Prospects on the magnetic/electric dipole moment of the tau and polarized beams

Martin Hoferichter

Albert Einstein Center for Fundamental Physics,

b UNIVERSITÄT BERN

FOR FUNDAMENTAL PHYSICS

AFC

Institute for Theoretical Physics, University of Bern

Oct 14, 2024

2024 Belle II Physics Week, KEK, Tsukuba

Talk by J. Michael Roney at 2024 US Belle II Summer Workshop https://indico.belle2.org/event/11190/contributions/76575/

The Belle II Detector Upgrades Framework Conceptual Design Report, arXiv:2406.19421

Snowmass 2021 White Paper, Upgrading SuperKEKB with a Polarized Electron Beam: Discovery Potential and Proposed Implementation, arXiv:2205.12847

Crivellin, MH, Roney PRD 106 (2022) 093007

Gogniat, MH, Ulrich work in progress

Prospects on d_{τ}/a_{τ} and polarized beams

Why do we need a polarized electron beam?

• Main motivation: precision neutral-current electroweak program

• With 40 ab⁻¹, $\Delta \sin^2 \theta_W = 0.00018$ (combined leptons)

 \hookrightarrow same precision as Z-pole measurements, but at $s \simeq (10 \,\text{GeV})^2!$

- Precision probe of running of $\sin^2 \theta_W$, complementary to MOLLER, P2, ...
- Probes e, μ, τ, c, b couplings, not "just" first generation

Left-right asymmetries

	SM	LEP+SLAC	Chiral Belle Δg_V^f		$\Delta \sin^2 \theta_W$	
f	$g_V^f(M_Z)$	g_V^f	1 ab ⁻¹	20 ab ⁻¹	40 ab ⁻¹	40 ab ⁻¹
b	-0.3437(1)	-0.3220(77)	0.0022	0.002	0.002	0.003
С	0.1920(2)	0.1873(70)	0.0036	0.001	0.001	0.0008
au	-0.0371(3)	-0.0366(10)	0.0049	0.001	0.0008	0.0004
μ	-0.0371(3)	-0.03667(23)	0.0031	0.0007	0.0005	0.0003
е	-0.0371(3)	-0.03816(47)	0.0039	0.0009	0.0006	0.0003

ICHEP talk by Roney

• Vector couplings from $Z - \gamma$ interference

$$A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_F s}{4\pi\alpha Q_f} \right) g_A^e g_V^f \langle \mathsf{Pol} \rangle \qquad g_V^f = T_3^f - 2Q_f \sin^2 \theta_W$$

• Major improvements for 2^{nd} and 3^{rd} generation, by factors $\{4, 6, 3\}$ for $\{b, c, \mu\}$

- Average of $\{e, \mu, \tau\}$ for $\sin^2 \theta_W$ same precision as Z-pole measurements
- Universality of g_V^f even better tested because dominant (Pol) uncertainty cancels

Polarization upgrade: broader physics program

• Improved sensitivity to lepton-flavor-violating decays: $\tau \to \mu \gamma$ and $\tau \to e \gamma$

 $\hookrightarrow e^-$ beam polarization helps reduce backgrounds

- Improved precision measurements of *τ* Michel parameters
- Precision QCD studies
- Dipole moments of the au
 - Anomalous magnetic moment a_{τ} via Pauli form factor $F_2(s)$ at $s \simeq (10 \,\text{GeV})^2$
 - EDM d_{τ} via $F_3(s)$ at $s \simeq (10 \, {\rm GeV})^2$
 - \hookrightarrow focus of this talk

EFT definition

$$\mathcal{L}_{dipole} = -c_{R}^{\ell\ell} \bar{\ell} \sigma^{\mu\nu} P_{R} \ell F_{\mu\nu} + \text{h.c.} \qquad P_{R} = \frac{1 + \gamma_{5}}{2} \qquad \ell \in \{e, \mu, \tau\}$$
$$a_{\ell} = -\frac{4m_{\ell}}{e} \operatorname{Re} c_{R}^{\ell\ell} \qquad d_{\ell} = -2 \operatorname{Im} c_{R}^{\ell\ell}$$

- Hermiticity leaves only two dipole structures
 - $\hookrightarrow a_{\ell}, d_{\ell}$ real quantities by definition
- But PDG lists limits Belle 2022

Re $d_{\tau} = -0.62(63) \times 10^{-17} e \,\mathrm{cm}$ Im $d_{\tau} = -0.40(32) \times 10^{-17} e \,\mathrm{cm}$

 \hookrightarrow to understand what's going on need to look at form factors

Electromagnetic form factors

Form factors

$$\langle p' | j_{\text{em}}^{\mu} | p \rangle = e \, \bar{u}(p') \Big[\gamma^{\mu} F_1(q^2) + \frac{i \sigma^{\mu\nu} q_{\nu}}{2m_{\ell}} F_2(q^2) + \frac{\sigma^{\mu\nu} q_{\nu} \gamma_5}{2m_{\ell}} F_3(q^2) + \left(\gamma^{\mu} - \frac{2m_{\ell} q^{\mu}}{q^2} \right) \gamma_5 F_4(q^2) \Big] u(p)$$

$$F_1(0) = 1 \quad F_2(0) = a_{\ell} \quad F_3(0) = \frac{2m_{\ell}}{e} d_{\ell} \quad F_4(0) = \text{anapole moment} \quad q = p' - p$$

• At $e^+e^- \rightarrow \tau^+\tau^-$, don't measure $F_i(0)$, but $F_i(s)$ with $s \simeq (10 \,\text{GeV})^2$

 $\hookrightarrow F_i(s)$ can develop an imaginary part!

Limits should read (strictly speaking)

 $\frac{e}{2m_{\pi}} \operatorname{Re} F_3(s) = -0.62(63) \times 10^{-17} e \operatorname{cm} \qquad \frac{e}{2m_{\pi}} \operatorname{Im} F_3(s) = -0.40(32) \times 10^{-17} e \operatorname{cm}$

Still interesting because of EFT: heavy new physics decouples

 $\hookrightarrow \operatorname{\mathsf{Re}} F_3(s) \simeq d_{\tau} \text{ if } M_{\operatorname{\mathsf{RSM}}}^2 \gg s$

Imaginary part not related to EDM

• Idea: write $e^+e^- \rightarrow \tau^+\tau^-$ matrix element as

$$\mathcal{M}^2 = \mathcal{M}^2_{SM} + \operatorname{\mathsf{Re}} d_{\tau} \mathcal{M}^2_{\mathsf{Re}} + \operatorname{\mathsf{Im}} d_{\tau} \mathcal{M}^2_{\mathsf{Im}} + d_{\tau}^2 \mathcal{M}^2_{d^2}$$

CP-odd terms

$$\begin{split} \mathcal{M}_{\text{Re}}^2 &\propto \left(\textbf{S}_+ \times \textbf{S}_- \right) \cdot \hat{\textbf{k}}, \quad \left(\textbf{S}_+ \times \textbf{S}_- \right) \cdot \hat{\textbf{p}} \\ \mathcal{M}_{\text{Im}}^2 &\propto \left(\textbf{S}_+ - \textbf{S}_- \right) \cdot \hat{\textbf{k}}, \quad \left(\textbf{S}_+ - \textbf{S}_- \right) \cdot \hat{\textbf{p}} \end{split}$$

with τ^{\pm} spin vectors \mathbf{S}_{\pm} and CMS momenta $\hat{\mathbf{k}}$ (τ^{-}), $\hat{\mathbf{p}}$ (e^{-})

 $\bullet\,$ Problem: cannot reconstruct \boldsymbol{S}_{\pm} and $\hat{\boldsymbol{k}}$ exactly due to neutrinos

 \hookrightarrow method of optimal observables, need to vary $m_{
u
u}$

• Includes average over $e\mu$, $e\pi$, $\mu\pi$, $e\rho$, $\mu\rho$, $\pi\rho$, $\rho\rho$, $\pi\pi$ channels

Indirect limits for τ EDM and future improvements

• Another EFT argument: d_{τ} generates contribution to d_e

- ThO: $d_e \leq 1.1 imes 10^{-29} e\, {
 m cm}$ Andreev et al. 2018
- HfF⁺: $d_e \leq 4.1 \times 10^{-30} e\,\text{cm}$ Roussy et al. 2023

via 3-loop diagram Grozin, Khriplovich, Rudenko 2009

$$\begin{aligned} d_{\tau} &\leq \left[\left(\frac{15}{4} \zeta(3) - \frac{31}{12} \right) \frac{m_{e}}{m_{\tau}} \left(\frac{\alpha}{\pi} \right)^{3} \right]^{-1} d_{e} \\ &= \{ 1.6 \times 10^{-18}, 5.9 \times 10^{-19} \} e \, \mathrm{cm} \end{aligned}$$

- For d_{τ} , no changes due to d_e vs. d_e^{equiv} in ThO (and likely HfF) molecule due to $1/m_{\tau}^3$ scaling Ema, Gao, Pospelov 2022
- Limit can be evaded by cancellation with other d_τ source
 → need to check explicitly
- Projections for Belle II:
 - 50 ab $^{-1}$, no polarization: $d_{ au} \simeq 10^{-19} e \, {
 m cm}$
 - With polarization: $d_{\tau} \simeq 10^{-20} e$ cm, how?

Oct 14, 2024

What about the magnetic dipole moment?

• Current status:

$-0.052 < a_{ au} < 0.013$	95% CL	DELPHI 2004
$-0.057 < rac{a_{ au}}{a_{ au}} < 0.024$	95% CL	ATLAS 2023
$-0.088 < a_{ au} < 0.056$	68% CL	CMS 2023

Points of comparison:

- SM prediction Keshavarzi et al. 2020: $a_{\tau}^{SM} = 1,177.171(39) \times 10^{-6}$
- Schwinger term:

 $a_{\tau}^{1-\text{loop QED}} = \frac{\alpha}{2\pi} = 1.16141 \ldots \times 10^{-3}$

- Electroweak contribution: $a_{\tau}^{\text{EW}} \simeq 0.5 \times 10^{-6}$
- Concrete models: S_1 leptoquark model promising due to **chiral enhancement** with $\frac{m_t}{m_{\tau}}$ \hookrightarrow can get $a_{\tau}^{\text{BSM}} \simeq (\text{few}) \times 10^{-6}$ without violating $h \to \tau \tau$ and $Z \to \tau \tau$
- Can one probe the interesting range at Belle II?

• Interplay with electron and muon:

- Already stringent limits on de from atomic systems
 - \hookrightarrow will further improve in the future
- Current limit on $d_{\mu} < 1.8 imes 10^{-19} e\,{
 m cm}$ BNL 2009

 \hookrightarrow will improve in the next years with new experiments $\ensuremath{\mathsf{Fermilab}}, \ensuremath{\mathsf{J-PARC}}, \ensuremath{\mathsf{PSI}}$

- a_e to be probed at 10⁻¹³, limited by tension in α (Cs) and α (Rb)
 - \hookrightarrow improved atom interferometry experiments ongoing
- a_{μ} to be probed at 10⁻¹⁰ Fermilab 2025, J-PARC 2028–, limited by tensions in HVP

 \hookrightarrow theory effort ongoing to resolve this

- Comparing a_{ℓ} , d_{ℓ} , for all $\ell = \{e, \mu, \tau\}$ reveals hints about flavor structure
 - \hookrightarrow scaling with lepton masses, complex phases, lepton flavor universality
- Rest of the talk: how would polarization at Belle II help in constraining d_{τ} , a_{τ} ? \hookrightarrow look at cross section and asymmetries for general $\gamma^* \tau \tau$ vertex

Differential cross section for $e^+e^- \rightarrow \tau^+\tau^-$ with general $\gamma^*\tau\tau$ vertex

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta}{4s} \bigg[(2 - \beta^2 \sin^2 \theta) \left(|F_1|^2 - \gamma^2 |F_2|^2 \right) + 4\text{Re}\left(F_1 F_2^*\right) + 2(1 + \gamma^2) |F_2|^2 + \beta^2 \gamma^2 \sin^2 \theta |F_3|^2 \bigg]$$

with scattering angle θ , $\beta = \sqrt{1 - 4m_{\tau}^2/s}$, $\gamma = \sqrt{s}/(2m_{\tau})$

- Interference term $4\text{Re}(F_1F_2^*)$ in principle provides sensitivity to $F_2(s)$
- Same EFT argument as for d_{τ} : Re $F_2(s) = \text{Re } F_2^{\text{SM}}(s) + a_{\tau}^{\text{BSM}}$ if $M_{\text{BSM}}^2 \gg s$
- Could be determined by fit to θ dependence
- But: need to measure total cross section at 10⁻⁵ (at least)

 \hookrightarrow can we use asymmetries instead?

• Usual forward–backward asymmetry ($z = \cos \theta$)

$$\sigma_{\mathsf{FB}} = 2\pi \left[\int_0^1 dz \frac{d\sigma}{d\Omega} - \int_{-1}^0 dz \frac{d\sigma}{d\Omega} \right]$$

alone does not help

M. Hoferichter (Institute for Theoretical Physics)

11

Second attempt: τ polarization

Bernabéu et al. 2007-2009

Polarization characterized by

$$\mathbf{n}_{\pm}^{*} = \mp \alpha_{\pm} \begin{pmatrix} \sin \theta_{\pm}^{*} \cos \phi_{\pm} \\ \sin \theta_{\pm}^{*} \sin \phi_{\pm} \\ \cos \theta_{\pm}^{*} \end{pmatrix} \qquad \alpha_{\pm} \equiv \begin{cases} 1 & h^{\pm} = \pi^{\pm} \\ \frac{m_{\tau}^{2} - 2m_{h^{\pm}}^{2}}{m_{\tau}^{2} + 2m_{h^{\pm}}^{2}} = \begin{cases} 0.45 & h^{\pm} = \rho^{\pm} \\ 0.02 & h^{\pm} = a_{1}^{\pm} \end{cases}$$

 \hookrightarrow angles in τ^{\pm} rest frame

- Can get additional information when separating L, T components of ρ, a₁
- Construct asymmetries from spin-dependent cross section

Spin-dependent cross section for $e^+e^- \rightarrow \tau^+\tau^-$ with general $\gamma^*\tau\tau$ vertex

$$\begin{aligned} \frac{d\sigma^S}{d\Omega} &= \frac{\alpha^2 \beta}{8s} \left[(s_- - s_+)_X X_- + (s_- + s_+)_Y Y_+ + (s_- - s_+)_Z Z_- \right] \\ X_- &= \beta \gamma \sin \theta \cos \theta \left[\operatorname{Im} \left(F_3 F_1^* \right) + \operatorname{Im} \left(F_3 F_2^* \right) \right] \qquad Z_- = -\beta \sin^2 \theta \left[\operatorname{Im} \left(F_3 F_1^* \right) + \gamma^2 \operatorname{Im} \left(F_3 F_2^* \right) \right] \\ Y_+ &= \beta^2 \gamma \cos \theta \sin \theta \operatorname{Im} \left(F_2 F_1^* \right) \end{aligned}$$

Normal asymmetry

$$A_{N}^{\pm} = \frac{\sigma_{L}^{\pm} - \sigma_{R}^{\pm}}{\sigma_{\text{tot}}} = \pm \alpha_{\pm} \frac{\pi \alpha^{2} \beta^{3} \gamma}{3 s \sigma_{\text{tot}}} \text{Im} \left(F_{2} F_{1}^{*}\right) \qquad \sigma_{L}^{\pm} = \int_{\pi}^{2\pi} d\phi_{\pm} \frac{d\sigma_{\text{FB}}}{d\phi_{\pm}} \quad \sigma_{R}^{\pm} = \int_{0}^{\pi} d\phi_{\pm} \frac{d\sigma_{\text{FB}}}{d\phi_{\pm}}$$

 \hookrightarrow only get access to Im F_2

- Can also project out Im F_3 , but neither one tests a_{τ} or d_{τ} (in the EFT sense above)
 - \hookrightarrow need electron polarization

Polarized cross section for $e^+e^- \rightarrow \tau^+\tau^-$ with general $\gamma^*\tau\tau$ vertex

$$\frac{d\sigma^{S\lambda}}{d\Omega} = \frac{\alpha^2 \beta \lambda}{16s} \left[(s_- + s_+)_X X_+ + (s_- - s_+)_Y Y_- + (s_- + s_+)_Z Z_+ \right]$$
$$X_+ = \frac{\sin \theta}{\gamma} \left[|F_1|^2 + (1 + \gamma^2) \operatorname{Re} (F_2 F_1^*) + \gamma^2 |F_2|^2 \right] \qquad Z_+ = \cos \theta \left| F_1 + F_2 \right|^2$$
$$Y_+ = -\beta \gamma \sin \theta \left[\operatorname{Re} (F_3 F_1^*) + \operatorname{Re} (F_3 F_2^*) \right]$$

• Can now construct helicity difference

$$d\sigma_{\text{pol}}^{S} = \frac{1}{2} \left(d\sigma^{S\lambda} \big|_{\lambda=1} - d\sigma^{S\lambda} \big|_{\lambda=-1} \right)$$

• The normal asymmetry with $d\sigma_{FB} \rightarrow d\sigma_{pol}^{S}$ in σ_{L}^{\pm} , σ_{R}^{\pm} gives

$$A_{N}^{\pm} = \frac{\sigma_{L}^{\pm} - \sigma_{R}^{\pm}}{\sigma_{\text{tot}}} = \alpha_{\pm} \frac{\pi^{2} \alpha^{2} \beta^{2} \gamma}{4 s \sigma_{\text{tot}}} \Big[\text{Re}\left(F_{3}F_{1}^{*}\right) + \text{Re}\left(F_{3}F_{2}^{*}\right) \Big]$$

 \hookrightarrow provides access to $d_{\tau}!$

To isolate a_τ, consider transverse and longitudinal asymmetries Bernabéu et al. 2007

$$A_{T}^{\pm} = \frac{\sigma_{R}^{\pm} - \sigma_{L}^{\pm}}{\sigma_{\text{tot}}} \qquad A_{L}^{\pm} = \frac{\sigma_{\text{FB},R}^{\pm} - \sigma_{\text{FB},L}^{\pm}}{\sigma_{\text{tot}}}$$

defined via

$$\sigma_{R}^{\pm} = \int_{-\pi/2}^{\pi/2} d\phi_{\pm} \frac{d\sigma_{\text{pol}}^{S}}{d\phi_{\pm}} \quad \sigma_{L}^{\pm} = \int_{\pi/2}^{3\pi/2} d\phi_{\pm} \frac{d\sigma_{\text{pol}}^{S}}{d\phi_{\pm}} \quad \sigma_{\text{FB},R}^{\pm} = \int_{0}^{1} dz_{\pm}^{*} \frac{d\sigma_{\text{FB,pol}}^{S}}{dz_{\pm}^{*}} \quad \sigma_{\text{FB},L}^{\pm} = \int_{-1}^{0} dz_{\pm}^{*} \frac{d\sigma_{\text{FB,pol}}^{S}}{dz_{\pm}^{*}}$$

Linear combination

$$\boldsymbol{A}_{\mathcal{T}}^{\pm} - \frac{\pi}{2\gamma} \boldsymbol{A}_{L}^{\pm} = \mp \alpha_{\pm} \frac{\pi^{2} \alpha^{2} \beta^{3} \gamma}{4 s \sigma_{\text{tot}}} \Big[\text{Re} \left(\boldsymbol{F}_{2} \boldsymbol{F}_{1}^{*} \right) + \left| \boldsymbol{F}_{2} \right|^{2} \Big]$$

gives access to a_{τ}

How to make use of this in practice?

Contributions to Re $F_2^{\text{eff}}(s) \times 10^6$	s = 0	$s = (10 \mathrm{GeV})^2$
1-loop QED	1161.41	-265.90
e loop	10.92	-2.43
μ loop	1.95	-0.34
2-loop QED (mass independent)	-0.42	-0.24
HVP	3.33	-0.33
EW	0.47	0.47
total	1177.66	-268.77

Re
$$F_2^{\text{eff}}((10 \,\text{GeV})^2)$$

$$\simeq \mp \frac{0.73}{\alpha_{\pm}} \left(\textbf{A}_{\textbf{\textit{T}}}^{\pm} - 0.56 \textbf{A}_{\textbf{\textit{L}}}^{\pm} \right)$$

• Strategy:

Measure effective F₂(s)

$$\mathsf{Re}\, \textit{F}^{\mathsf{eff}}_{2} = \mp \frac{8(3-\beta^2)}{3\pi\gamma\beta^2\alpha_{\pm}} \Big(\textit{A}^{\pm}_{\textit{T}} - \frac{\pi}{2\gamma}\textit{A}^{\pm}_{\textit{L}} \Big) \qquad \qquad \sigma_{\mathsf{tot}} \simeq \frac{2\pi\alpha^2\beta(3-\beta^2)}{3s}$$

- Compare measurement to SM prediction for Re F_2^{eff} , difference gives constraint on a_{τ}^{BSM}
- A measurement of $A_T^{\pm} \frac{\pi}{2\gamma} A_L^{\pm}$ at $\lesssim 1\%$ would already be competitive with current limits
- Detector systematics cancel in asymmetries
 - \hookrightarrow polarization largest uncertainty, but $\lesssim 0.5\% \times \text{Re} F_2^{\text{eff}}(s) \simeq 1 \times 10^{-6}$

How to make use of this in practice?

• Challenges (experiment):

• Cancellation in $A_T^{\pm} - \frac{\pi}{2\gamma} A_L^{\pm}$: $A_{T,L}^{\pm} = \mathcal{O}(1)$, difference $\mathcal{O}(\alpha)$

 \hookrightarrow need $m_{ au}$ and $M_{\Upsilon(1S)}$ at same level as target precision for $a_{ au}$

• With 40 ab^{-1} and 60% selection efficiency, 10^{-5} for Re F_2^{eff} realistic

```
\hookrightarrow Snowmass 2205.12847 also gives a formulation of Re F_2^{\text{eff}} in terms of count rates
```

Beyond 10⁻⁵, need more statistics and m_τ, M_{Υ(1S)}

• Challenges (theory):

• Form factor only dominates for resonant $\tau^+\tau^-$ pairs

$$|H(M_{\Upsilon})|^2 = \left(rac{3}{lpha} {
m Br}(\Upsilon o e^+ e^-)
ight)^2 \simeq 100$$

- However: continuum pairs dominate even at $\Upsilon(nS)$, n = 1, 2, 3, due to energy spread
- Need to consider A_T^{\pm} , A_L^{\pm} also for nonresonant $\tau^+\tau^-$, requires full calculation of $e^+e^- \rightarrow \tau^+\tau^-$ including box diagrams
- Ultimately, need two-loop accuracy
- Next slides: first results for implementation in MC integrator MCMULE

▲ 臣 ▶ ▲ 臣 ▶ = ● • • • • • • •

MCMULE

Fixed-order NNLO QED framework Monte Carlo for MUons and other LEptons

- Provided: matrix elements by MCMULE or others
- Output: physical cross section for any physical observable
- MCMULE: phase space generation, subtraction, stabilization, integration, event generation, etc.
- All leptonic 2 \rightarrow 2 processes in QED at NNLO (+ a few others)
- Stable public version is an integrator
- Generator on development branch

Get the code here: https://mule-tools.gitlab.io

Read the docs here: https://mcmule.readthedocs.io

Further reading: 1811.06461, 1909.10244, 2007.01654, 2112.07570, 2212.06481

MCMULE

Processes in MCMULE

Process	Experiment	Physics motivation	Order
$e\mu ightarrow e\mu$	MUonE	HVP to $(g-2)_{\mu}$	NNLO+
$\ell p ightarrow \ell p$	P2, MUSE, PRad, QWeak,	proton radius and weak charge	NNLO
$\textit{eN} \rightarrow \textit{eN}$	PRad, ULQ2	background	NNLO-
$e^-e^- ightarrow e^-e^-$	PRad 2	normalization	NNLO
	MOLLER,	$\sin^2 \theta_W$ at low Q^2	
$e^+e^- \to e^+e^-$	any e^+e^- collider	luminosity measurement	NNLO
$ee ightarrow \ell\ell$	VEPP, BES, DAΦNE,	<i>R</i> -ratio	NNLO+
	Belle II	au properties	
$ee ightarrow \gamma \gamma$	DAΦNE	dark searches	NNLO-
	any e^+e^- collider	luminosity measurement	
$\mathrm{e}\nu \to \mathrm{e}\nu$	DUNE	flux & $\sin^2 \theta_W$	NNLO-
$\mu \rightarrow \nu \bar{\nu} e$	MEG	ALP searches	NNLO+
	DUNE	beam-line profiling	
$\mu \rightarrow \nu \bar{\nu} \theta \gamma$	MEG, Mu3e, PIONEER	background	NLO
$\mu \rightarrow \nu \bar{\nu} \textit{eee}$	MEG, Mu3e	background	NLO
$ee ightarrow \pi\pi$	VEPP, BES, DAΦNE,	R-ratio	NLO+
$ee ightarrow \ell\ell\gamma$	VEPP, BES, DAΦNE,	<i>R</i> -ratio	$NLO\pm$

M. Hoferichter (Institute for Theoretical Physics)

Prospects on d_{τ}/a_{τ} and polarized beams

.

Oct 14, 2024

19

Some first results for $e^+e^- \rightarrow \tau^+\tau^-$ (w/o polarization): σ_{tot}

M. Hoferichter (Institute for Theoretical Physics)

Oct 14, 2024

Some first results for $e^+e^- \rightarrow \tau^+\tau^-$ (w/o polarization): $\sigma_L - \sigma_R$

M. Hoferichter (Institute for Theoretical Physics)

Oct 14, 2024

MCMULE: getting started

A McMule

Search docs

CONTENTS

- Getting started
- Structure of McMule
- General aspects of using McMule
- Technical aspects of McMule
- Implementing new processes in McMule
- The FKS⁴ scheme
- Glossary
- Bibliography
- Particle ID
- Available processes and which_piece
- Fortran reference guid
- pymule user guide
- pymule reference guide

/ McMule

View page source

McMule

 $\label{eq:analysis} \begin{array}{c} \mbox{Yanniko} \left({\rm Ulrich} \odot ^1, {\rm Pulak Banerjee} \odot ^2, {\rm Antonio Coutlinho} \odot ^3, {\rm Tim Engel} \odot ^4, {\rm Anderea Gurgone} \odot ^5, {\rm Graniska Hageistein} \odot ^7, {\rm Sophie Kollstzch} \odot ^9, {\rm Unca Naterop} \odot ^9, {\rm Marco Rocco} \odot ^8, {\rm Nicolas Schaltho} \odot ^1, {\rm Valsysta Sharkovska} \odot ^9, {\rm Ardran Signer} \odot ^8, {\rm Sophie Coll Schalthorea}, {\rm Sophie Coll Schal$

- [1] (1,2) Albert Einstein Center for Fundamental Physics, Universität Bern, CH-3012 Bern, Switzerland
- [2] Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
- IFIC, Universitat de València CSIC, Parc Científic, Catedrático José Beltrán, 2, E-46980 Paterna, Spain
- [4] Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
- [5] Dipartimento di Fisica, Università di Pavia, I-27100 Pavia, Italy
- [6] INFN, Sezione di Pavia, I-27100 Pavia, Italy
- Institut f
 ür Kernphysik & PRISMA* Cluster of Excellence, Johannes Gutenberg Universit
 ät Mainz, D-55099 Mainz, Germany
- [8] (1, 2, 3, 4, 5, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- [9] (1,2,3,4) Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Contents:

- · Getting started
 - · Obtaining the code
 - Simple runs at LO
 - · Running at NLO and beyond
 - More complicated runs
- Structure of McMule
 - Modular structure of the code
 - What happens when running

- MCMULE manual at https://mule-tools. gitlab.io/manual/
- For general questions contact Yannick Ulrich yannick.ulrich@liverpool.ac.uk
- For $e^+e^- \rightarrow \tau^+\tau^$ contact Joël Gogniat

Conclusions

- Exciting physics program at Chiral Belle
 - Unprecedented precision for neutral-current vector couplings: sin² θ_W, universality
 - Highly complementary to low- and high-energy probes of parity violation
 - Improved precision of τ Michel parameters
 - Improved sensitivity to $\tau \rightarrow \mu \gamma, \tau \rightarrow e \gamma$

• Dipole moments of the au

- EDM: could probe $d_{ au} \simeq 10^{-20} e \, {
 m cm}$
- (g − 2)_τ: could probe a^{BSM}_τ ≃ 10⁻⁵ (assuming current projections for statistics and m_τ, M_{Υ(1S)})
- Program for a_τ requires theory development up to two-loop level, being implemented into MCMULE
- Important especially in view of ongoing developments for *l* = {*e*, μ}

