow

K−π+

I Two-body D0 decays
I The negative decay product is almost always a K−

I The positive decay product is almost always a π−

I Analogously for D̄0 decays

I Select D
(−)

0 signal and distinguish D0 from D̄0 in

D∗,± → D
(−)

0π±slow decays
I Reconstructed D0 masses separates signal from

background
I Statistical background subtraction using sPlot

technique

I Covers large kinematic region
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PID Performance
Performance Samples

K 0
S sample for pions

K 0
S → π−π+

I K 0
S mainly decay to pions

I Covering mainly low-momentum region

Λ sample for pions and protons

Λ→ pπ−

I Λ decays mainly to pions and kaons

I Separate proton from pion by kinematics (Armenteros plot)

τ sample for pions

τ− → π−π−π+

I Identify two same-charge pions

I Used for pion to lepton fake rate
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PID Performance
Performance Samples

J/ψ sample for electrons and muons

J/ψ → `−`+

Four-Lepton sample for electrons and muons

e−e+ → e−e+`−`+

Two-Lepton sample for electrons and muons

e−e+ → `−`+(γ)
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PID Performance
Efficiency and Fake-Rate Determination

Efficiency

I Efficiency is the fraction of true particles of
species s that pass a certain PID cut Ps > t
where t is the PID threshold

P(s → s) =
#s(Ps > t)

#s(all)
I For example, the kaon efficiency for a kaonID

cut of 0.6 is

P(K → K ) =
#K (PK > 0.6)

#K (all)

Fake rate

I The fake rate or misidentification rate is the
fraction of true particles of species s that pass
a certain PID cut Ph > t for hypothesis h

P(s → h) =
#s(Ph > t)

#s(all)
I For example, the pion to kaon fake rate is for a

kaonID cut of 0.6 is

P(π → K ) =
#π(PK > 0.6)

#π(all)
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PID Performance
Hadron ID Performance

K/π separation

I Overall good K/π separation

I Improved separation using PIDNN

I Increase in efficiency for p . 1 GeV/c
I Due to dE/dx measurement in CDC

I Good separation in barrel and forward region in
cos θ & −0.5

I PID performance is a function of (p, cos θ, q)
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PID Performance
Lepton ID Performance

`/π separation

I Very good e/π separation due to ECL
I Good electron efficiency (≈ 95 %)
I Low pion fake rate (. 1 %)

I Very good µ/π separation
I For p & 1 GeV/c
I For p . 1 GeV/c, particle does not reach KLM

å Worse µ/π separation as mµ ≈ mπ
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PID Performance
Lepton ID Performance

e/µ separation

I Good e/µ separation
I Good electron efficiency (≈ 95 %)
I Low muon fake rate (. 1 %)
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Correcting for PID Effects
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Correcting for PID Effects

I Not all particle tracks can be identified

å Not all decays are reconstructed and selected
å Number of measured decays smaller than actual

number of decays
å Acceptance / efficiency

I Acceptance is non-uniform in phase-space of the
particle

å Causes deformation of measured distribution

I Acceptance correction done using detector Monte
Carlo (MC) simulation of signal process

å Requires detector simulation to match real
detector performance
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Correcting for PID Effects
Real-Data / Simulation Agreement

I Compare PID performance from detector MC
simulation with real-data using performance samples

I Overall fair agreement on few %-level

I Agreement depends on (p, cos θ, q)
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Correcting for PID Effects
Real-Data / Simulation Correction

Real-Data / Simulation Correction

I Simulation needs to be corrected for real-data/simulation disagreement

I Extract correction factor for each identified particle as a function of (p, cos θ, p) from performance
samples of real and simulated data

Offline reweighting and SysVar package

I Lepton ID: Correction tables at fixed working points (PID cut thresholds) available

I Hadron ID: Correction tables can be extracted from the Systematic Corrections Framework
I At analyst-defined working point
I Analyst can define additional track selection criteria that may affect PID performance

I The correction tables can be applied to simulated data using the SysVar package
(see basf2 documentation)
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Correcting for PID Effects
Real-Data / Simulation Correction

Considerations for analysts

I Lepton ID samples only for fixed PID working points

å You need to tune your selection to the available working points

I Additional track selection criteria, e.g. cut on nCDCHits, may affect the PID performance

å Lepton ID correction tables available only for no additional track criteria
å Hadron ID correction tables must be tuned to your additional track criteria

I Systematic Corrections Framework per default applies cut on nCDCHits>20

I Recommended PID variables, cuts, correction tables, ... differ between releases (data productions)
I Check PID recommendations
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Correcting for PID Effects
Real-Data / Simulation Correction

Systematic Uncertainties

I Real-data/simulation corrections have statistical and systematic uncertainty
I Finite performance-sample size
I Uncertainties from background subtraction (sPlot method, background modeling, ...)
I ...

I Uncertainties provided with correction tables and propagated via the SysVar package

I Dominating systematic uncertainty for some analyses (e.g. lepton-flavor universality in τ decays)

I Many improvements possible
I Take into account correlations in lepton ID systematic uncertainties
I Improve background subtraction
I ....
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Outlook
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Outlook

Release08 data (proc16/MC16) and beyond

I Neural network PID will be extended and to all species
I Can be used already now for

release 06 (proc13/MC15) data

I Also lepton ID corrections will be provided via the
Systematic Corrections Framework

I Improvements in detector likelihoods
(algorithm and calibration)
I Convolutional neural network for ECL reconstruction
I KLM reconstruction using neural networks
I Improved CDC/SVD calibrations taking into account

time after injection
I ...
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Summary

Summary

I PID information from various subdetectors covering different kinematic regimes

I Various PID variables available in basf2 (check recommendation)

I Real-data/simulation corrections provided by PID group (check matching your analysis)

I If you have any questions, reach out to us

I You can contribute to improving our PID: Contact us for a service task

Links / References

I Wiki of PID performance group

I PID Recommendations

I List of service tasks

I PID mailing list: physics-performance-pid

I PID performance-group meetings on Thursday

I PID conveners: Alessandro Gaz, Stefan Wallner
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