2024 Belle II Physics Week

LFV in tau decays and possibility for new mediators $\tau \& \mu$ complementarity

Lorenzo Calibbi

KEK, October 14th 2024

Introduction

In the SM, electroweak interactions are *lepton flavour universal* and (with massless neutrinos) lepton flavour conserving

Neutrino masses/oscillations $\iff X_e, X_\mu, X_\tau$

Lepton family numbers are not conserved: why not *charged* lepton flavour violation (CLFV): $\mu \to e\gamma$, $\tau \to \mu\gamma$, $\mu \to eee$, etc.?

In the SM + neutrino masses, CLFV rates suppressed by a factor

$$\left(\frac{\Delta m_{\nu}}{M_W}\right)^4 \approx 10^{-48}$$

CLFV: clear signal of New Physics, stringent test of NP physics coupling to leptons, probe of scales way beyond the LHC reach

CLFV has been sought for more than 70 years...

LFIMINIAId Aleesys & new mediators

Belle II prospects for tau LFV

Definitely worth to keep searching for these "standard" modes → cf. Jure's lecture and Marco's talk but... What if we haven't searched (enough) in the right place? New Physics (NP) may be light and/or "dark" → cf. Stefania's lectures and Olcyr's talk Dark Matter exists! (About 27% of the energy of the universe)

DM direct detection searches and LHC searches for heavy new physics are giving increasingly tight constraints on WIMP models

This is why people increasingly focus *also* on other paradigms, *e.g.* axions, dark photons, light DM/light dark sectors etc.

E.g. : axion-like-particles (ALPs) (*often flavour-violating*) arise in a broad class of models with spontaneously broken global U(1)

LFV in tau decays & new mediators

- ALPs ~ (pseudo) Nambu-Goldstone bosons are naturally *light* and interact weakly with the SM (couplings suppressed by the U(1)-breaking scale f_a)
- Many scenarios motivated by outstanding problems of the SM (strong CP problem → PQ symmetry → axion, neutrino masses → lepton number → majoron, fermion hierarchies → family symmetry → familon, ...)
- Model-independently, the couplings to the SM fermions are of the form:

$$\mathcal{L}_{aff} = \frac{\partial_{\mu}a}{2f_a} \,\bar{f}_i \gamma^{\mu} (C^V_{f_i f_j} + C^A_{f_i f_j} \gamma_5) f_j$$

- *Flavour-violating* couplings can arise from loops or automatically if fermions have non-universal U(1) charges (e.g. flaxion/axiflavon)
- They can be DM candidates (accounting for the observed DM abundance through the misalignment or the freeze-in mechanism) or they can serve as portals to a light DM sector, e.g. :

$$\mathcal{L}_{a\chi\chi} = \frac{\partial_{\mu}a}{2f_a} C^A_{\chi\chi} \,\bar{\chi}\gamma^{\mu}\gamma_5\chi \qquad \qquad \text{dark fermion}$$

- ALPs ~ (pseudo) Nambu-Goldstone bosons are naturally *light* and interact weakly with the SM (couplings suppressed by the U(1)-breaking scale f_a)
- Many scenarios motivated by outstanding problems of the SM (strong CP problem \rightarrow PQ symmetry \rightarrow axion, neutrino masses \rightarrow lepton

Signature at flavour experiments:

2-body flavour-violating decays into a long-lived/invisible ALP

$$K \to \pi a, \ D \to \pi a, \ B \to K a, \ \mu \to e a, \ \tau \to \mu a, \dots$$

fermions have non-universal U(1) charges (e.g. flaxion/axiflavon)

• They can be DM candidates (accounting for the observed DM abundance through the misalignment or the freeze-in mechanism) or they can serve as portals to a light DM sector, e.g. :

$$\mathcal{L}_{a\chi\chi} = \frac{\partial_{\mu}a}{2f_a} C^A_{\chi\chi} \,\bar{\chi}\gamma^{\mu}\gamma_5\chi \qquad \qquad \text{dark fermion}$$

LFV in tau decays & new mediators

Summary of searches for LFV invisible ALPs

- Decays mediated by dimension-5 operators: much larger NP scales can be reached than with $\mu \rightarrow e\gamma$, $\mu \rightarrow eee$ etc. (from dim-6 operators)
- Mu/tau/astro interplay: if $m_a > m_\mu$ the only constraints come from τ decays...

Present limits on $\tau \rightarrow e \ a$, $\tau \rightarrow \mu \ a$ (invisible *a*)

Present limits on $\tau \rightarrow e \ a$, $\tau \rightarrow \mu \ a$ (invisible *a*)

A challenging search: tau momentum / rest frame cannot be exactly reconstructed

Taus vs. muons: Life is not easy at muon experiments either However, they have certain advantages:

Muons long-lived: they can work with high-intensity beams > 10⁸ μ/s, they can stop muons on targets and let them decay at rest
Muons long-lived: smaller width implies higher sensitivity to NP scale
Muon beams easily polarised: this can enhance the sensitivity

Open question: could Belle II use information on the tau polarisation to increase the sensitivity too?

Let's have a look at how it works in the muon case...

 $m_a \approx 0: \begin{array}{ll} \mathrm{BR}(\tau \to \mu \, a) < 4.7 \times 10^{-4} \ (90\% \ \mathrm{CL}) & \Rightarrow \quad f_a / C_{\mu\tau}^{V,A} > 5.1 \times 10^6 \ \mathrm{GeV} \\ \\ \mathrm{BR}(\tau \to e \, a) < 7.6 \times 10^{-4} \ (90\% \ \mathrm{CL}) & \Rightarrow \quad f_a / C_{e\tau}^{V,A} > 4.0 \times 10^6 \ \mathrm{GeV} \end{array}$

LFV in tau decays & new mediators

Signal: monochromatic positron with

Differential decay rate:
$$\frac{\mathrm{d}\Gamma(\ell_i \to \ell_j a)}{\mathrm{d}\cos\theta} = \frac{m_{d,i}^3}{32\pi F_{\ell_i,\ell_j}^2} \left(1 - \frac{m_a^2}{m_{\ell_i}^2}\right)^2 \left[1 + 2P_\ell \cos\theta \frac{C_{\ell_i\ell_j}^V C_{\ell_i\ell_j}^L}{(C_{\ell_i\ell_j}^V)^2 + (C_{\ell_i\ell_j}^L)^2}\right]$$

 $\vec{N} = \vec{\mu} \times \vec{B}$ signal anisotropy depends on the chirality of the couplings
Michel spectrum:
$$\frac{\mathrm{d}^2\Gamma(\mu^+ \to e^+\nu_e \bar{\nu}_\mu)}{\mathrm{d}x_e \mathrm{d}\cos\theta} \simeq \Gamma_\mu \left((3 - 2x_e) - \frac{P_\mu}{(2x_e - 1)\cos\theta}\right) x_e^2 \qquad x_e = \frac{2p_e}{m_\mu}$$

ession frequency allows to determine g
And "surface" muons are highly polarised (produced by pion decays m_μ rest on the
surface of the production target) \rightarrow the SM background can be suppressed
106 MeV $\tau_\mu \approx 2.2 \ \mu s$
 $m_a \left(\frac{MeV}{2}\right) = \frac{105}{6} = \frac{94}{\sqrt{\mu}} \frac{82}{\sqrt{67}} \frac{67}{\sqrt{6}} \frac{47}{\sqrt{60}} \frac{47}{\sqrt{60}} \frac{100\%}{\sqrt{60}} \frac{100$

LFV in tau decays & new mediators

Currently strongest limit on $\mu \rightarrow e a$

LFV in tau decays & new mediators

Currently strongest limit on $\mu \rightarrow e a$

LFV in tau decays & new mediators

LFV dark matter production?

What if $\mu \rightarrow ea$, $\tau \rightarrow \mu a$ also produce DM ALPs in the early universe, via the *freeze-in* mechanism? <u>Panci Redigolo Schwetz Ziegler '22</u>

Freeze-in: a production mechanism for DM that was never in thermal equilibrium with the Standard Model bath (because too *feebly-coupled*), but can be produced via scattering or decays of bath particles

Hall Jedamzik March-Russell West '09

LFV in tau decays & new mediators

LFV dark matter production?

LFV in tau decays & new mediators

If the ALP is not that light nor long-lived, it can decay on-shell (or off-shell) back to leptons: $\tau \to \mu a^{(*)} \to \mu \ell \ell$ (or mediate radiative processes) 10^{9} $C^A_{\mu\tau} = C^V_{\mu\tau} = C^A_{\ell\ell} = C^V_{\ell\ell}$ 10^{8} 10^{7} $\mathcal{C}^{A,V}_{\mu\tau}$ [Gev] 10^{6} 10^{5} $\tau \rightarrow \mu ee$ 10^{4} Even in presence to $e - \mu$ interactions with $C_{e\mu}^{A,V} = C_{\mu}^{A,V}$ tau decays are more sensitive than $\mu \rightarrow eee$ (that reaches $f_a \sim 10^5 \,\text{GeV}$) in the mass range $m_{\mu} \lesssim m_a \lesssim m_{\tau}$ 10^{-2} 10^{-1} 10^{3} 10^{1} 10^{2} m_a [GeV] adapted from LC Li Mukherjee Yang '24 (see also Cornella Paradisi Sumensari '19)

Flavour non-universal *local* U(1) symmetry generating the hierarchies of fermion masses and mixing through the Froggatt-Nielsen mechanism Smolkovič Tammaro Zupan '19

Interactions of the new gauge boson Z' flavour-violating by construction:

$$\mathcal{L} = g_F Z'_{\mu} \left[\overline{u}_{\alpha} \gamma^{\mu} (C^u_{L\alpha\beta} P_L + C^u_{R\alpha\beta} P_R) u_{\beta} + \overline{d}_{\alpha} \gamma^{\mu} (C^d_{L\alpha\beta} P_L + C^d_{R\alpha\beta} P_R) d_{\beta} + \overline{d}_{\alpha} \gamma^{\mu} (C^d_{L\alpha\beta} P_L + C^d_{R\alpha\beta} P_R) d_{\beta} + \overline{\nu}_{\alpha} \gamma^{\mu} C^{\nu}_{L\alpha\beta} P_L \nu_{\beta} \right],$$
new U(1) gauge coupling
$$C^f_{L\alpha\beta} \equiv V^f_{\alpha i} \mathcal{Q}_{f_{Li}} V^{f*}_{\beta i} \qquad C^f_{R\alpha\beta} \equiv W^f_{\alpha i} \mathcal{Q}_{f_{Ri}} W^{f*}_{\beta i}$$
unitary rotations
to the fermion mass basis
$$U(1) \text{ charges}$$

$$BR(\ell_{\alpha} \to \ell_{\beta} Z') = \frac{g_F^2}{16\pi \Gamma_{\ell_{\alpha}}} \frac{m^2_{\ell_{\alpha}}}{m^2_{Z'}} \left(|C^\ell_{V\alpha\beta}|^2 + |C^\ell_{A\alpha\beta}|^2 \right) \left(1 + 2\frac{m^2_{Z'}}{m^2_{\ell_{\alpha}}} \right) \left(1 - \frac{m^2_{Z'}}{m^2_{\ell_{\alpha}}} \right)^2, \ C^f_{V,A} = \frac{C^f_R \pm C^f_L}{2}$$

Depending on g_F and $m_{Z'}$, Z' can be long-lived or decay inside the detector, *e.g.* :

$$\Gamma(Z' \to \ell_{\alpha} \overline{\ell}_{\alpha}) = \frac{N_{c}^{f} g_{F}^{2} m_{Z'}}{12\pi} \sqrt{1 - 4\frac{m_{\ell_{\alpha}}^{2}}{m_{Z'}^{2}}} \left[\left(1 + 2\frac{m_{\ell_{\alpha}}^{2}}{m_{Z'}^{2}}\right) |C_{V \alpha \alpha}^{\ell}|^{2} + \left(1 - 4\frac{m_{\ell_{\alpha}}^{2}}{m_{Z'}^{2}}\right) |C_{A \alpha \alpha}^{\ell}|^{2} \right]$$

(while heavier off-shell Z' mediate 'standard' LFV decays)

LFV in tau decays & new mediators

Another example: flavoured Z'

Flavour non-universal *local* U(1) symmetry generating the hierarchies of fermion masses and mixing through the Froggatt-Nielsen mechanism

Light bosons with flavour-violating couplings to leptons arise within a wide class of new physics models

We have large room for improvement over the old limits searching for LFV decays into light bosons

Essential interplay among μ , τ , and astrophysical bounds

Very large symmetry-breaking scales can be probed

LFV in tau decays & new mediators

ありがとうございました! 谢谢大家! Thank you very much!

Additional slides

ALP dark matter

LFV in the SM effective field theory

If NP scale
$$\Lambda \gg m_W$$
: $\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \sum_a C_a^{(5)} Q_a^{(5)} + \frac{1}{\Lambda^2} \sum_a C_a^{(6)} Q_a^{(6)} + \dots$

4-leptons operators		Dipole operators	
$Q_{\ell\ell}$	$(\bar{L}_L \gamma_\mu L_L) (\bar{L}_L \gamma^\mu L_L)$	Q_{eW}	$(\bar{L}_L \sigma^{\mu\nu} e_R) \tau_I \Phi W^I_{\mu\nu}$
Q_{ee}	$(ar{e}_R\gamma_\mu e_R)(ar{e}_R\gamma^\mu e_R)$	Q_{eB}	$(\bar{L}_L \sigma^{\mu u} e_R) \Phi B_{\mu u}$
$Q_{\ell e}$	$(\bar{L}_L \gamma_\mu L_L) (\bar{e}_R \gamma^\mu e_R)$		
	2-lepton 2-qu	uark operators	
$Q_{\ell q}^{(1)}$	$(\bar{L}_L \gamma_\mu L_L) (\bar{Q}_L \gamma^\mu Q_L)$	$Q_{\ell u}$	$(\bar{L}_L \gamma_\mu L_L)(\bar{u}_R \gamma^\mu u_R)$
$Q_{\ell q}^{(3)}$	$(ar{L}_L\gamma_\mu au_IL_L)(ar{Q}_L\gamma^\mu au_IQ_L)$	Q_{eu}	$(ar{e}_R\gamma_\mu e_R)(ar{u}_R\gamma^\mu u_R)$
Q_{eq}	$(ar{e}_R\gamma^\mu e_R)(ar{Q}_L\gamma_\mu Q_L)$	$Q_{\ell edq}$	$(ar{L}_L^a e_R)(ar{d}_R Q_L^a)$
$Q_{\ell d}$	$(ar{L}_L\gamma_\mu L_L)(ar{d}_R\gamma^\mu d_R)$	$Q^{(1)}_{\ell equ}$	$(ar{L}_{L}^{a}e_{R})\epsilon_{ab}(ar{Q}_{L}^{b}u_{R})$
Q_{ed}	$(\bar{e}_R\gamma_\mu e_R)(\bar{d}_R\gamma^\mu d_R)$	$Q^{(3)}_{\ell equ}$	$(\bar{L}^a_i\sigma_{\mu\nu}e_R)\epsilon_{ab}(\bar{Q}^b_L\sigma^{\mu\nu}u_R)$
	Lepton-Hig	ggs operators	
$Q^{(1)}_{\Phi\ell}$	$(\Phi^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}\Phi)(\bar{L}_{L}\gamma^{\mu}L_{L})$	$Q^{(3)}_{\Phi\ell}$	$(\Phi^{\dagger}i \stackrel{\leftrightarrow}{D}{}^{I}_{\mu} \Phi)(\bar{L}_{L} au_{I} \gamma^{\mu} L_{L})$
$Q_{\Phi e}$	$(\Phi^\dagger i \stackrel{\leftrightarrow}{D}_\mu \Phi) (ar{e}_R \gamma^\mu e_R)$	$Q_{e\Phi 3}$	$(ar{L}_L e_R \Phi)(\Phi^\dagger \Phi)$

LFV in tau decays & new mediators

Lorenzo Calibbi (Nankai)

'13

Probing very high-energy scales

$$\mathcal{L} = \mathcal{L}_{\rm SM} + rac{1}{\Lambda} \sum_{a} C_a^{(5)} Q_a^{(5)} + rac{1}{\Lambda^2} \sum_{a} C_a^{(6)} Q_a^{(6)} + \dots$$

	$ C_a \ [\Lambda = 1 \ {\rm TeV}]$	$\Lambda \text{ (TeV) } [C_a = 1]$	CLFV Process
$C^{\mu e}_{e\gamma}$	$2.1 imes 10^{-10}$	$6.8 imes 10^4$	$\mu ightarrow e\gamma$
$C^{\mu\mu\mu\mu e,e\mu\mu\mu}_{\ell\epsilon}$	$1.8 imes10^{-4}$	75	$\mu ightarrow e \gamma$ [1-loop
$C_{\ell e}^{\mu \tau au e, e au au \mu}$	1.0×10^{-5}	312	$\mu ightarrow e \gamma$ [1-loop
$C^{\mu e}_{e\gamma}$	$4.0 imes10^{-9}$	$1.6 imes 10^4$	$\mu \rightarrow eee$
$C^{\mu eee}_{\ell\ell,ee}$	$2.3 imes 10^{-5}$	207	$\mu \rightarrow eee$
$C_{\ell e}^{\mu eee,ee\mu e}$	$3.3 imes 10^{-5}$	174	$\mu ightarrow eee$
$C^{\mu e}_{e\gamma}$	5.2×10^{-9}	$1.4 imes 10^4$	$\mu^{-}\mathrm{Au} ightarrow e^{-}\mathrm{Au}$
$C^{e\mu}_{\ell q,\ell d,ed}$	$1.8 imes 10^{-6}$	745	$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}$
$C_{eq}^{e\mu}$	9.2×10^{-7}	$1.0 imes 10^3$	$\mu^{-}\mathrm{Au} ightarrow e^{-}\mathrm{Au}$
$C^{e\mu}_{\ell u,eu}$	$2.0 imes 10^{-6}$	707	$\mu^{-}\mathrm{Au} ightarrow e^{-}\mathrm{Au}$
$C_{e\gamma}^{\tau\mu}$	$2.7 imes 10^{-6}$	610	$ au o \mu \gamma$
$C_{e\gamma}^{\tau e}$	2.4×10^{-6}	650	$\tau ightarrow e \gamma$
$C^{\mu au\mu\mu}_{\ell\ell,ee}$	$7.8 imes10^{-3}$	11.3	$ au ightarrow \mu \mu \mu$
$C_{\ell e}^{\mu au \mu \mu \mu, \mu \mu \mu au}$	1.1×10^{-2}	9.5	$ au ightarrow \mu \mu \mu$
$C^{e auee}_{\ell\ell,ee}$	$9.2 imes 10^{-3}$	10.4	$\tau \to eee$
$C_{\ell e}^{e\tau ee, eee\tau}$	$1.3 imes 10^{-2}$	8.8	$\tau \rightarrow eee$

LFV in tau decays & new mediators

LFV quarkonium decays

LFVQD	Present bounds on BR $(90\% \text{ CL})$			
$J/\psi ightarrow e\mu$	4.5×10^{-9}	BESIII (2022)	[16]	
$\Upsilon(1S) \to e \mu$	3.6×10^{-7}	Belle (2022)	[17]	
$\Upsilon(1S) \to e \mu \gamma$	4.2×10^{-7}	Belle (2022)	[17]	
$J/\psi ightarrow e au$	$7.5 imes 10^{-8}$	BESIII (2021)	[18]	
$\Upsilon(1S) \to e\tau$	2.4×10^{-6}	Belle (2022)	[17]	
$\Upsilon(1S) \to e \tau \gamma$	$6.5 imes 10^{-6}$	Belle (2022)	[17]	
$\Upsilon(2S)\to e\tau$	3.2×10^{-6}	BaBar (2010)	[19]	
$\Upsilon(3S) \to e\tau$	4.2×10^{-6}	BaBar (2010)	[19]	
$J/\psi ightarrow \mu au$	$2.0 imes 10^{-6}$	BES (2004)	[20]	
$\Upsilon(1S) \to \mu \tau$	$2.6 imes 10^{-6}$	Belle (2022)	[17]	
$\Upsilon(1S) \to \mu \tau \gamma$	6.1×10^{-6}	Belle (2022)	[17]	
$\Upsilon(2S) \to \mu \tau$	$3.3 imes 10^{-6}$	BaBar (2010)	[19]	
$\Upsilon(3S) \to \mu \tau$	3.1×10^{-6}	BaBar (2010)	[19]	

Table 1: Present 90% CL upper limits on vector quarkonium LFV decays. <u>No limit is currently</u> available for LFV decays of (pseudo)scalar or other vector resonances.

BESIII continues taking data, a high-lumi Super Tau-Charm Factory (STCF) is being discussed with c.o.m. $E \sim 2-7$ GeV that could produce $\sim 10^{13} \text{ J/}\psi$ (x1000 current BESIII), Belle II will collect x50-100 the data of Belle/BaBar

- In principle, ideal modes to test $2q2\ell$ operators involving heavy quarks (that could stem *e.g.* from by Z'/LQs with MFV-like couplings)
- Searches for radiative modes and decays of (pseudo)scalar resonances would be sensitive to different LEFT operators than the vector ones
- The question is: can we find new physics searching for these modes?
- Tau/mu processes unavoidably induced: strong indirect constraints:

Effect summarised by the RGE running of the EFT operators

SMEFT running and SMEFT/LEFT matching induce stronger bounds:

LFV in tau decays & new mediators

LFV in tau decays & new mediators

Flat directions are possible along which tau/Z constraints vanish:

(similar situation for operators involving LH leptonic currents)

That's not the case for charmonium decays:

LFV in tau decays & new mediators