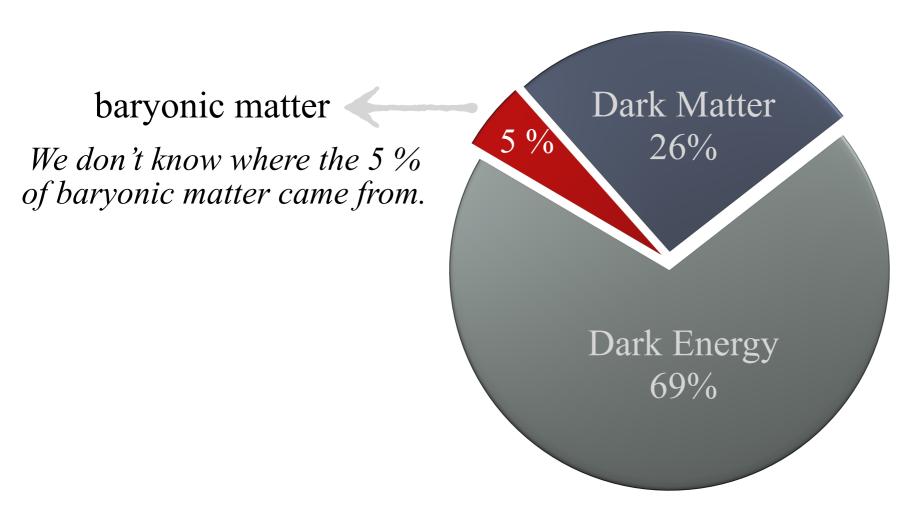
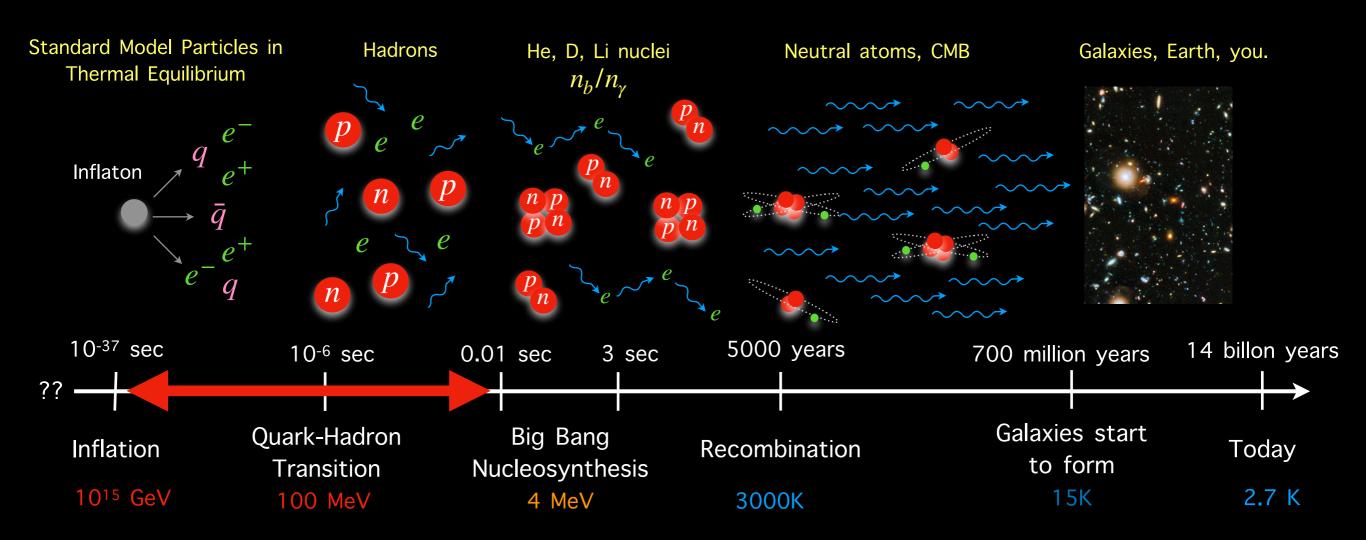
Mesogenesis: Signals of Baryogenesis at *B*-Factories


Gilly Elor

Weinberg Theory Group University of Texas, Austin

Belle-II Physics Week @ KEK
Oct 14 2024

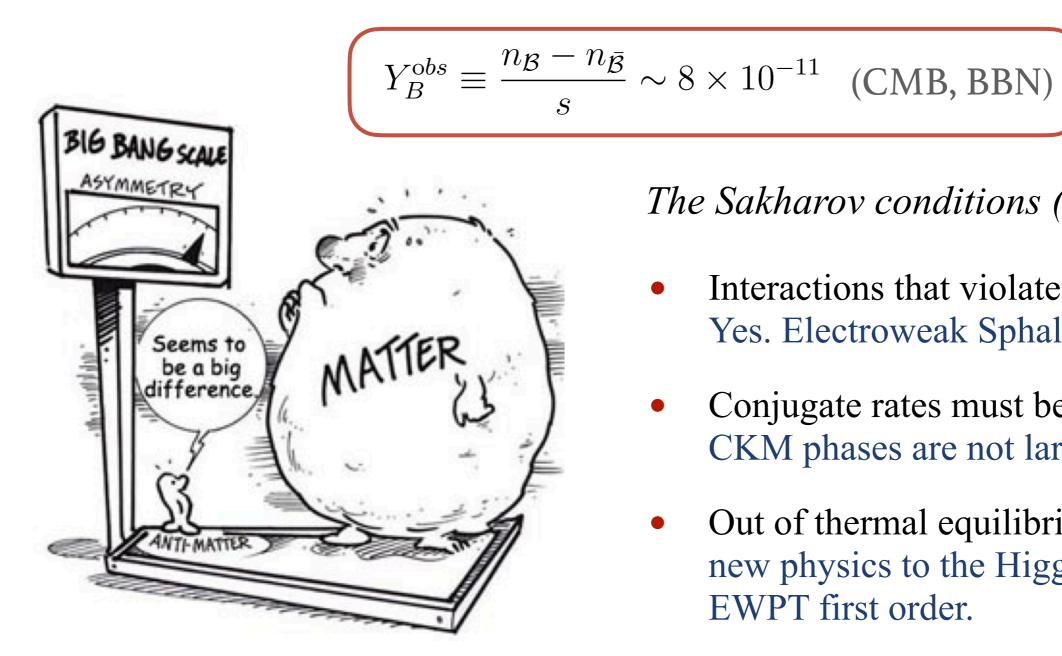
The Contents of the Universe


From cosmological and astrophysical measurements we know:

Energy density today

This talk: Baryogenesis + Dark Matter

Baryogenesis

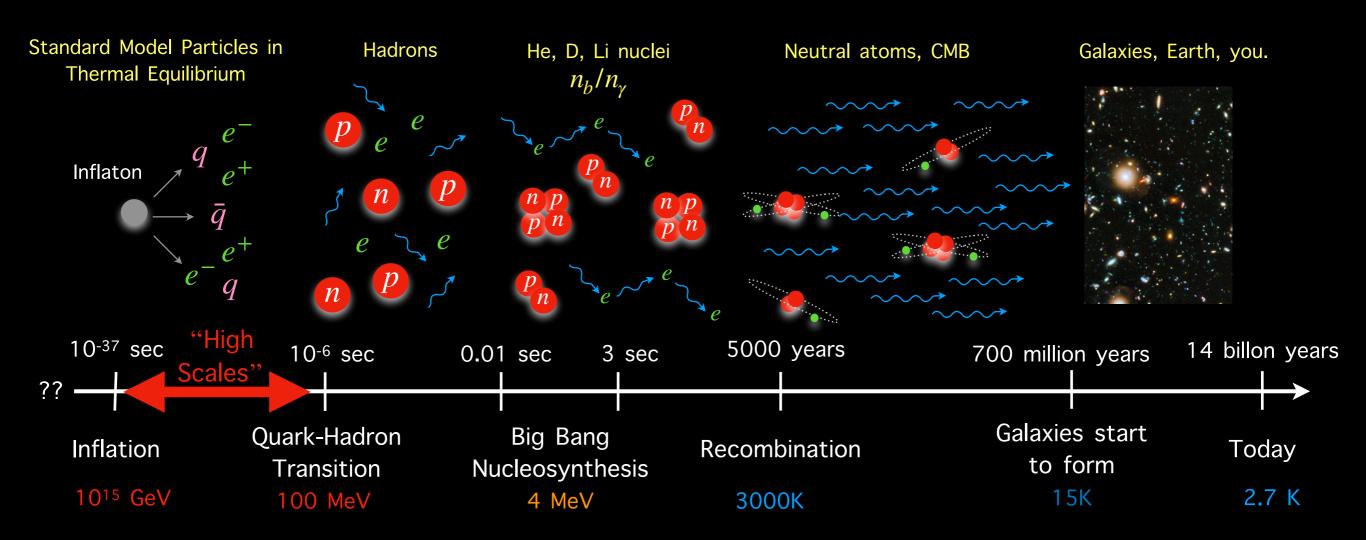

What mechanism generated the initial asymmetry? Observed to be (BBN, CMB):

$$Y_B^{obs} \equiv \frac{n_{\mathcal{B}} - n_{\bar{\mathcal{B}}}}{s} \sim 8 \times 10^{-11}$$

"Yield" = baryon number density / entropy density

From the Standard Model?

How to generate a matter/antimatter asymmetry

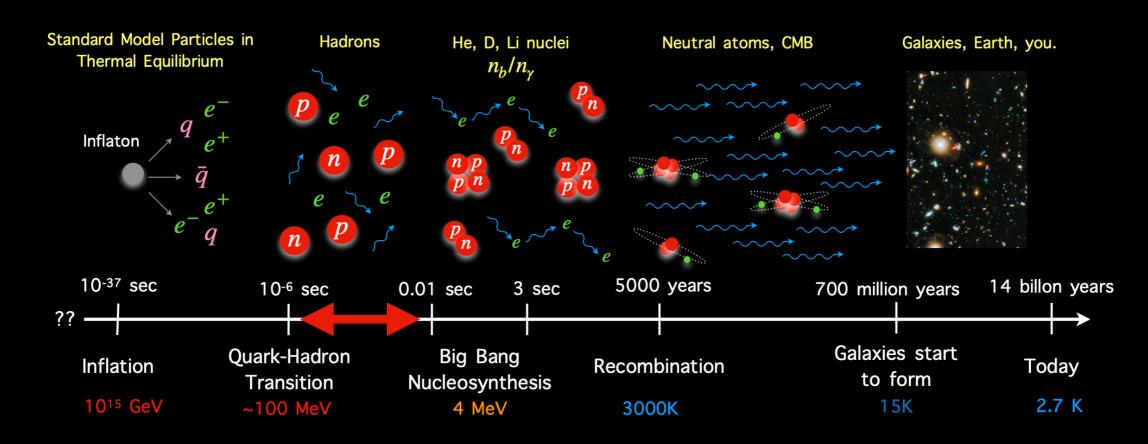


The Sakharov conditions (1967):

- Interactions that violate Baryon number. Yes. Electroweak Sphalerons.
- Conjugate rates must be different. CPV CKM phases are not large enough.
- Out of thermal equilibrium. Need to add new physics to the Higgs sector to make EWPT first order.

Traditional Baryogenesis Mechanisms

The Standard Model CP Violation is not Enough


- Electroweak baryogenesis. Constrained by EDMs.
- Leptogenesis. Hard to test
- GUT baryogenesis. Harder to test.

TF08 Snowmass Paper:

[Elor et. al. arXiv: 2203.05010]

•

Mesogenesis

The Sakharov conditions:

- Out of thermal equilibrium: *GeV scale mesons* produced when the Universe was at MeV scales.
- CP Violation: From SM Meson systems.
- Baryon number violation: SM Meson decays to dark lepton or baryon.

Features:

- Signals!
- The SM CPV can be enough.
- Baryon asymmetry production right before BBN possible.
- Reconstructable dark matter.

Mesogenesis

Mechanisms proposed to date

Mechansim	CPV	Dark Sector	Observables	Relevant Experiments	1
Wediansiii		Dark Sector		Relevant Experiments	
B^0 Mesogenesis	$B_s^0 \ \& \ B_d^0$	dark baryons	$A_{sl}^{s,d}$	LHCb	GE, M. Escudero, A. Nelson
	oscillations		$\operatorname{Br}(B^0 \to \mathcal{B}_{\mathrm{SM}} + X)$	B Factories, LHCb	(2018)
			A_{CP}^D	B Factories, LHCb	
D^+ Mesogenesis	D^{\pm} decays	dark leptons	Br_{D^+}	B Factories, LHCb	GE, R. McGehee (2020)
		and dark baryons	$\operatorname{Br}(D^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU	22, 14 1/16 3 6/16 (2020)
			A_{CP}^B	B Factories, LHCb	F. Elahi, GE , R. McGehee
B^+ Mesogenesis	B^{\pm} decays	dark leptons	Br_{B^+}	B Factories, LHCb	
		and dark baryons	$\operatorname{Br}(B^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU	(2021)
			$A_{CP}^{B_c}$	LHCb, FCC	F. Elahi, GE , R. McGehee
B_c^+ Mesogenesis	B_c^{\pm} decays	dark baryons	$\operatorname{Br}_{B_c^+}$	LHCb, FCC	
			$\operatorname{Br}(B^+ \to \overset{\scriptscriptstyle D_{\operatorname{ch}}}{\mathcal{B}^+_{\operatorname{SM}}} + X)$	B Factories, LHCb	(2021)
Mesogenesis	$B_s^0 \& B_d^0$	dark baryons and	$A_{ m sl,SM}^{ m s,d}$	LHCb	GE, R. Houtz, S. Ipek,
with a Morphing	oscillations	dark phase transition	$\mathbf{D} \cdot (\mathbf{D}) = \mathbf{M} \cdot \mathbf{M}$	B Factories, LHCb	_
Mediator		dank phase transition	Gravitational Waves	Pulsar Timing Arrays, CMB	M. Ulloa, (2024)
Mesogenesis	either $B_d^0, B_s^0,$	dark baryons	$A_{ m CP}^{ m dark}$	EDMs, Flavor Observables	GE, C. Kilic, S. Mathai
with Dark CPV	B^{\pm}, B_c^{\pm} decays	and dark CP phase	$\operatorname{Br}(\mathcal{M} o \mathcal{B}_{\operatorname{SM}} + X)$	B Factories, LHCb	(2024 targeted)
		•			•

"Smoking Gun" Signal at B-Factories

Outline

- Introduction and Neutral B Mesogenesis
- Signals!
- Bigger picture and the space of mechanisms.
- Complementarity of searches.

Based on: [GE, Rachel Houtz, Seyda Ipek, Martha Ulloa, Submitted to PRL, 2408.12647]

[J. Berger, GE, PRL, 2301.04165]

[GE, A. Guerrera, JHEP, 2211.10553]

[G. Alonso-Alvarez, GE, M. Escudero, B. Fornal, B. Grinstein, J.M. Camalich. PRD, 2111.12712]

[F. Elahi, GE, R. McGehee, PRD, 2109.09751]

[GE, R. McGehee, PRD, 2011.06115]


[G. Alonso-Alvarez, GE, M. Escudero, PRD, 2101.02706]

[G. Alonso-Alvarez, GE, E. Nelson, H. Xiao. JHEP, 1907.10612]

[GE, M. Escudero, A. E. Nelson, PRD, 1810.00880]

Upcoming: [GE, Can Kilic, Sanjay Mathai, Fall 2024 (targeted)]

Outline: Part 1

- Introduction and Neutral B Mesogenesis
- Signals!
- Bigger picture and the space of mechanisms.
- Complementarity of searches.

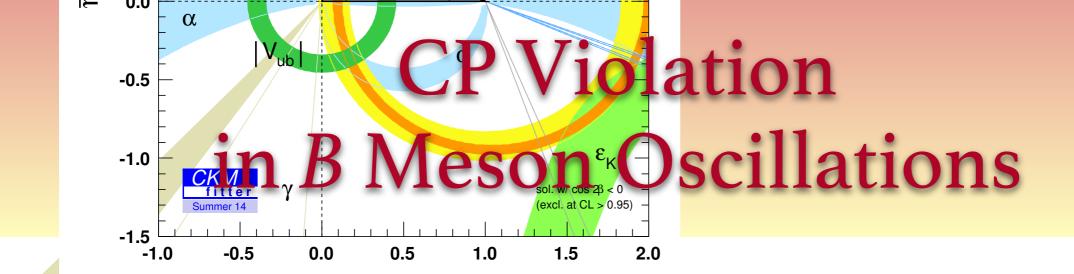
Based on: [GE, Rachel Houtz, Seyda Ipek, Martha Ulloa, Submitted to PRL, 2408.12647],

[J. Berger, GE, PRL, 2301.04165]

[GE, A. Guerrera, JHEP, 2211.10553]

[G. Alonso-Alvarez, GE, M. Escudero, B. Fornal, B. Grinstein, J.M. Camalich. PRD, 2111.12712]

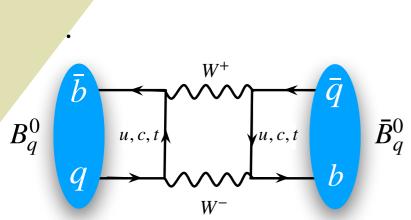
[F. Elahi, GE, R. McGehee, PRD, 2109.09751]


[GE, R. McGehee, PRD, 2011.06115]

[G. Alonso-Alvarez, GE, M. Escudero, PRD, 2101.02706]

[G. Alonso-Alvarez, GE, E. Nelson, H. Xiao. JHEP, 1907.10612]

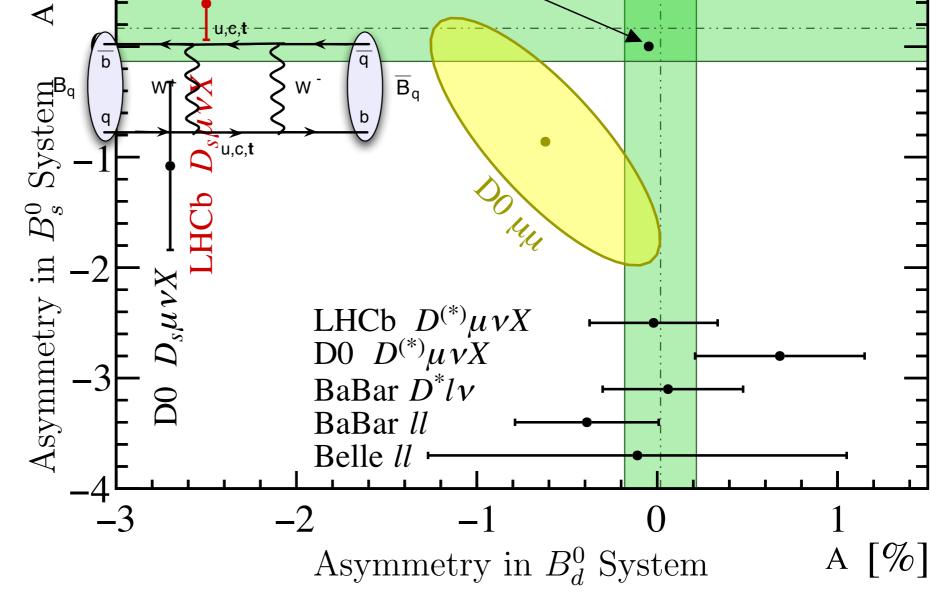
[GE, M. Escudero, A. E. Nelson, PRD, 1810.00880]


Upcoming: [GE, Can Kilic, Sanjay Mathai, Fall 2024 (targeted)]

1.5

2.0

1.0

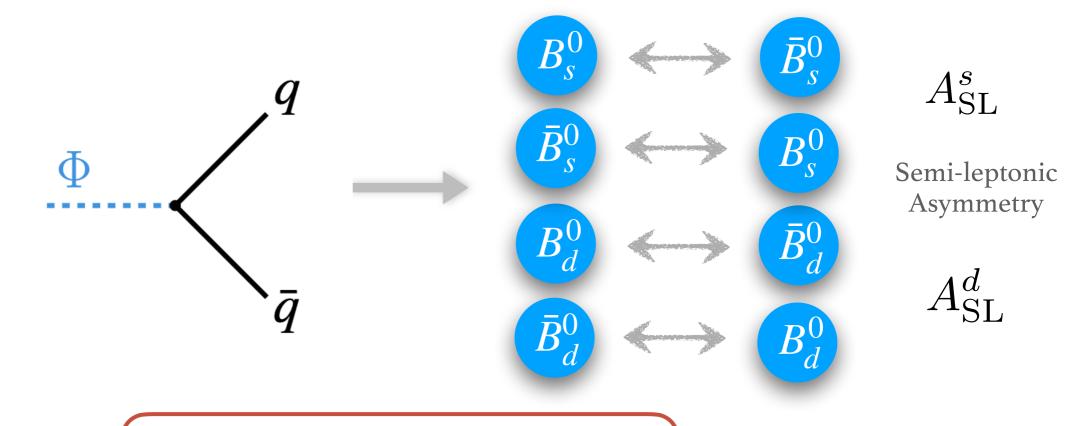


-0.5

0.0

0.5

$$A^d_{sl}|_{\mathrm{SM}}=(-4.7\pm0.4) imes10^{-4}$$
 $A^s_{sl}|_{\mathrm{SM}}=(2.1\pm0.2) imes10^{-5}$ [Lenz, Tetlalmatzi, JHEP, (2020), 1912.07621]



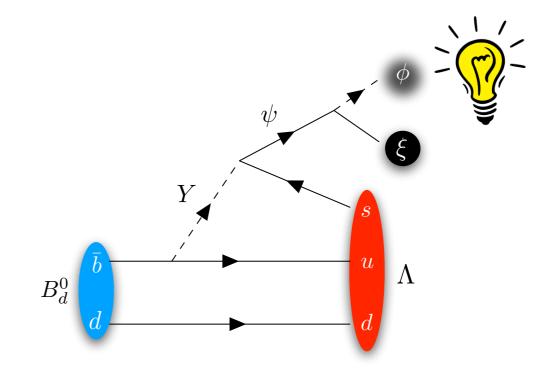
Gershon and V V Gligorov 2017 Rep. Prog. Phys. 80 046201

Sakharov Conditions Out of thermal equilibrium and CPV:

Late decay of an scalar field

Decays at: $\Gamma_{\Phi} = H(T_R)$ to quarks $m_{\Phi} \in [5 \, \mathrm{GeV}, 100 \, \mathrm{GeV}]$

 $3.5 \,\mathrm{MeV} \lesssim T_\mathrm{R} \lesssim 100 \,\mathrm{MeV}$

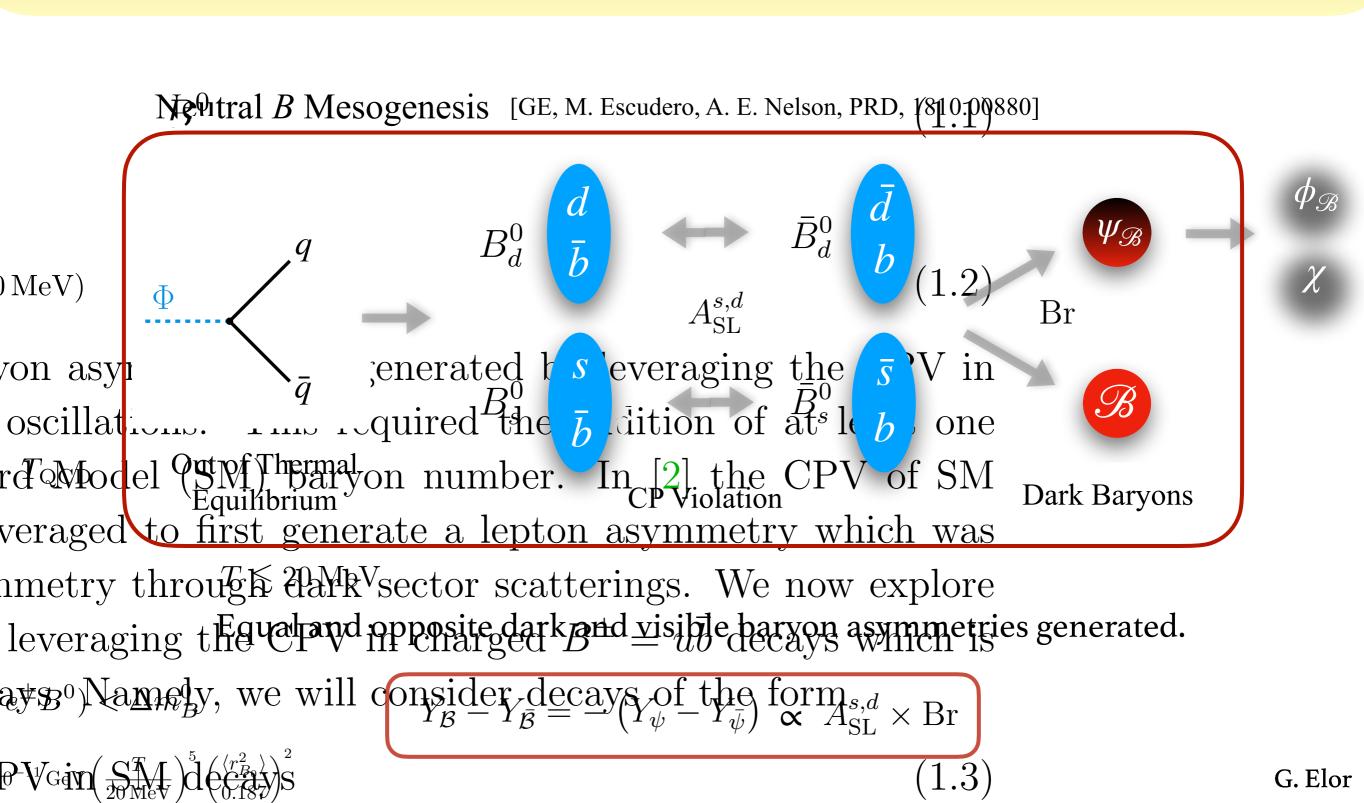

Before BBN

After QCD phase transition

Neutral B Mesogenesis

An Expliciballog

			-	_	TT: J.	1
Field	Spin	Q_{EM}	Be	$\overline{\mathbb{Z}_2}$	Hide	
Φ	0	0		+1	$11-100\mathrm{GeV}$	ra
Y	0	-1/3	-2/3	+1	$\mathcal{O}(\mathrm{TeV})$	
ψ	1/2	0	-1	+1	$\mathcal{O}(\mathrm{GeV})$	
ξ	1/2	0	0	-1	$\mathcal{O}(\mathrm{GeV})$	
ϕ	0	0	$\begin{bmatrix} & B \end{bmatrix}$	VIES -1 -1	$Son_{\mathcal{O}(GeV)}$	—
			Ĺ	<i>!</i> _b =	= U	


Kinematics: $m_{\psi} < m_B - m_{\rm Baryon} < 4.3 \, {\rm GeV}$

Matter stability: $m_{\psi} > m_p - m_e \simeq 937.8 \, \mathrm{MeV}$

Equal and opposite dark and visible baryofi(asympnetries genierated.

$$Y_{\mathcal{B}} - Y_{\bar{\mathcal{B}}} = -\left(Y_{\psi} - Y_{\bar{\psi}}\right)$$

Baryon Asymmetry

New Particles

Colored Mediator:

Dark Baryon:

Field	Spin	Q_{EM}	Baryon no.	\mathbb{Z}_2	Mass
\mathcal{Y}	0	-1/3	-2/3	+1	$\mathcal{O}(\mathrm{TeV})$
$\psi_{\mathcal{B}}$	1/2	0	-1	+1	$\mathcal{O}(\mathrm{GeV})$

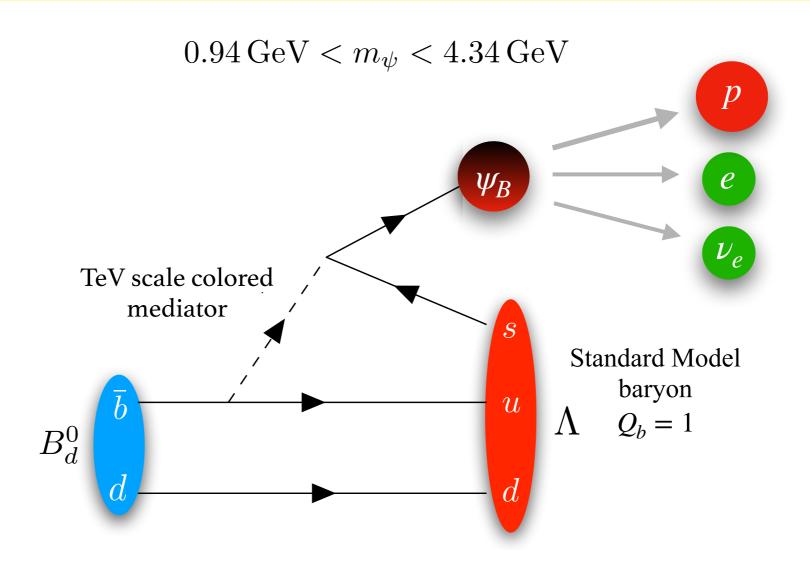
Could be a squark Kinematics forbid proton decay

Allowed by all the symmetries:
$$\mathcal{L}_{\mathcal{Y}} = -\sum_{i,j} y_{u_i d_j} \mathcal{Y}^{\star} \bar{u}_{iR} d_{jR}^c - \sum_k y_{\psi d_k} \bar{\psi}_{\mathcal{B}} \mathcal{Y} d_{kR}^c + \text{h.c.}$$

Effective four fermion operator at MeV scales:

$$\mathcal{O}_{d_k, u_i d_j} = \mathcal{C}_{d_k, u_i d_j} \epsilon_{\alpha \beta \gamma} (\bar{\psi}_{\mathcal{B}} d_k^{\alpha}) (\bar{d}_j^{c \beta} u_i^{\gamma})$$

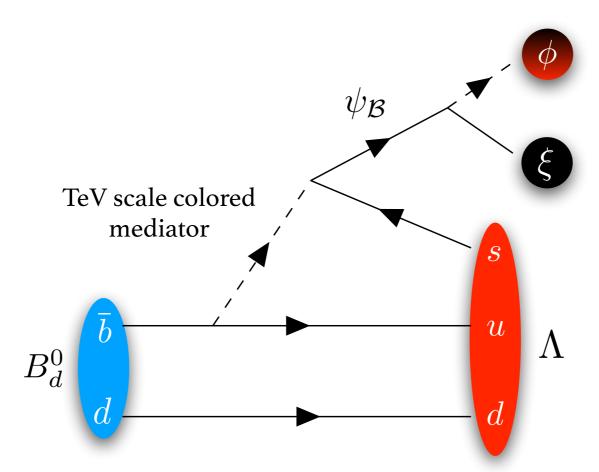
$$\mathcal{C}_{d_k, u_i d_j} \equiv y_{\psi d_k} y_{u_i d_j} / M_{\mathcal{Y}}^2$$


This interaction *does not* change baryon number

SUSY UV completion: [G. Alonso-Alvarez, GE, A. E. Nelson, H. Xiao, JHEP, 1907.10612]

New Decays

Operator/Decay	Initial State	Final state	Directly related to the
	B_d	$\psi + n (udd)$	baryon asymmetry
$\mathcal{O} = \psi b u d$	B_s	$\psi + \Lambda \left(uds \right)$	
$\bar{b} \rightarrow \psi u d$	B^+	$\psi + p \left(duu \right)$	B_d Y_i s
	Λ_b	$\bar{\psi} + \pi^0$	$\bar{b} \longrightarrow \bar{l} u \Lambda$
	B_d	$\psi + \Lambda \left(usd \right)$	$d \longrightarrow d$
$\mathcal{O} = \psi b u s$	B_s	$\psi + \Xi^0 (uss)$	
$\overline{b} \rightarrow \psi u s$	B^+	$\psi + \Sigma^+ (uus)$	Indirect Signals
	Λ_b	$\bar{\psi} + K^0$	₩ 3
	B_d	$\psi + \Lambda_c + \pi^- \left(cdd \right)$	B^+ Y
$\mathcal{O} = \psi b c d$	B_s	$\psi + \Xi_c^0 \left(cds \right)$	$\bar{b} \longrightarrow \bar{b} \longrightarrow \bar{b}$
$\bar{b} \rightarrow \psi c d$	B^+	$\psi + \Lambda_c \left(dcu \right)$	$u \longrightarrow u$
	Λ_b	$\bar{\psi} + \overline{D}^0$	
	B_d	$\psi + \Xi_c^0 \left(csd \right)$	$\psi_{\mathscr{B}}$
$\mathcal{O} = \psi b c s$	B_s	$\psi + \Omega_c \left(css \right)$	Λ_b^0 b \bar{s}
$\bar{b} \rightarrow \psi c s$	B^+	$\psi + \Xi_c^+ (csu)$	d d K^{0}
	Λ_b	$\bar{\psi} + D^- + K^+$	


Dark Matter?

The dark baryon is unstable and will decay to baryonic matter, washing out the asymmetry. ψ_B cannot be the dark matter.

Two-Component Dark Matter

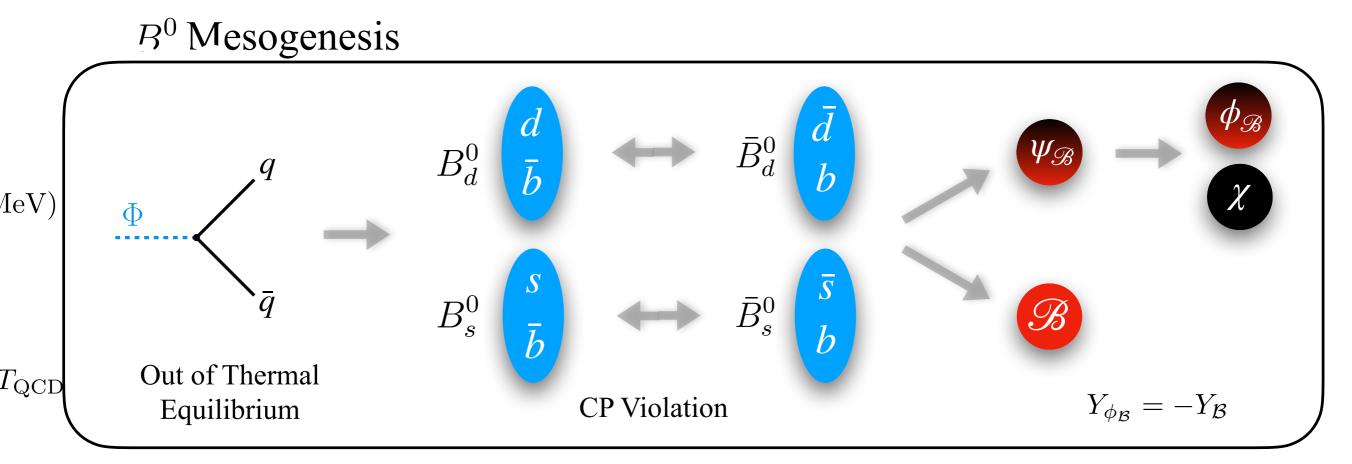
Dark fermion must quickly decay within the dark sector $\mathcal{L}_d \supset y_d \bar{\psi}_{\mathcal{B}} \xi \phi$

Dark scalar anti-baryon $Q_b = -1$

Dark Majorana fermion $Q_b = 0$

DM stability/asymmetry preserved if:

$$m_{\phi} < m_p + m_e + m_{\xi}$$


Generated asymmetry:

$$Y_{\mathcal{B}} - Y_{\bar{\mathcal{B}}} = -(Y_{\phi} - Y_{\phi^*})$$

Neutral B Mesogenesis

[GE, M. Escudero, A. E. Nelson, PRD, 1810.00880]

Baryogenesis and Dark Matter from *B* Mesons

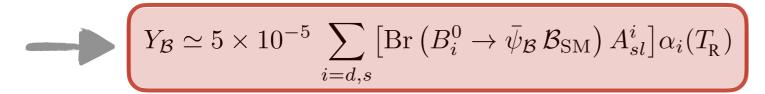
 $T \lesssim 20 \,\mathrm{MeV}$

Boltzmann Equations

Scalar, Radiation, Hubble:

$$\frac{dn_{\Phi}}{dt} + 3Hn_{\Phi} = -\Gamma_{\Phi}n_{\Phi}$$

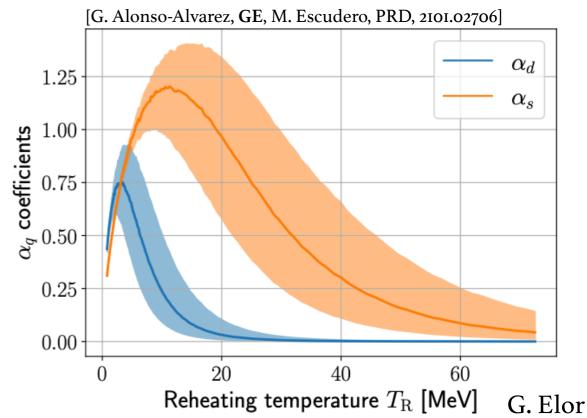
$$\frac{d\rho_{\text{rad}}}{dt} + 4H\rho_{\text{rad}} = +\Gamma_{\Phi}m_{\Phi}n_{\Phi}$$


$$H^{2} = \frac{8\pi}{3M_{\text{Pl}}^{2}} \left(\rho_{\text{rad}} + m_{\Phi}n_{\Phi}\right)$$

Dark Matter:

$$\frac{dn_{\phi+\phi^*}}{dt} + 3H \, n_{\phi+\phi^*} = 2\Gamma_{\Phi}^B \, n_{\Phi} - 2\langle \sigma v \rangle_{\phi} \left(n_{\phi+\phi^*}^2 - n_{\text{eq},\phi+\phi^*}^2 \right)$$

Baryon Asymmetry:

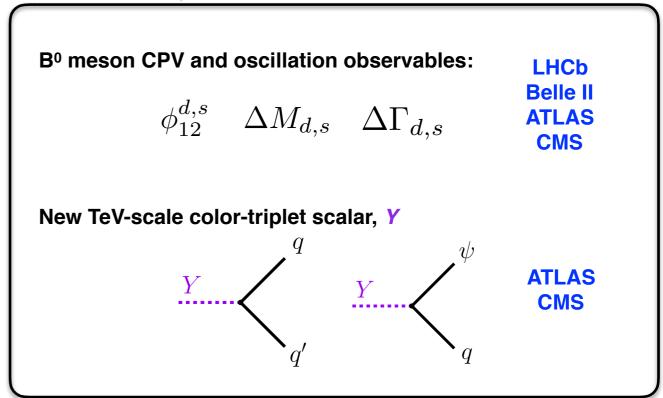

$$\frac{dn_{\phi-\phi^*}}{dt} + 3Hn_{\phi-\phi^*} = 2\Gamma_{\Phi}^B \sum_{q} \operatorname{Br}\left(\bar{b} \to B_q^0\right) A_{\operatorname{SL}}^q f_{\operatorname{deco}}^q n_{\Phi}$$

(product of two experimental observables)

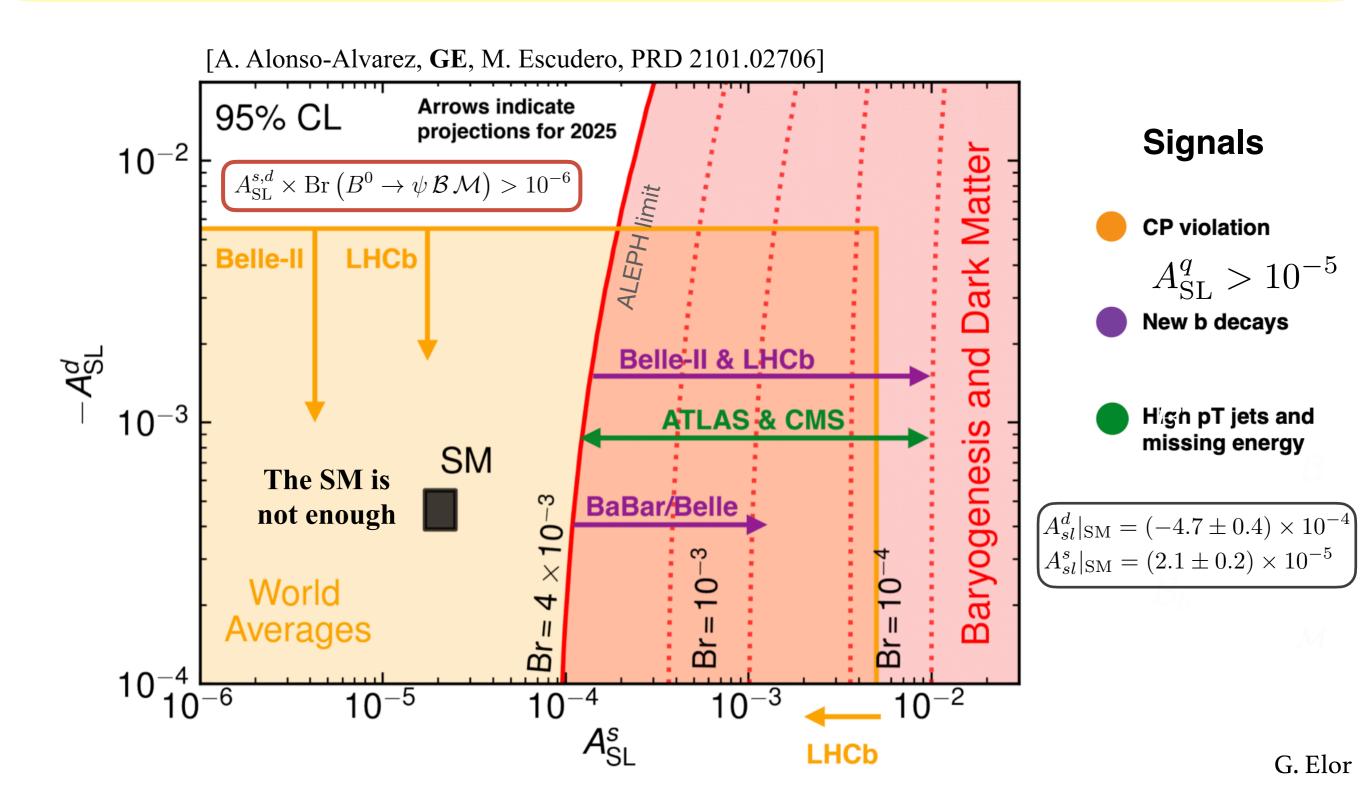
Prediction: to generated the observed baryon asymmetry

$$A_{\rm SL}^{s,d} \times \operatorname{Br}\left(B^0 \to \psi \,\mathcal{B} \,\mathcal{M}\right) > 10^{-6}$$

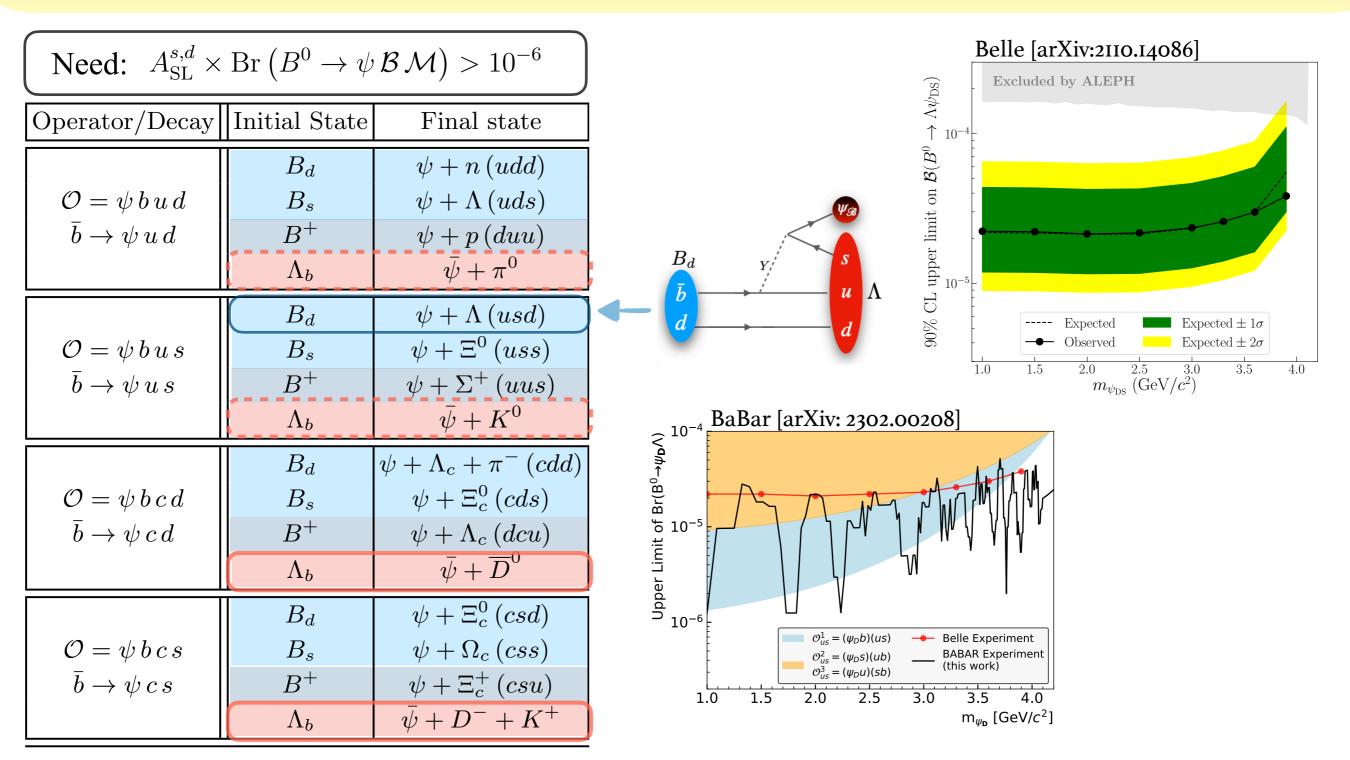
Signals of Neutral B-Mesogenesis


[A. Alonso-Alvarez, GE, M. Escudero, PRD, 2101.02706]

Collider Signals of Baryogenesis and Dark Matter from B Mesons (*B-Mesogenesis*)


Direct Signals

Semileptonic asymmetry: $A_{\rm SL}^q>10^{-5}$ Belle II LHCb ATLAS CMS New B meson decay: BaBar Belle Belle II LHCb New b-Baryon decay: LHCb? ATLAS?? CMS??


Indirect Signals

Neutral B Mesogenesis Discovery Potential

Collider Searches for B-Mesogensis

Collider Searches for B-Mesogensis

Need:	$A^{s,d}_{\mathrm{SL}} \times \mathrm{Br}$ ($(B^0 o \psi \mathcal{B} \mathcal{M})$	$> 10^{-6}$
-------	--	---	-------------

Operator/Decay	Initial State	Final state
	B_d	$\psi + n (udd)$
$\mathcal{O} = \psi b u d$	B_s	$\psi + \Lambda \left(uds \right)$
$\bar{b} \rightarrow \psi u d$	B^+	$\psi + p\left(duu\right)$
	Λ_b	$ar{\psi} + \pi^0$
	B_d	$\psi + \Lambda \left(usd ight)$
$\mathcal{O} = \psi b u s$	B_s	$\psi + \Xi^0 (uss)$
$\bar{b} \rightarrow \psi u s$	B^+	$\psi + \Sigma^{+} (uus)$
	Λ_b	$ar{\psi} + K^0$
	B_d	$\psi + \Lambda_c + \pi^- \left(cdd \right)$
$\mathcal{O} = \psi b c d$	B_s	$\psi + \Xi_c^0 \left(cds \right)$
$\bar{b} \rightarrow \psi c d$	B^+	$\psi + \Lambda_c \left(dcu \right)$
	Λ_b	$ar{\psi} + \overline{D}^0$
	B_d	$\psi + \Xi_c^0 \left(csd \right)$
$\mathcal{O} = \psi b c s$	B_s	$\psi + \Omega_c \left(css \right)$
$\bar{b} \rightarrow \psi c s$	B^+	$\psi + \Xi_c^+ (csu)$
	Λ_b	$\bar{\psi} + D^- + K^+$

Three other channels through which neutral B Mesogenesis can proceed.

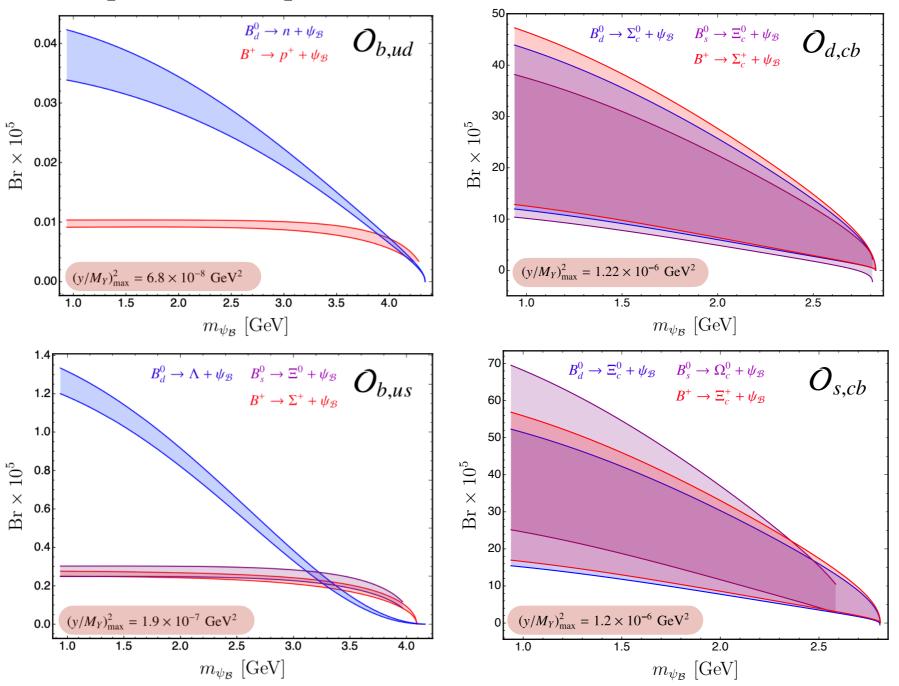
Look here!

Collider Searches for B-Mesogensis

Need: $A_{\rm SL}^{s,d} \times \text{Br}\left(B^0 \to \psi \,\mathcal{B}\,\mathcal{M}\right) > 10^{-6}$

Operator/Decay	Initial State	Final state
$\mathcal{O} = \psi b u d$	B_d B_s	$\psi + n (udd)$ $\psi + \Lambda (uds)$
$\bar{b} \to \psi u d$	B^+ Λ_b	$\frac{\psi + p \left(duu\right)}{\bar{\psi} + \pi^0}$
	$igcap B_d$	$\psi + \Lambda \left(usd \right)$
$\mathcal{O} = \psi b u s$	B_s	$\psi + \Xi^0 (uss)$
$\bar{b} \rightarrow \psi u s$	$B^+ \over \Lambda_b$	$\psi + \Sigma^{+} (uus)$ $\bar{\psi} + K^{0}$
	B_d	$\psi + \Lambda_c + \pi^- (cdd)$
$\mathcal{O} = \psi b c d$	B_s	$\psi + \Xi_c^0 \left(cds \right)$
$\bar{b} o \psi c d$	B^+	$\psi + \Lambda_c \left(dcu \right)$
	Λ_b	$\overline{\psi} + \overline{D}^0$
	B_d	$\psi + \Xi_c^0 \left(csd \right)$
$\mathcal{O} = \psi b c s$	B_s	$\psi + \Omega_c \left(css \right)$
$ar{b} ightarrow \psi c s$	B^+	$\psi + \Xi_c^+ \left(csu \right)$
	Λ_b	$\bar{\psi} + D^- + K^+$

Should Belle improve the sensitivity? Can we do baryogenesis with with $Br < 10^{-5}$?

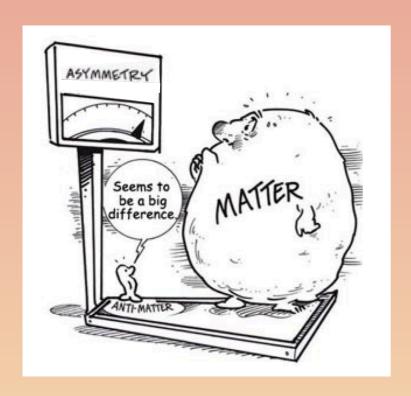

Yes!

Three other channels through which neutral B Mesogenesis can proceed.

Look here!

Aside: Theory Support

Experimental input: exclusive rates


Use QCD techniques to compute meson to baryon decay rates in Mesogenesis [GE, A. Guerrera. JHEP, arXiv:2211.10553]

Limit on the coupling from re-casting LHC searches for squarks

[A. Alonso-Alvarez, **GE**, M. Escudero, PRD, arXiv:2101.02706]

Can theorists do more to help experimentalists? - Get in touch!

Outline: Part 2

- Introduction and Neutral B Mesogenesis
- Signals!
- Bigger picture and the space of mechanisms.
- Complementarity of searches.

Based on: [GE, Rachel Houtz, Seyda Ipek, Martha Ulloa, Submitted to PRL, 2408.12647],

[J. Berger, GE, PRL, 2301.04165]

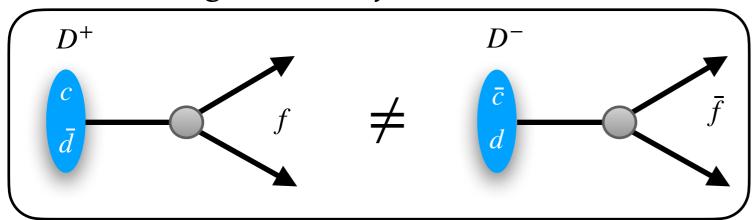
[GE, A. Guerrera, JHEP, 2211.10553]

[G. Alonso-Alvarez, GE, M. Escudero, B. Fornal, B. Grinstein, J.M. Camalich. PRD, 2111.12712]

[F. Elahi, GE, R. McGehee, PRD, 2109.09751]

[GE, R. McGehee, PRD, 2011.06115]

[G. Alonso-Alvarez, GE, M. Escudero, PRD, 2101.02706]


[G. Alonso-Alvarez, GE, E. Nelson, H. Xiao. JHEP, 1907.10612]

[GE, M. Escudero, A. E. Nelson, PRD, 1810.00880]

Upcoming: [GE, Can Kilic, Sanjay Mathai, Fall 2024 (targeted)]

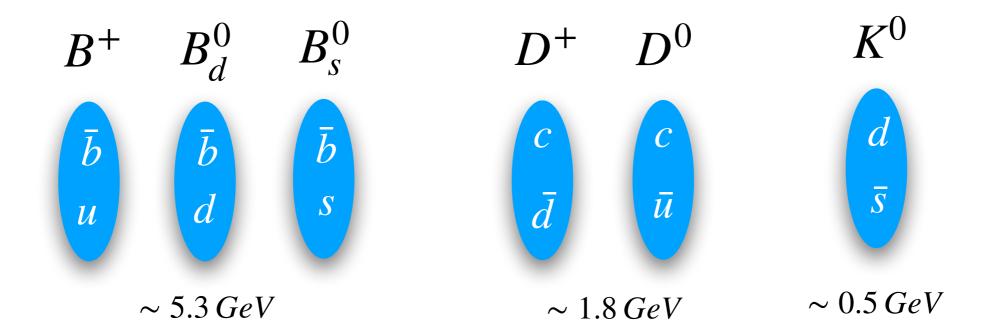
Why Neutral B Mesons?

CPV in charged *D* decays:

Observable:

$$A_{CP}^{f} = \frac{\Gamma(D^{+} \to f) - \Gamma(D^{-} \to \bar{f})}{\Gamma(D^{+} \to f) + \Gamma(D^{-} \to \bar{f})}$$

Not a small number. We want to explain: ◀

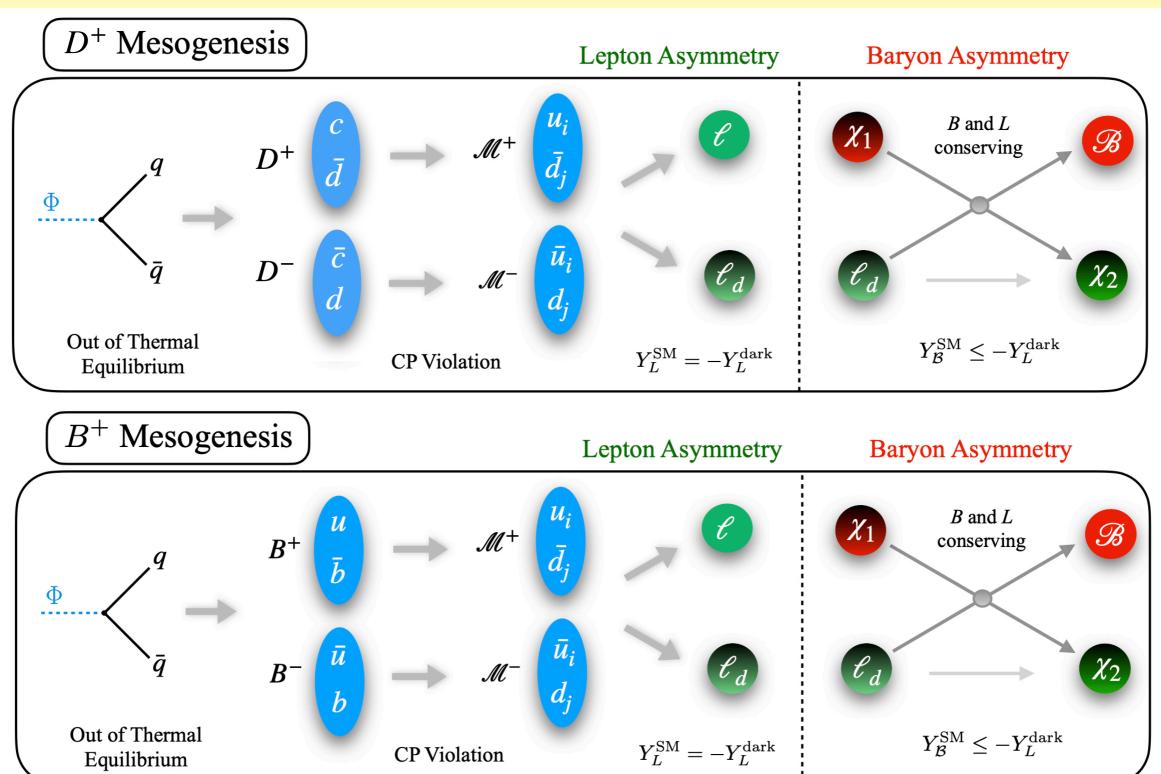

$$Y_B^{\text{obs}} = (8.718 \pm 0.004) \times 10^{-11}$$

Particle Data Group:

D^+ decay mode	$A_{CP}^f/10^{-2}$
$K^0_S\pi^+$	-0.41 ± 0.09
$K^-\pi^+\pi^+$	-0.18 ± 0.16
$K^-\pi^+\pi^+\pi^0$	$-0.3 \pm 0.6 \pm 0.4$
$K_S^0 \pi^+ \pi^0$	$-0.1 \pm 0.7 \pm 0.2$
$K_S^0\pi^+\pi^+\pi^-$	$0.0 \pm 1.2 \pm 0.3$
$\pi^{+}\pi^{0}$	2.4 ± 1.2
$\pi^+\eta$	1.0 ± 1.5
$\pi^+\eta$	1.0 ± 1.5
$\pi^+\eta'(958)$	-0.6 ± 0.7
$K^+K^-\pi^+$	0.37 ± 0.29
$\phi\pi^+$	0.01 ± 0.09
$a_0(1450)^0\pi^+$	$-19 \pm 12^{+8}_{-11}$
$\phi(1680)\pi^{+}$	$-9 \pm 22 \pm 14$
$\pi^+\pi^+\pi^-$	-1.7 ± 4.2

G. Elor

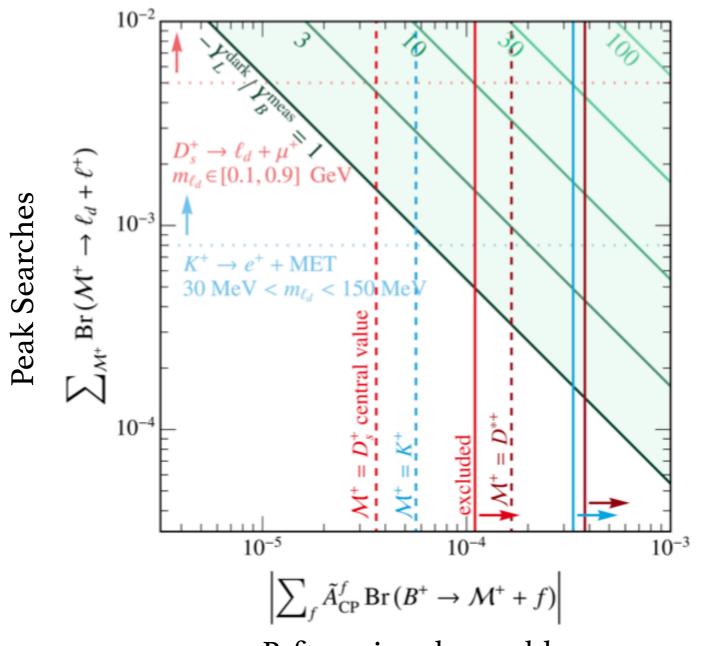
Why Neutral B Mesons?


$$m_{\psi_B} > m_p - m_e \simeq 937.8 \,\mathrm{MeV}$$

Kinematics: Dark baryons must be GeV scale. Only *B* mesons are heavy enough to decay into GeV scale.

First generate a lepton asymmetry

Charged D and B Mesogenesis


[GE, R. McGehee, PRD, 2011.06115] and [F. Elahi, GE, R. McGehee, PRD, 2109.09751]

G. Elor

B⁺ Mesogenesis

[GE, R. McGehee, PRD, 2011.06115] and [F. Elahi, GE, R. McGehee, PRD, 2109.09751]

B-factories observables

The Space of Mesogensis Mechanisms

Mechansim	CPV	Dark Sector	Observables	Relevant Experiments	
B^0 Mesogenesis	$B_s^0 \ \& \ B_d^0$	dark baryons	$A_{sl}^{s,d}$	LHCb	GE, M. 1
	oscillations		$\operatorname{Br}(B^0 \to \mathcal{B}_{\operatorname{SM}} + X)$	B Factories, LHCb	(2018)
			A_{CP}^D	B Factories, LHCb	
D^+ Mesogenesis	D^{\pm} decays	dark leptons	Br_{D^+}	B Factories, LHCb	GE, R. M
		and dark baryons	$Br(D^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU	
			A_{CP}^B	B Factories, LHCb	F. Elahi,
B^+ Mesogenesis	B^{\pm} decays	dark leptons	Br_{B^+}	B Factories, LHCb	(2021)
		and dark baryons	$Br(B^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU	(2021)
			$A_{CP}^{B_c}$	LHCb, FCC	 F. Elahi,
B_c^+ Mesogenesis	B_c^{\pm} decays	dark baryons	$\operatorname{Br}_{B_c^+}$	LHCb, FCC	(202I)
			$\operatorname{Br}(B^+ \to \mathcal{B}^c_{\operatorname{SM}} + X)$	B Factories, LHCb	(2021)
Mesogenesis	$B_s^0 \ \& \ B_d^0$	dark baryons and	$A_{ m sl,SM}^{ m s,d}$	LHCb	 G E, R. H
with a Morphing	oscillations	dark phase transition	$\operatorname{Br}(B^0 o \mathcal{B}_{\operatorname{SM}} + X)$	B Factories, LHCb	M. Ulloa
Mediator			Gravitational Waves	Pulsar Timing Arrays, CMB	141. 01102
Mesogenesis	either $B_d^0, B_s^0,$	dark baryons	$A_{ m CP}^{ m dark}$	EDMs, Flavor Observables	GE , C. K
with Dark CPV	B^{\pm}, B_c^{\pm} decays	and dark CP phase	$\operatorname{Br}(\mathcal{M} o \mathcal{B}_{\operatorname{SM}} + X)$	B Factories, LHCb	(2024 tai

GE, M. Escudero, A. Nelsor (2018)

GE, R. McGehee (2020)

F. Elahi, **GE**, R. McGehee (**202**1)

F. Elahi, GE, R. McGehee (2021)

GE, R. Houtz, S. Ipek, M. Ulloa, (2024)

GE, C. Kilic, S. Mathai (2024 targeted)

Common to all mechanisms proposed to date:

colored mediator
$$\mathcal{L}_{\mathcal{Y}} = -\sum_{i,j} y_{u_i d_j} \mathcal{Y}^{\star} \bar{u}_{iR} d^c_{jR} - \sum_k y_{\psi d_k} \bar{\psi}_{\mathcal{B}} \mathcal{Y} d^c_{kR} + \text{h.c.} + \text{dark sector}$$

One mechanisms direct signal is another mechanisms indirect signal

The Space of Mesogensis Mechanisms

Mechansim	CPV	Dark Sector	Observables	Relevant Experiments
B^0 Mesogenesis	$B_s^0 \ \& \ B_d^0$	dark baryons	$A_{sl}^{s,d}$	LHCb
	oscillations		$\operatorname{Br}(B^0 \to \mathcal{B}_{\operatorname{SM}} + X)$	B Factories, LHCb
			A_{CP}^D	B Factories, LHCb
D^+ Mesogenesis	D^{\pm} decays	dark leptons	Br_{D^+}	B Factories, LHCb
		and dark baryons	$\operatorname{Br}(D^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU
			A_{CP}^B	B Factories, LHCb
B^+ Mesogenesis	B^{\pm} decays	dark leptons	Br_{B^+}	B Factories, LHCb
		and dark baryons	$\operatorname{Br}(B^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU
			$A_{CP}^{B_c}$	LHCb, FCC
B_c^+ Mesogenesis	B_c^{\pm} decays	dark baryons	$\operatorname{Br}_{B_c^+}$	LHCb, FCC
			$\operatorname{Br}(B^+ \to \mathcal{B}^c_{\operatorname{SM}} + X)$	B Factories, LHCb
Mesogenesis	$B_{s}^{0} \ \& \ B_{d}^{0}$	dark baryons and	$A_{ m sl,SM}^{ m s,d}$	LHCb
with a Morphing	oscillations	dark phase transition	$\operatorname{Br}(B^0 \to \mathcal{B}_{\mathrm{SM}} + X)$	B Factories, LHCb
Mediator			Gravitational Waves	Pulsar Timing Arrays, CMB
Mesogenesis	either $B_d^0, B_s^0,$	dark baryons	$A_{ m CP}^{ m dark}$	EDMs, Flavor Observables
with Dark CPV	B^{\pm}, B_c^{\pm} decays	and dark CP phase	$\operatorname{Br}(\mathcal{M} o \mathcal{B}_{\operatorname{SM}} + X)$	B Factories, LHCb
	•	•		

GE, M. Escudero, A. Nelsor (2018)

GE, R. McGehee (2020)

F. Elahi, GE, R. McGehee (2021)

F. Elahi, GE, R. McGehee (2021)

GE, R. Houtz, S. Ipek, M. Ulloa, (2024)

GE, C. Kilic, S. Mathai (2024 targeted)

Baryogenesis with only the SM CP Violation

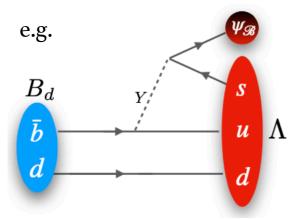
Common to all mechanisms proposed to date:

colored mediator
$$\mathcal{L}_{\mathcal{Y}} = -\sum_{i,j} y_{u_i d_j} \mathcal{Y}^{\star} \bar{u}_{iR} d^c_{jR} - \sum_k y_{\psi d_k} \bar{\psi}_{\mathcal{B}} \mathcal{Y} d^c_{kR} + \text{h.c.} + \text{dark sector}$$

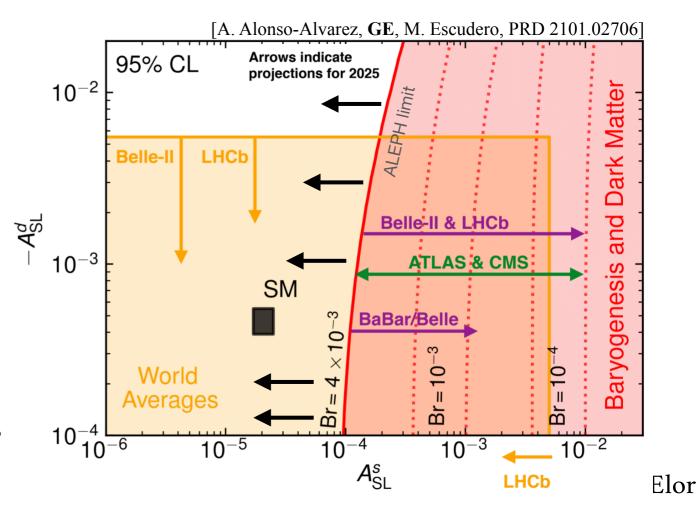
One mechanisms direct signal is another mechanisms indirect signal

Mesogensis with a Morphing Mediator

[GE, Rachel Houtz, Seyda Ipek, Martha Ulloa, Submitted to PRL, 2408.12647]

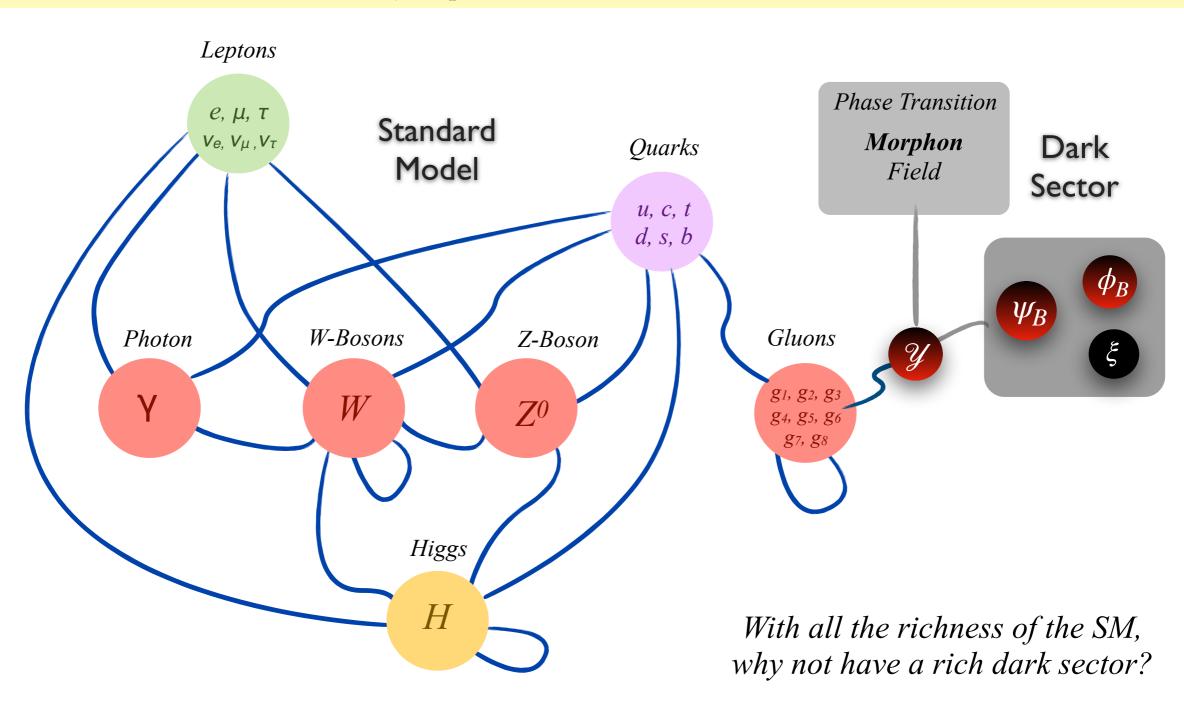

• Baryon asymmetry produced through decays mediated by a heavy colored particle:

$$\mathcal{O}_{d_k, u_i d_j} = \mathcal{C}_{d_k, u_i d_j} \epsilon_{\alpha \beta \gamma} (\bar{\psi}_{\mathcal{B}} d_k^{\alpha}) (\bar{d}_j^{c \beta} u_i^{\gamma})$$

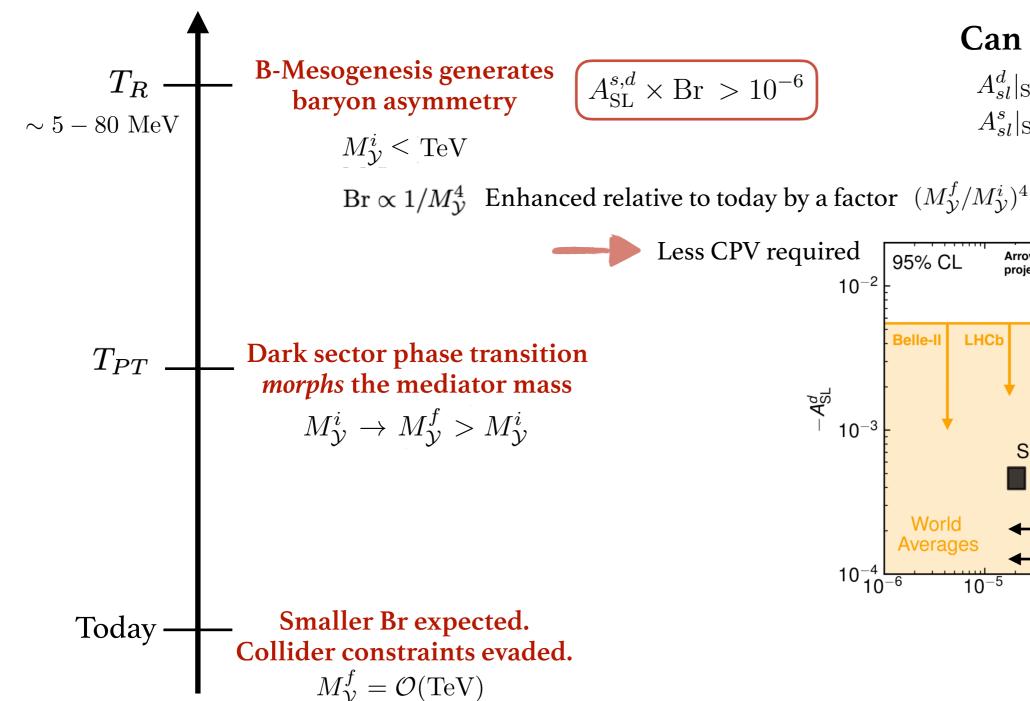

$$\mathcal{C}_{d_k, u_i d_j} \equiv y_{\psi d_k} y_{u_i d_j} / M_{\mathcal{Y}}^2$$

- Collider constraints require mediator Y to have a TeV scale mass
- Perturbativity: $y_{\psi d_k}, y_{u_i d_j} \lesssim 4\pi$
- Branching fraction:

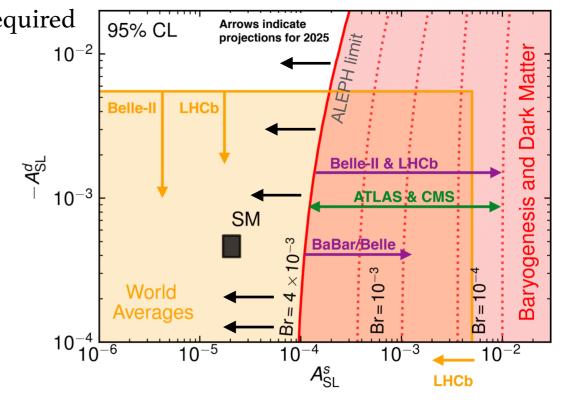
$${
m Br} \propto 1/M_{\mathcal{Y}}^4$$



What if the mediator was lighter during the era of baryon production than it is today?


Morphing the Mediator

[GE, Rachel Houtz, Seyda Ipek, Martha Ulloa, Submitted to PRL, 2408.12647]

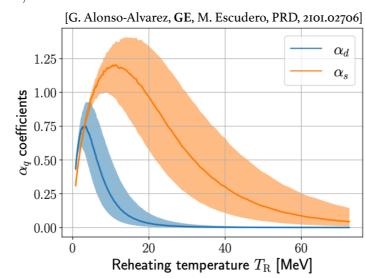

Morphing the Mediator

[GE, Rachel Houtz, Seyda Ipek, Martha Ulloa, Submitted to PRL, 2408.12647]

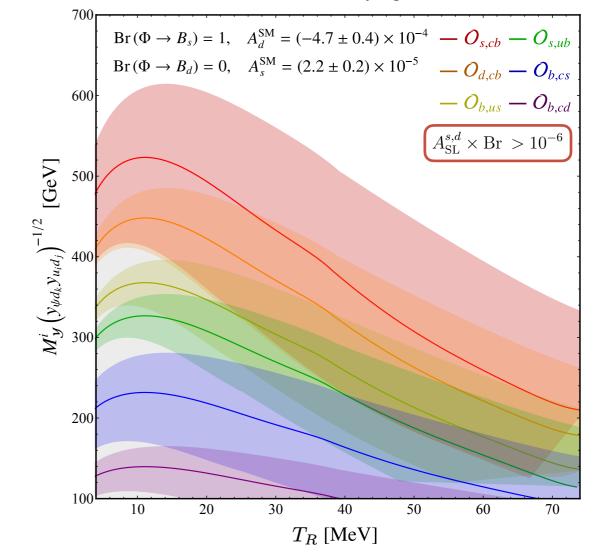
Can the SM be enough?

$$A_{sl}^d|_{SM} = (-4.7 \pm 0.4) \times 10^{-4}$$

 $A_{sl}^s|_{SM} = (2.1 \pm 0.2) \times 10^{-5}$



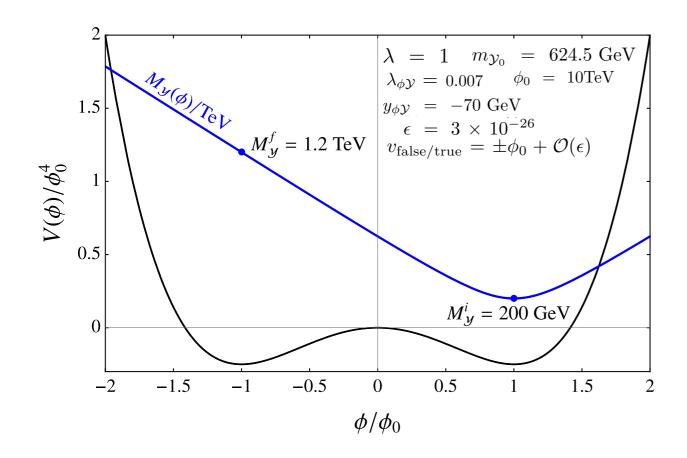
Can the SM CPV be enough? Yes!

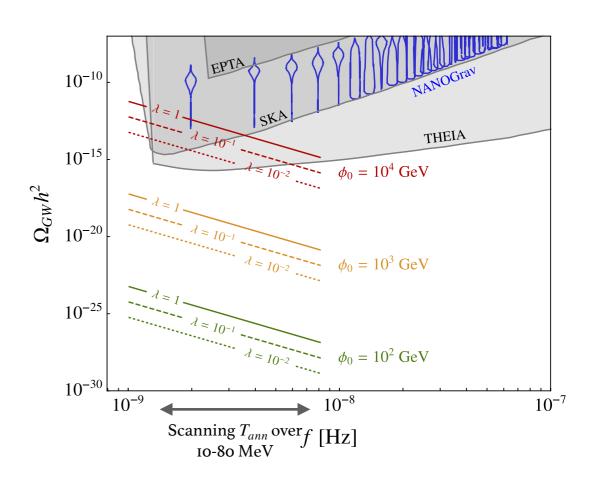

[GE, Rachel Houtz, Seyda Ipek, Martha Ulloa, Submitted to PRL, 2408.12647]

		$\Gamma_0 \equiv \Gamma_B _{m_{\psi_B}}$	$_{oldsymbol{eta}=1\mathrm{GeV}}/\mathcal{C}_{b,u_id_j}^2$
Operator	$(M_{\mathcal{Y}}^f)_{\min} [ext{TeV}]$	Decay	$\Gamma_0 \left[{ m GeV^5} ight]$
$\mathcal{O}_{b,ud}$	$\sim 1.7 \sqrt{y_{\psi b} y_{ud}}$	$B_d o ar{\psi}_{\mathcal{B}} n$	$3.5_{\pm0.4} \cdot 10^{-5}$
		$B_s o ar{\psi}_{\mathcal{B}} \Lambda$	n.a.
$\mathcal{O}_{b,us}$	$\sim 1.7 \sqrt{y_{\psi b} y_{us}}$	$B_d o ar{\psi}_{\mathcal{B}} \Lambda$	$1.4_{\pm 0.1} \cdot 10^{-4}$
	·	$B_s o ar{\psi}_{\mathcal{B}} \Xi^0$	$3.2_{\pm0.1}\!\cdot\!10^{-5}$
$\mathcal{O}_{b,cd}$	$\sim 0.9 \sqrt{y_{\psi b} y_{cd}}$	$B_d o ar{\psi}_{\mathcal{B}} \Sigma_c^0$	$0.7_{\pm 0.4} \cdot 10^{-6}$
		$B_s o ar{\psi}_{\mathcal{B}} \Xi_c^0$	$6.6_{\pm 3.3} \cdot 10^{-7}$
$\mathcal{O}_{b,cs}$	$\sim 0.9 \sqrt{y_{\psi b} y_{cs}}$	$B_d o ar{\psi}_{\mathcal{B}} \Xi_c^0$	$4.7_{\pm 2.0} \cdot 10^{-6}$
		$B_s o \bar{\psi}_{\mathcal{B}} \Omega_c$	$5.0_{\pm 3.0} \cdot 10^{-6}$
\mathcal{O}_{d_k,u_id_j}			

$$Y_{\mathcal{B}} \simeq 5 \times 10^{-5} \sum_{i=d,s} \left[A_{\rm SL}^{s,d} \times \text{Br} \right] \alpha_i(T_{\rm R})$$

Successful Baryogenesis




Morphing the Mediator

[GE, Rachel Houtz, Seyda Ipek, Martha Ulloa, Submitted to PRL, 2408.12647]

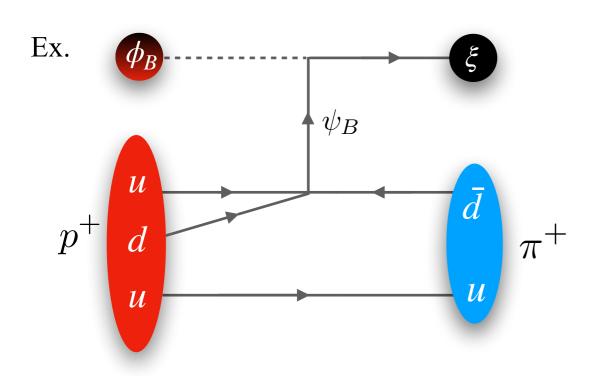
A mediator mass increase from ~200-500 GeV to about 1 TeV will generate the baryon asymmetry with only the SM CPV

- Toy morphon potential $V_{\text{scalar}} = m_{\mathcal{Y}_0^2} |\mathcal{Y}|^2 + y_{\phi \mathcal{Y}} |\mathcal{Y}|^2 \phi + \frac{1}{2} \lambda_{\phi \mathcal{Y}} |\mathcal{Y}|^2 \phi^2 + \frac{1}{4} \lambda (\phi^2 \phi_0^2)^2 + \epsilon \phi_0 \phi^3$
- Domain Wall Example:

Searching for the Dark Matter

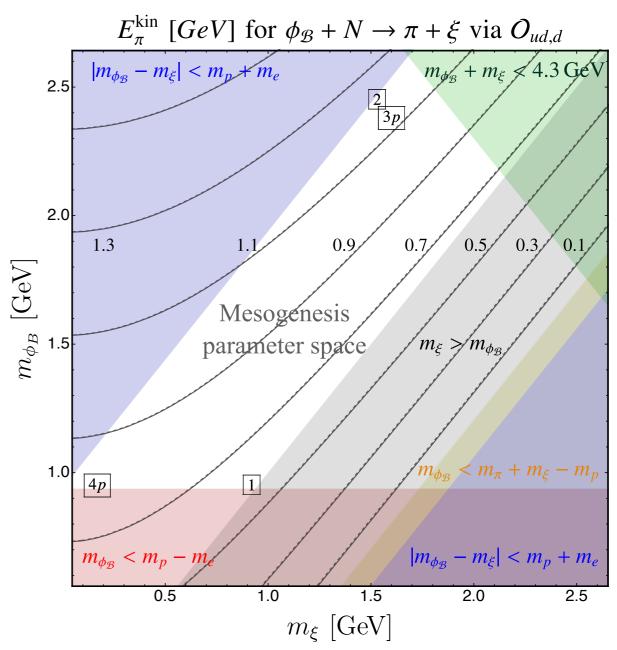
[J. Berger, **GE**. PRL. 2301.04165]

Signals at Neutrino Detectors (for any Mesogenesis mechanisms involving decays to dark baryons)

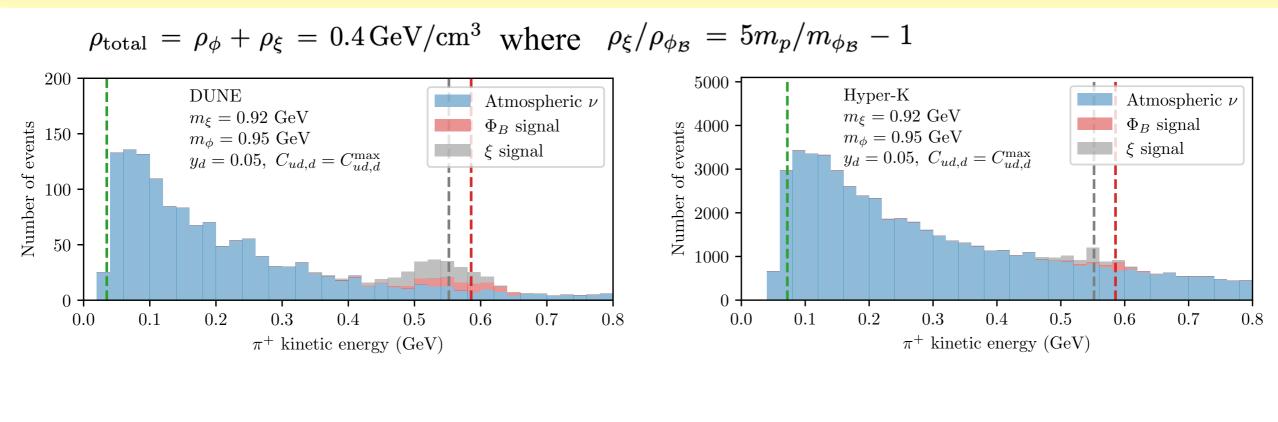


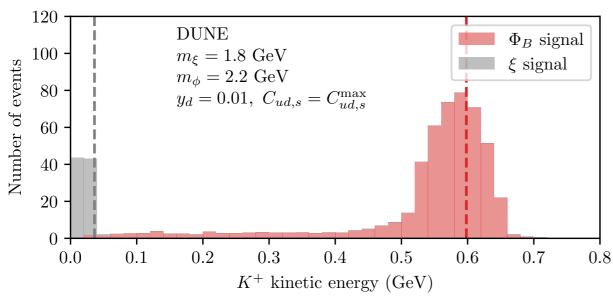
Inside the **Super-Kamiokande** water Cherenkov detector. Credit: Kamioka Observatory, ICRR, Univ. Tokyo

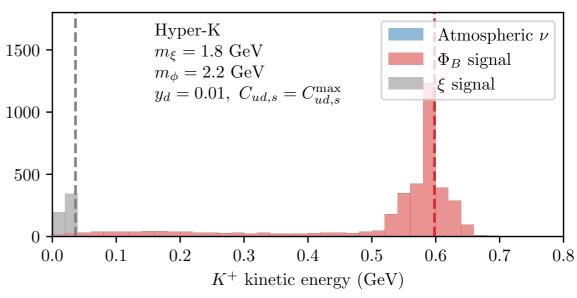
Dark Matter Induced Nucleon Decay


[J. Berger, **GE**. PRL. 2301.04165]

Incoming dark matter induces proton (or neutron decay) in nuclei of detector target material


Mono-energetic meson (up to detector effects):


$$E_{\phi_{\mathcal{B}}N \to \xi \mathcal{M}}^{\mathcal{M}, \text{kin}} = \frac{m_{\mathcal{M}}^2 - m_{\xi}^2 + (m_N + m_{\phi_B})^2}{2(m_N + m_{\phi_B})} - m_{\mathcal{M}}$$



Signal and Background Simulation

[J. Berger, **GE**. PRL. 2301.04165]

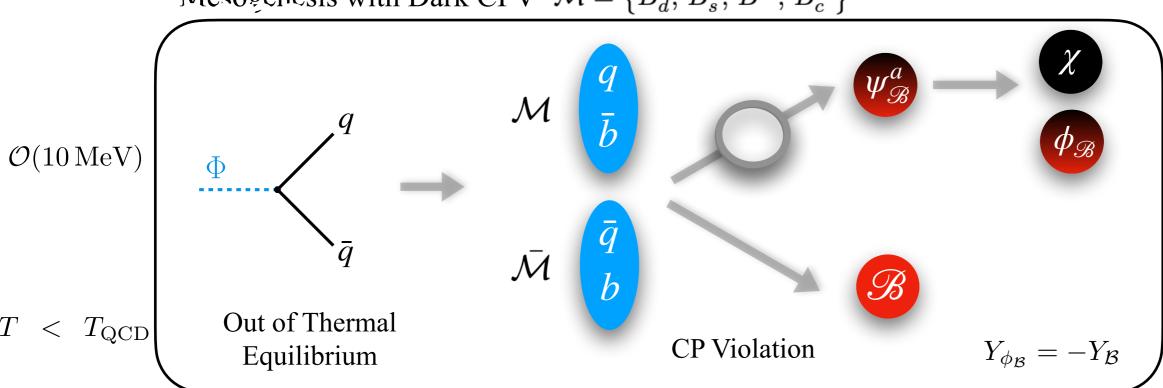
Next: Searches in astrophysics and cosmology environments

Mesogensis with a Morphing Mediator

[GE, Rachel Houtz, Seyda Ipek, Martha Ulloa, Submitted to PRL, 2408.12647],

"The Standard Model CP Violation is Enough".

A mediator mass increase from ~200-500 GeV to about 1 TeV will generate the baryon asymmetry with only the SM CPV.


- Gravitational Wave signals from dark dynamics at current and upcoming PTAs.
- Dark matter signals are still present (induced nucleon decay)
- Motivation for collider searches to *improve branching fraction sensitivity to Br* $< 10^{-5}$
- As measurements of the charge asymmetry improve, motivation for seeing only the SM CPV

Mesogenesis with Dark CPV

[GE, Can Kilic, Sanjay Mathai, Fall 2024 (targeted)]

CPV entirely from the dark sector?

Mesogenesis with Dark CPV $\mathcal{M} = \{B_d^0, B_s^0, B^{\pm}, B_c^{\pm}\}$

$$\mathcal{L}_{mass}^{\psi} = -\sum_{ab}^{T} \frac{20 \,\text{MeV}}{M_{ab} \bar{\psi}_{\mathcal{B}}^{a} \psi_{\mathcal{B}}^{b} + \text{h.c}} \longrightarrow A_{CP}^{\text{dark}} \equiv \frac{\Gamma(\bar{\mathcal{M}} \to \phi_{\mathcal{B}} \xi \bar{\mathcal{B}}_{\text{SM}}) - \Gamma(\mathcal{M} \to \phi_{\mathcal{B}}^{*} \xi \mathcal{B}_{\text{SM}})}{\Gamma(\bar{\mathcal{M}} \to \phi_{\mathcal{B}} \xi \bar{\mathcal{B}}_{\text{SM}}) + \Gamma(\mathcal{M} \to \phi_{\mathcal{B}}^{*} \xi \mathcal{B}_{\text{SM}})}$$

$$(B^0 \to e^{\pm} B^0) < \Delta m_B^0$$
 $Y_{\mathcal{B}} \simeq 8.7 \times 10^{-11} \left[\frac{\text{Br}(\mathcal{M} \to \mathcal{B}_{\text{SM}} + \text{MET})}{10^{-4}} \frac{A_{CP}^{\text{dark}}}{10^{-2}} \right]$
 $(E^{\pm} B_0) \simeq 10^{-11} \, \text{GeV} \left(\frac{T}{20 \, \text{MeV}} \right)^5 \left(\frac{\langle r_{B_0}^2 \rangle}{0.187} \right)^5$

Br as low as $10^{-7} - 10^{-6}$ predicted.

Space of Mechanisms

Mechansim	CPV	Dark Sector	Observables	Relevant Experiments	
B^0 Mesogenesis	$B_s^0 \& B_d^0$ oscillations	dark baryons	$A_{sl}^{s,d}$ $\operatorname{Br}(B^0 o \mathcal{B}_{\mathrm{SM}} + X)$	$\begin{array}{c} \text{LHCb} \\ B \text{ Factories, LHCb} \end{array}$	GE, M. Esci (2018)
D^+ Mesogenesis	D^{\pm} decays	dark leptons and dark baryons	A_{CP}^{D} $\operatorname{Br}_{D^{+}}$ $\operatorname{Br}(D^{+} \to \ell^{+} + X)$	B Factories, LHCb B Factories, LHCb peak searches e.g. PSI, PIENU	GE, R. McG
B^+ Mesogenesis	B^{\pm} decays	dark leptons and dark baryons	A_{CP}^{B} $\operatorname{Br}_{B^{+}}$ $\operatorname{Br}(B^{+} \to \ell^{+} + X)$	B Factories, LHCb B Factories, LHCb peak searches e.g. PSI, PIENU	F. Elahi, GE (2021)
B_c^+ Mesogenesis	B_c^{\pm} decays	dark baryons	$A_{CP}^{B_c}$ $\operatorname{Br}_{B_c^+}$ $\operatorname{Br}(B^+ \to \mathcal{B}_{\operatorname{SM}}^+ + X)$	LHCb, FCC LHCb, FCC B Factories, LHCb	F. Elahi, GF (2021)
Mesogenesis with a Morphing Mediator	$B_s^0 \& B_d^0$ oscillations	dark baryons and dark phase transition	$A_{ m sl,SM}^{ m s,d} \ { m Br}(B^0 o {\cal B}_{ m SM} + X) \ { m Gravitational~Waves}$	LHCb B Factories, LHCb Pulsar Timing Arrays, CMB	GE, R. Hou M. Ulloa, (2
Mesogenesis with Dark CPV	either B_d^0 , B_s^0 , B^{\pm} , B_c^{\pm} decays	dark baryons and dark CP phase	$A_{\mathrm{CP}}^{\mathrm{dark}}$ $\mathrm{Br}(\mathcal{M} o \mathcal{B}_{\mathrm{SM}} + X)$	EDMs, Flavor Observables B Factories, LHCb	GE , C. Kilio (2024 target

cudero, A. Nelson

Gehee (2020)

E, R. McGehee

E, R. McGehee

utz, S. Ipek, (2024)

ic, S. Mathai eted)

One mechanisms direct signal is another mechanisms indirect signal

Space of Mechanisms

Machangina	CDV	Dowle Coston	Obgomrobleg	Delevent Francisconte	1	
Mechansim	CPV	Dark Sector	Observables	Relevant Experiments		
B^0 Mesogenesis	$B_s^0 \ \& \ B_d^0$	dark baryons	$A_{sl}^{s,d}$	LHCb	GE, M. Escudero,	
	oscillations		$\operatorname{Br}(B^0 o \mathcal{B}_{\operatorname{SM}} + X)$	B Factories, LHCb	(2018)	
			A_{CP}^D	B Factories, LHCb		
D^+ Mesogenesis	D^{\pm} decays	dark leptons	Br_{D^+}	B Factories, LHCb	GE, R. McGehee (
		and dark baryons	$\operatorname{Br}(D^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU	(d2, 14 1/16 define)	
			A_{CP}^B	B Factories, LHCb	 F. Elahi, GE , R. M	
B^+ Mesogenesis	$B^{\pm} { m decays}$	dark leptons	Br_{B^+}	B Factories, LHCb	(202I)	
1		and dark baryons	$\operatorname{Br}(B^+ \to \ell^+ + X)$	peak searches e.g. PSI, PIENU	(2021)	
			$A_{CP}^{B_c}$	LHCb, FCC	 F. Elahi, GE , R. M	
B_c^+ Mesogenesis	B_c^{\pm} decays	dark baryons	$\operatorname{Br}_{B_c^+}$	LHCb, FCC		
			$\operatorname{Br}(B^+ \to \mathcal{B}^+_{\operatorname{SM}} + X)$	B Factories, LHCb	(2021)	
Mesogenesis	$B_s^0 \ \& \ B_d^0$	dark baryons and	$A_{ m sl~SM}^{ m s,d}$	LHCb	CE D Houtz C I	
with a Morphing	oscillations	dark phase transition	D (D) 10 . TZ)	B Factories, LHCb	·	
Mediator		dark phase transition	Gravitational Waves	Pulsar Timing Arrays, CMB	M. Olioa, (2024)	
Mesogenesis	either $B_d^0, B_s^0,$	dark baryons	$A_{ m CP}^{ m dark}$	EDMs, Flavor Observables	GE, C. Kilic, S. M	
with Dark CPV	B^{\pm}, B_c^{\pm} decays	and dark CP phase	$\operatorname{Br}(\mathcal{M} o \mathcal{B}_{\operatorname{SM}} + X)$	B Factories, LHCb	(2024 targeted)	
$B_s^0 \& B_d^0$ with a Morphing oscillations Mediator Mesogenesis either $B_d^0, B_s^0,$		dark baryons and dark phase transition dark baryons	$Br(B^+ o \mathcal{B}^+_{\mathrm{SM}} + X)$ $A^{\mathrm{s,d}}_{\mathrm{sl, SM}}$ $Br(B^0 o \mathcal{B}_{\mathrm{SM}} + X)$ Gravitational Waves $A^{\mathrm{dark}}_{\mathrm{CP}}$	B Factories, LHCb LHCb B Factories, LHCb Pulsar Timing Arrays, CMB EDMs, Flavor Observables		

o, A. Nelson

(2020)

McGehee

McGehee

Ipek,

Mathai

One mechanisms direct signal is another mechanisms indirect signal

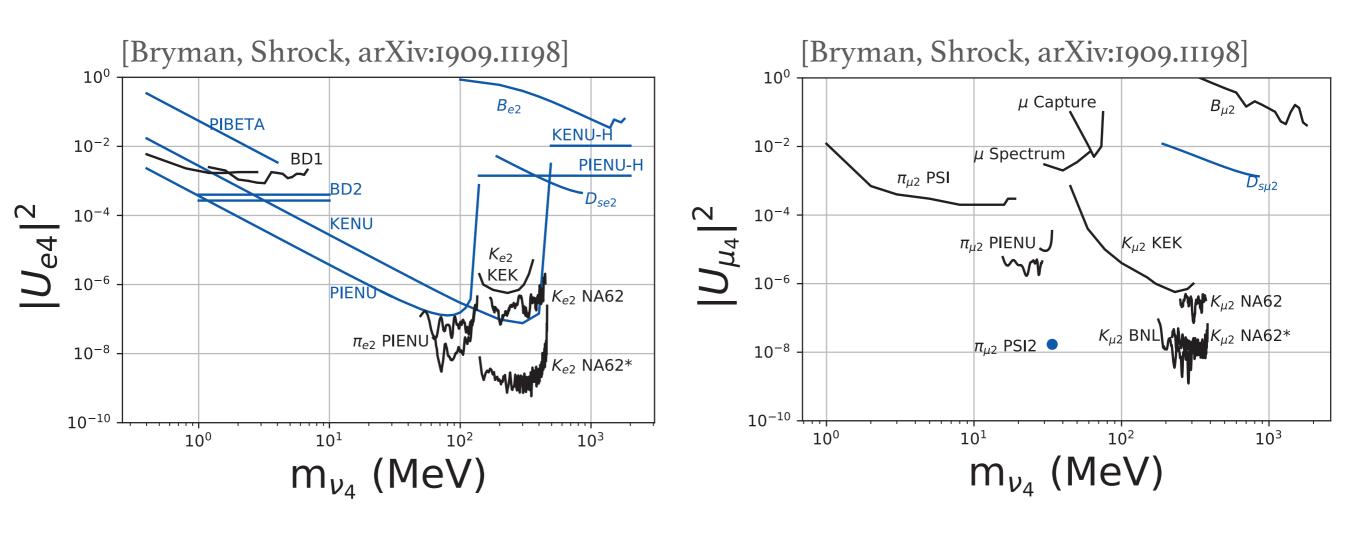
My message to Belle-II experimentalists: measuring Br to 10⁻⁷ sensitivity could discover baryogenesis. Also, lots of indirect signals to look for. To fully exclude or discover Mesogenesis we must explore the entire parameter space.

What is the Universe made of?

- Mesogenesis explains both the origin of the baryon asymmetry and the dark matter of the Universe.
- Six different mechanisms of Mesogenesis exist to date. One mechanisms direct signal is another mechanisms indirect signal.
- Experimentalists are searching for Mesogenesis! More searches are needed to fully explore the space of models.
- To fully take advantage of the experimental program we must comprehensively explore all possible mechanisms, variations, and signals.

How can we exist?

What is the Universe made of?


My message to Belle-II experimentalists:

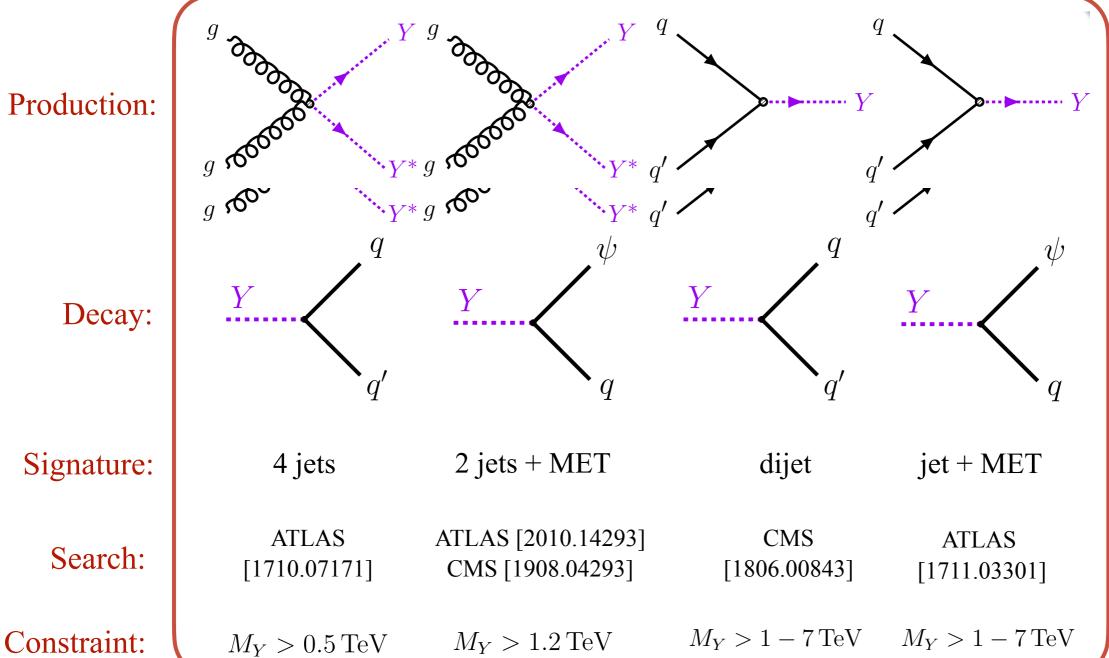
- Measuring Br to 10⁻⁷ sensitivity could <u>discover</u> baryogenesis.
- Lots of indirect signals.
- Thus, to fully exclude or discover Mesogenesis, we must explore the entire parameter space.

How can we exist?

Backups

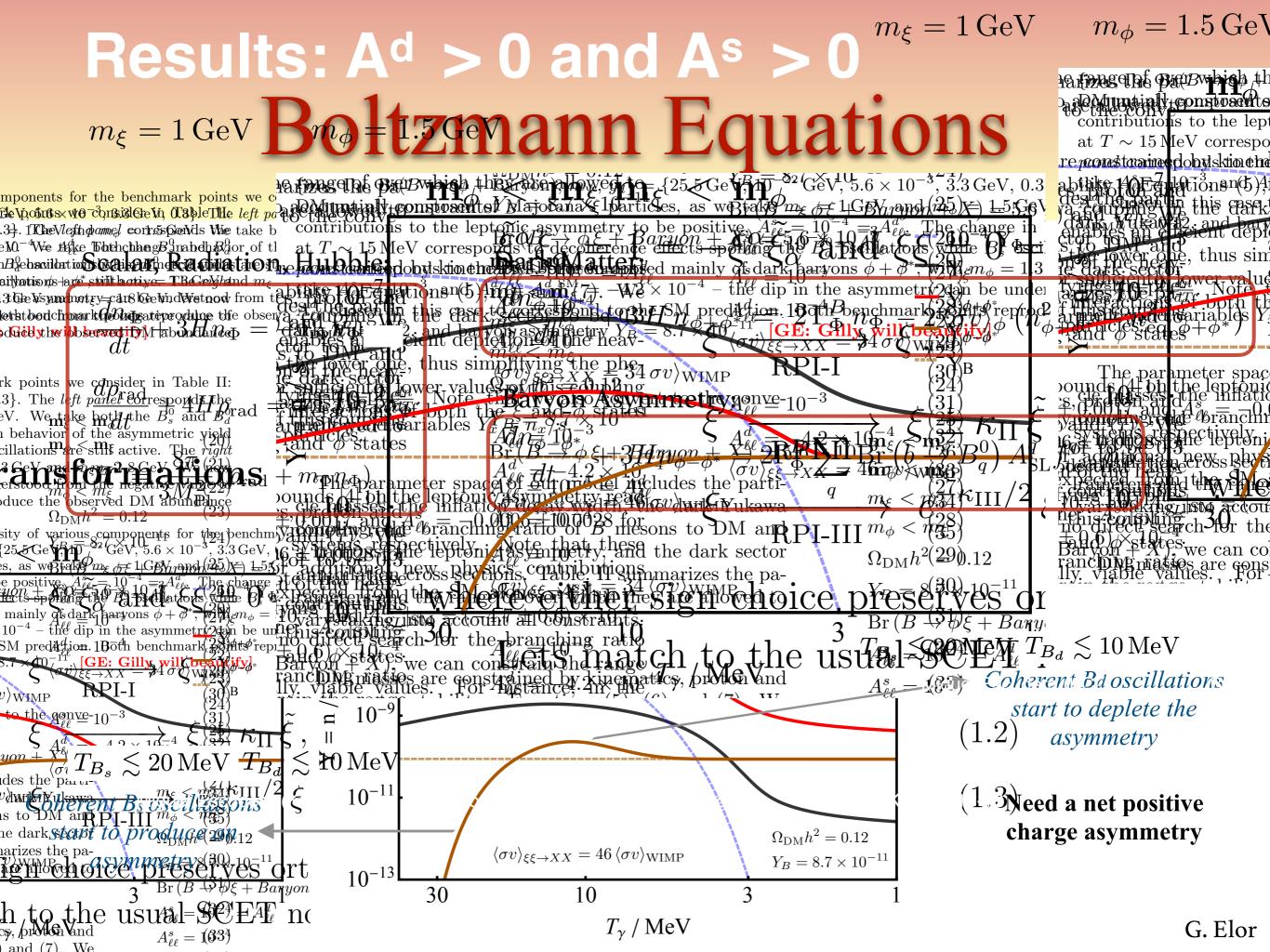
Peak Searches: Limits on Pion Decays

Limit on
$$|U_{\ell N}|^2 \Rightarrow \lim_{\Gamma(\pi^{\pm} \to \ell^{\pm} + \ell_d)} \frac{\Gamma(\pi^{\pm} \to \ell^{\pm} + \ell_d)}{\Gamma(\pi^{\pm} \to \ell^{\pm} + \nu_{SM})}$$


[Shrock, Phys. Rev. D24, 1232 (1981)]

$$Br(\pi^{\pm} \to \mu^{\pm} + MET) \lesssim 10^{-3}$$
, for $5 \, MeV < m_{\ell_d} < 15 \, MeV$.

G. Elor


Colored Triplet Scalar

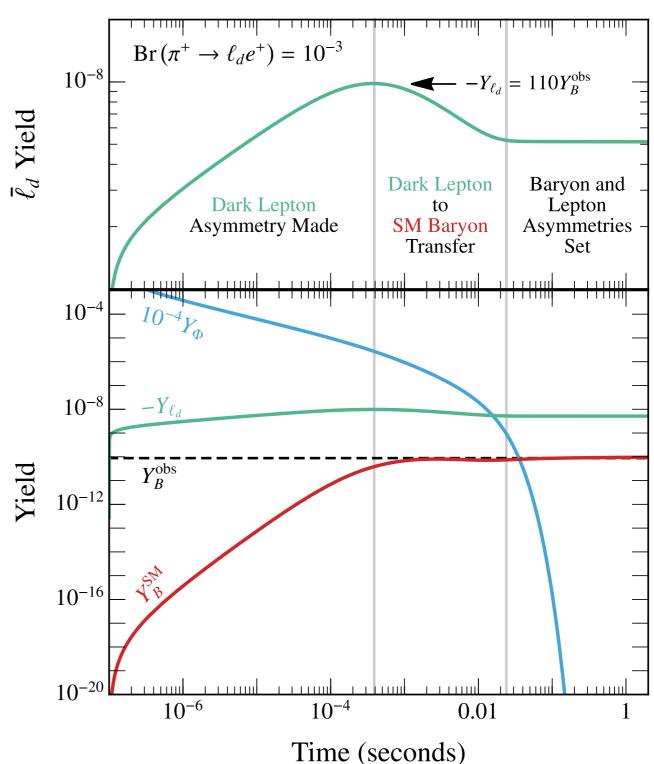
Constraints from LHC squark searches

 d_j

 d_i

Freezing-In a Baryon Asymmetry

Example Benchmark point:


$$T_R = 10 \text{ MeV}, m_{\Phi} = 6 \text{ GeV}$$

 $\langle \sigma v \rangle = 1 \times 10^{-15} \text{ GeV}^{-2}$

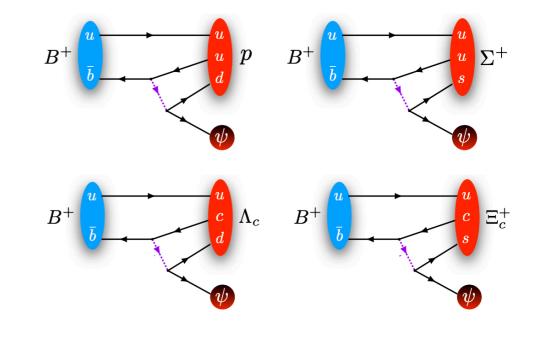
$$Br\left(\Phi \to \chi_1 \bar{\chi}_1\right) = 0.1$$

$$\sum_{f} N_{\pi}^{f} a_{CP}^{f} Br_{D^{+}}^{f} = (-9.3 \times 10^{-4})$$

$$\frac{d}{dt} (n_{\mathcal{B}} - n_{\overline{\mathcal{B}}}) + 3H (n_{\mathcal{B}} - n_{\overline{\mathcal{B}}}) =$$
$$-\langle \sigma v \rangle n_{\chi_1} (n_{\ell_d} - n_{\bar{\ell}_d})$$

$$\left. \frac{n_{\chi_1} \langle \sigma v \rangle}{H(T)} \right|_{T=T_R} \gtrsim \frac{Y_B^{\text{obs}}}{Y_L^{\text{dark}}}$$

G. Elor


B^+ Decay

UV Model:
$$\mathcal{L}_{-1/3} = -\sum_{i,j} y_{u_i d_j} Y^* \bar{u}_{iR} d^c_{jR} - \sum_k y_{\psi d_k} Y d^c_{kR} \bar{\psi} + \text{h.c.}$$

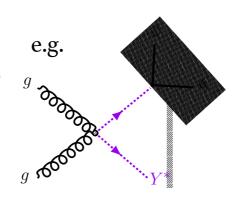
Operator/Decay	Initial State	Final state		
	B_d	$\psi + n (udd)$		
$\mathcal{O} = \psi b u d$	B_s	$\psi + \Lambda \left(uds \right)$		
$\bar{b} \to \psi u d$	B^+	$\psi + p \left(duu \right)$		
	Λ_b	$\bar{\psi} + \pi^0$		
	B_d	$\psi + \Lambda \left(usd \right)$		
$\mathcal{O} = \psi b u s$	B_s	$\psi + \Xi^0 \left(uss \right)$		
$\bar{b} \rightarrow \psi u s$	B^+	$\psi + \Sigma^+ (uus)$		
	Λ_b	$\bar{\psi} + K^0$		
	B_d	$\psi + \Lambda_c + \pi^- (cdd)$		
$\mathcal{O} = \psi b c d$	B_s	$\psi + \Xi_c^0 \left(cds \right)$		
$\overline{b} \rightarrow \psi c d$	B^+	$\psi + \Lambda_c \left(dcu \right)$		
	Λ_b	$\overline{\psi} + \overline{D}^0$		
	B_d	$\psi + \Xi_c^0 \left(csd \right)$		
$\mathcal{O} = \psi b c s$	B_s	$\psi + \Omega_c \left(css \right)$		
$\bar{b} \rightarrow \psi c s$	B^+	$\psi + \Xi_c^+ (csu)$		
	Λ_b	$\bar{\psi} + D^- + K^+$		

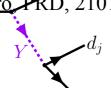
Directly related to neutral B Mesogenesis, and indirectly related B^+ Mesogenesis.

Directly related to B^+ Mesogenesis.

Indirect signal of charged and neutral *B*Mesogenesis
G. Elor

Can the SM CPV be enough?

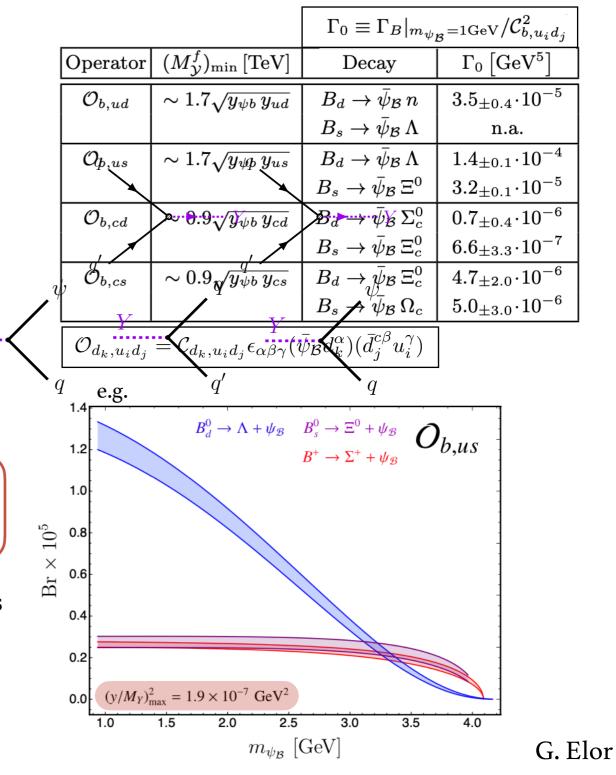

[GE, Rachel Houtz, Seyda Ipek, Martha Ulloa, Submitted to PRL, 2408.12647]


Colored mediator Y has TeV scale mass:

Limits on Wilson coefficient from recasting LHC searches for squarks

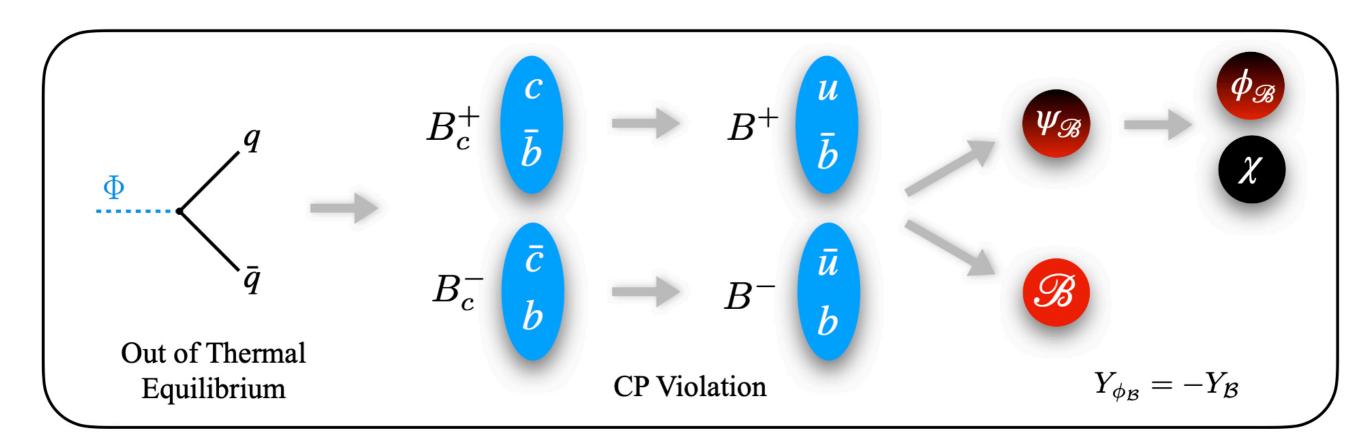
$${\cal C}_{d_k,u_id_j} \equiv y_{\psi d_k} y_{u_id_j}/M_{{\cal Y}_j}^2$$

[A. Alonso-Alvarez, **GE**, M. E $\bar{\underline{s}}$ cudero, PRD, 2101.02706]

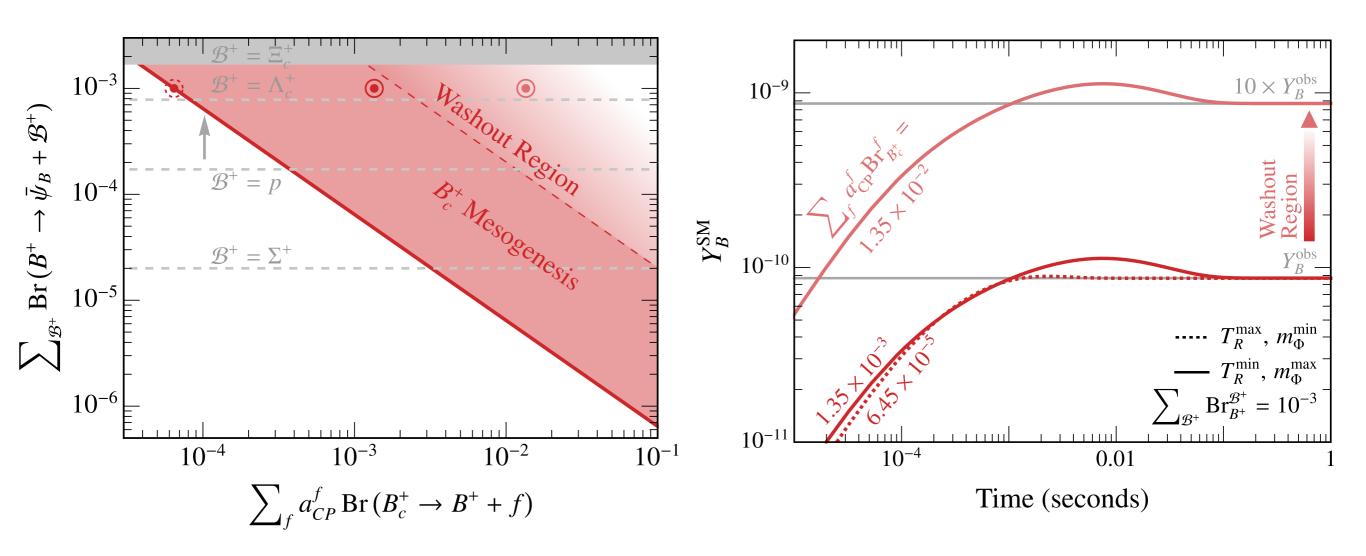


• Branching fraction:

$$\operatorname{Br}_{B_i} = \frac{\sum_{\mathcal{B}_{SM}} \mathcal{C}_i^2 \Gamma_0(B_i \to \bar{\psi}_{\mathcal{B}} \mathcal{B}_{SM})}{(\tau_{B_{d,s}}^{SM})^{-1} + \sum_{\mathcal{B}_{SM}} \mathcal{C}_i^2 \Gamma_0(B_i \to \bar{\psi}_{\mathcal{B}} \mathcal{B}_{SM})} \propto \frac{1}{M_{\mathcal{Y}}^4}$$


Exact form computed using QCD light cone sum rules

[**GE**, A. Guerrera. JHEP, 2211.10553]


B_c^+ Mesogenesis

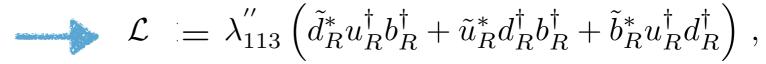
[F. Elahi, GE, R. McGehee, PRD, 2109.09751]

$$Y_{\mathcal{B}} \equiv \frac{n_{\mathcal{B}} - n_{\bar{\mathcal{B}}}}{s} \propto \sum_{f} A_{\mathrm{CP}}^{f} \operatorname{Br} \left(B_{c}^{+} \to B^{+} + f \right) \times \sum_{\mathcal{B}^{+}} \operatorname{Br} \left(B^{+} \to \bar{\psi}_{\mathcal{B}} + \mathcal{B}^{+} \right)$$

B_c^+ Mesogenesis

$$\frac{Y_{\mathcal{B}}}{Y_{\mathcal{B}}^{\text{obs}}} \simeq \frac{\sum_{\mathcal{B}^{+}} \operatorname{Br}_{B^{+}}^{\mathcal{B}^{+}}}{10^{-3}} \frac{\sum_{f} a_{\text{CP}}^{f} \operatorname{Br}_{B_{c}^{+}}^{f}}{6.45 \times 10^{-5}} \frac{T_{R}}{20 \text{ MeV}} \frac{2m_{B_{c}^{+}}}{m_{\Phi}}$$

A SUSY Theory

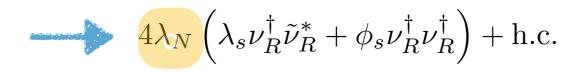

MSSM, R Symmetry, and Dirac Gauginos and Sterile Neutrios

Superfield	R-Charge	L no.	
$\mathbf{U}^c,\mathbf{D}^c$	2/3	0	
Q	4/3	0	
$\mathbf{H}_u, \mathbf{H}_d$	0	0	
$\mathbf{R}_u,\mathbf{R}_d$	2	0	
S	0	0	
${f L}$	1	1	
\mathbf{E}^c	1	-1	
\mathbf{N}_R^c	1	-1	

"RPV"
$$\mathbf{W} = y_u \mathbf{Q} \mathbf{H}_u \mathbf{U}^c - y_d \mathbf{Q} \mathbf{H}_d \mathbf{D}^c - y_e \mathbf{L} \mathbf{H}_d \mathbf{E}^c + \frac{1}{2} \lambda_{ijk}^{"} \mathbf{U}_i^c \mathbf{D}_j^c \mathbf{D}_k^c$$

$$+ \mu_u \mathbf{H}_u \mathbf{R}_d + \mu_d \mathbf{R}_u \mathbf{H}_d$$

$$+ \lambda_u^t \mathbf{H}_u \mathbf{T} \mathbf{R}_d + \lambda_d^t \mathbf{R}_u \mathbf{T} \mathbf{H}_d + \lambda_d^s \mathbf{S} \mathbf{R}_u \mathbf{H}_d.$$


Gauge:

$$\mathcal{L}_{\text{gauge}} = -\sqrt{2}g(\phi T^a \psi^{\dagger}) \lambda^{a\dagger} + \text{h.c.}$$

$$\Rightarrow -\sqrt{2}g(\tilde{d}_R^* d_R \tilde{B}^{\dagger}) - \sqrt{2}g(\tilde{d}_L d_L^{\dagger} \tilde{B}^{\dagger}) + \text{h.c.}$$

Neutrio:

$$\mathbf{W} = \frac{\lambda_N}{4} \mathbf{S} \mathbf{N}_R^c \mathbf{N}_R^c + \mathbf{H}_u \mathbf{L}^i y_N^{ij} \mathbf{N}_R^{c,j} + \frac{1}{2} \mathbf{N}_R^c M_M \mathbf{N}_R^c + \text{h.c.},$$

Parameter space: "RPV" couplings and squark mass mixing

A SUSY Theory

Superpartners and SM particles have different charge under an unbroken R-symmetry. We can identify this with Baryon number.

Superpartners as dark baryons.

	Field	Spin	Q_{EM}	Baryon no.	\mathbb{Z}_2	Mass
	Φ	0	0	0	+1	11 - 100 GeV
MSSM Squark	$ ilde{d}_R$	0	-1/3	-2/3	+1	$\mathcal{O}(\mathrm{TeV})$
Dirac Bino	$\left[egin{array}{c} ilde{B} \ \lambda_s^\dagger \end{array} ight]$	1/2	0	-1	+1	$\mathcal{O}(\mathrm{GeV})$
Right handed	$ u_R$	1/2	0	0	-1	$\mathcal{O}(\mathrm{GeV})$
neutrino multiplet	$ ilde{ u}_R$	0	0	-1	-1	$\mathcal{O}(\mathrm{GeV})$