Prospects on the magnetic/electric dipole moment of the tau and polarized beams

Martin Hoferichter

UNIVERSITÄT **REPN**

Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern

AFC ALBERT FINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Oct 14, 2024

2024 Belle II Physics Week, KEK, Tsukuba

Talk by J. Michael Roney at 2024 US Belle II Summer Workshop https://indico.belle2.org/event/11190/contributions/76575/

The Belle II Detector Upgrades Framework Conceptual Design Report, arXiv:2406.19421

Snowmass 2021 White Paper, Upgrading SuperKEKB with a Polarized Electron Beam: Discovery Potential and Proposed Implementation, arXiv:2205.12847

Crivellin, MH, Roney PRD 106 (2022) 093007

Gogniat, MH, Ulrich work in progress

4 D F

Why do we need a polarized electron beam?

Main motivation: **precision neutral-current electroweak program**

With 40 ab $^{-1}$, $\Delta \sin^2\theta_W =$ 0.00018 (combined leptons)

 \hookrightarrow same precision as *Z*-pole measurements, but at $s \simeq (10 \,\mathrm{GeV})^2!$

- Precision probe of running of $\sin^2 \theta_W$, complementary to MOLLER, P2, ...
- **•** Probes e, μ, τ, c, b couplings, not "just" first generati[on](#page-0-0)

Left-right asymmetries

ICHEP talk by Roney

Vector couplings from *Z*–γ interference

$$
A_{LR} = \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = \frac{4}{\sqrt{2}} \left(\frac{G_F s}{4\pi \alpha Q_f} \right) g_A^e g_V^f \langle \text{Pol} \rangle \qquad g_V^f = T_3^f - 2Q_f \sin^2 \theta_W
$$

• Major improvements for 2nd and 3rd generation, by factors {4, 6, 3} for {*b*, *c*, μ }

Average of $\{e,\mu,\tau\}$ for sin² θ_W same precision as *Z*-pole measurements

Universality [o](#page-1-0)f g_V^f even better tested because domin[an](#page-1-0)t \langle \langle \langle [P](#page-3-0)ol \rangle [u](#page-3-0)[nc](#page-0-0)[ert](#page-22-0)[ain](#page-0-0)[ty](#page-22-0) [ca](#page-0-0)[nce](#page-22-0)ls

4 0 8

Polarization upgrade: broader physics program

Improved sensitivity to lepton-flavor-violating decays: $\tau \to \mu\gamma$ and $\tau \to e\gamma$

,→ *e* [−] beam polarization helps reduce backgrounds

- **Improved precision measurements of τ Michel parameters**
- **Precision QCD studies**
- o **Dipole moments of the** *τ*
	- Anomalous magnetic moment a_τ via Pauli form factor $F_2(s)$ at $s\simeq$ $(10\,\text{GeV})^2$
	- EDM d_{τ} via $F_3(s)$ at $s\simeq (10\,\text{GeV})^2$
	- \hookrightarrow focus of this talk

EFT definition

$$
\mathcal{L}_{\text{dipole}} = -c_R^{\ell\ell} \bar{\ell} \sigma^{\mu\nu} P_R \ell F_{\mu\nu} + \text{h.c.} \qquad P_R = \frac{1 + \gamma_5}{2} \qquad \ell \in \{e, \mu, \tau\}
$$
\n
$$
a_{\ell} = -\frac{4m_{\ell}}{e} \text{Re } c_R^{\ell\ell} \qquad d_{\ell} = -2 \text{ Im } c_R^{\ell\ell}
$$

- **Hermiticity** leaves only two dipole structures
	- \rightarrow a_{ℓ} , d_{ℓ} real quantities by definition
- **But PDG lists limits Belle 2022**

$$
\text{Re } d_{\tau} = -0.62(63) \times 10^{-17} e \, \text{cm} \qquad \text{Im } d_{\tau} = -0.40(32) \times 10^{-17} e \, \text{cm}
$$

,→ to understand what's going on need to look at **form factors**

4 D F

Electromagnetic form factors

Form factors

$$
\langle p'|j^{\mu}_{em}|p\rangle = e \,\overline{u}(p') \bigg[\gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2m_{\ell}} F_2(q^2) + \frac{\sigma^{\mu\nu} q_{\nu}\gamma_5}{2m_{\ell}} F_3(q^2) + \left(\gamma^{\mu} - \frac{2m_{\ell}q^{\mu}}{q^2}\right) \gamma_5 F_4(q^2)\bigg] u(p)
$$

$$
F_1(0) = 1 \qquad F_2(0) = a_{\ell} \qquad F_3(0) = \frac{2m_{\ell}}{e} d_{\ell} \qquad F_4(0) = \text{anapole moment} \qquad q = p' - p
$$

At $e^+e^-\to \tau^+\tau^-$, don't measure $F_i(0)$, but $F_i(s)$ with $s\simeq (10\,\text{GeV})^2$

 \hookrightarrow *F*_{*i*}(s) can develop an imaginary part!

• Limits should read (strictly speaking)

e $\frac{e}{2m_{\tau}}$ Re *F*₃(*s*) = −0.62(63) × 10^{−17}*e* cm $\frac{e}{2m_{\tau}}$ $\frac{e}{2m_{\tau}}$ lm $F_3(s) = -0.40(32) \times 10^{-17} e$ cm

• Still interesting because of EFT: heavy new physics decouples

$$
\hookrightarrow \text{Re } F_3(s) \simeq d_\tau \text{ if } M^2_{\text{BSM}} \gg s
$$

• Imaginary part not related to EDM

Idea: write $e^+e^- \rightarrow \tau^+\tau^-$ matrix element as

$$
\mathcal{M}^2 = \mathcal{M}_{\text{SM}}^2 + \text{Re} \, d_\tau \mathcal{M}_{\text{Re}}^2 + \text{Im} \, d_\tau \mathcal{M}_{\text{Im}}^2 + \text{Im} \, \frac{d_\tau^2}{d_\tau^2} \mathcal{M}_{\text{dR}}^2
$$

*CP***-odd terms**

$$
\begin{aligned} \mathcal{M}_{\mathsf{Re}}^2 &\propto \left(\mathbf{S}_+\times\mathbf{S}_-\right)\cdot\hat{\mathbf{k}}, \quad \left(\mathbf{S}_+\times\mathbf{S}_-\right)\cdot\hat{\mathbf{p}}\\ \mathcal{M}_{\mathsf{Im}}^2 &\propto \left(\mathbf{S}_+-\mathbf{S}_-\right)\cdot\hat{\mathbf{k}}, \quad \left(\mathbf{S}_+-\mathbf{S}_-\right)\cdot\hat{\mathbf{p}} \end{aligned}
$$

with τ^{\pm} spin vectors \mathbf{S}_{\pm} and CMS momenta $\hat{\mathbf{k}}$ (τ^-), $\hat{\mathbf{p}}$ (\boldsymbol{e}^-)

- Problem: cannot reconstruct **S**[±] and **k**ˆ exactly due to neutrinos
	- \hookrightarrow method of optimal observables, need to vary $m_{\nu\nu}$
- **Includes average over** $e\mu$ **,** $e\pi$ **,** $\mu\pi$ **,** $e\rho$ **,** $\mu\rho$ **,** $\pi\rho$ **,** $\rho\rho$ **,** $\pi\pi$ **channels**

Indirect limits for τ EDM and future improvements

• Another EFT argument: $d_τ$ generates contribution to d_e

- ThO: *d^e* ≤ 1.1 × 10−29*e* cm Andreev et al. 2018
- HfF+: *d^e* ≤ 4.1 × 10−30*e* cm Roussy et al. 2023

via 3-loop diagram Grozin, Khriplovich, Rudenko 2009

$$
d_{\tau} \le \left[\left(\frac{15}{4} \zeta(3) - \frac{31}{12} \right) \frac{m_e}{m_{\tau}} \left(\frac{\alpha}{\pi} \right)^3 \right]^{-1} d_e
$$

= {1.6 × 10⁻¹⁸, 5.9 × 10⁻¹⁹} e cm

- For d_{τ} , no changes due to d_{e} vs. d_{e}^{equiv} in ThO (and likely HfF) molecule due to $1/m_\tau^3$ scaling E ma, Gao, Pospelov 2022
- **•** Limit can be evaded by cancellation with other d_{τ} source \hookrightarrow need to check explicitly
- **•** Projections for Belle II:
	- 50 ab−¹ , no polarization: *d*^τ ≃ 10−19*e* cm
	- With polarization: *d*^τ ≃ 10−20*e* cm, **how?**

 290

What about the magnetic dipole moment?

Current status: \bullet

• Points of comparison:

• SM prediction Keshavarzi et al. 2020:

 $a_{\tau}^{\rm SM} =$ 1,177.171(39) \times 10 $^{-6}$

• Schwinger term:

 $a_{\tau}^{\text{1-loop QED}} = \frac{\alpha}{2\pi} = 1.16141\ldots \times 10^{-3}$

- Electroweak contribution: $a_{\tau}^{\rm EW} \simeq 0.5 \times 10^{-6}$
- Concrete models: S_1 leptoquark model promising due to **chiral enhancement** with *^m^t m*τ \hookrightarrow can get $a_{\tau}^{\mathsf{BSM}}\simeq$ (few) \times 10⁻⁶ without violating $h \to \tau \tau$ and $Z \to \tau \tau$
- \bullet Can one probe the interesting range at Belle II?

 $2Q$

2

4 0 8

Interplay with electron and muon:

- Already stringent limits on *de* from atomic systems
	- \hookrightarrow will further improve in the future
- Current limit on *d*^µ < 1.8 × 10−19*e* cm BNL 2009
	- \hookrightarrow will improve in the next years with new experiments Fermilab, J-PARC, PSI
- a_e to be probed at 10⁻¹³, limited by tension in α (Cs) and α (Rb)
	- \hookrightarrow improved atom interferometry experiments ongoing
- **a** a_{μ} to be probed at 10⁻¹⁰ Fermilab 2025, J-PARC 2028-, limited by tensions in HVP
	- \hookrightarrow theory effort ongoing to resolve this
- Comparing a_{ℓ} , d_{ℓ} , for all $\ell = \{e, \mu, \tau\}$ reveals hints about **flavor structure**
	- \hookrightarrow scaling with lepton masses, complex phases, lepton flavor universality
- **•** Rest of the talk: how would polarization at Belle II help in constraining d_{τ} , a_{τ} ? \leftrightarrow look at cross section and asymmetries for **general** $γ^*τ$ vertex

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

Differential cross section for $e^+e^-\to \tau^+\tau^-$ with general $\gamma^*\tau\tau$ vertex

$$
\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta}{4s} \bigg[\left(2 - \beta^2 \sin^2 \theta \right) \left(|F_1|^2 - \gamma^2 |F_2|^2 \right) + 4 \text{Re} \left(F_1 F_2^* \right) + 2 (1 + \gamma^2) |F_2|^2 + \beta^2 \gamma^2 \sin^2 \theta |F_3|^2 \bigg]
$$

with scattering angle θ , $\beta = \sqrt{1 - 4 m_\tau^2 /s}$, $\gamma = \sqrt{s}/(2 m_\tau)$

- Interference term 4Re $(F_1F_2^*)$ in principle provides sensitivity to $F_2(s)$
- Same EFT argument as for d_τ : Re $F_2(s) = \text{Re } F_2^{\text{SM}}(s) + a_\tau^{\text{BSM}}$ if $M_{\text{BSM}}^2 \gg s$
- Could be determined by fit to θ dependence
- But: need to measure total cross section at 10⁻⁵ (at least)

,→ **can we use asymmetries instead**?

• Usual forward–backward asymmetry $(z = \cos \theta)$

$$
\sigma_{\text{FB}} = 2\pi \bigg[\int_0^1 dz \frac{d\sigma}{d\Omega} - \int_{-1}^0 dz \frac{d\sigma}{d\Omega} \bigg]
$$

alone does not help

Second attempt: τ polarization

• Polarization characterized by

$$
\begin{array}{c|c}\n\end{array}
$$

$$
\mathbf{n}_{\pm}^{*} = \mp \alpha_{\pm} \begin{pmatrix} \sin \theta_{\pm}^{*} \cos \phi_{\pm} \\ \sin \theta_{\pm}^{*} \sin \phi_{\pm} \\ \cos \theta_{\pm}^{*} \end{pmatrix} \qquad \alpha_{\pm} \equiv \begin{cases} 1 & h^{\pm} = \pi^{\pm} \\ \frac{m_{r}^{2} - 2m_{h^{\pm}}^{2}}{m_{r}^{2} + 2m_{h^{\pm}}^{2}} = \begin{cases} 0.45 & h^{\pm} = \rho^{\pm} \\ 0.02 & h^{\pm} = a_{1}^{\pm} \end{cases}
$$

 \hookrightarrow angles in τ^\pm rest frame

- **Can get additional information when separating L, T components of** ρ **,** a_1
- Construct asymmetries from **spin-dependent cross section**

Spin-dependent cross section for $e^+e^-\to \tau^+\tau^-$ with general $\gamma^*\tau\tau$ vertex

$$
\frac{d\sigma^{S}}{d\Omega} = \frac{\alpha^{2}\beta}{8s} \Big[(s_{-} - s_{+})_{x}X_{-} + (s_{-} + s_{+})_{y}Y_{+} + (s_{-} - s_{+})_{z}Z_{-} \Big]
$$
\n
$$
X_{-} = \beta\gamma \sin\theta \cos\theta \Big[\text{Im}(F_{3}F_{1}^{*}) + \text{Im}(F_{3}F_{2}^{*}) \Big] \qquad Z_{-} = -\beta \sin^{2}\theta \Big[\text{Im}(F_{3}F_{1}^{*}) + \gamma^{2} \text{Im}(F_{3}F_{2}^{*}) \Big]
$$
\n
$$
Y_{+} = \beta^{2}\gamma \cos\theta \sin\theta \ln(F_{2}F_{1}^{*})
$$

Normal asymmetry

$$
A_N^{\pm} = \frac{\sigma_L^{\pm} - \sigma_R^{\pm}}{\sigma_{\text{tot}}} = \pm \alpha_{\pm} \frac{\pi \alpha^2 \beta^3 \gamma}{3s \sigma_{\text{tot}}} \text{Im} \left(F_2 F_1^* \right) \qquad \sigma_L^{\pm} = \int_{\pi}^{2\pi} d\phi_{\pm} \frac{d\sigma_{FB}}{d\phi_{\pm}} \quad \sigma_R^{\pm} = \int_{0}^{\pi} d\phi_{\pm} \frac{d\sigma_{FB}}{d\phi_{\pm}}
$$

 \hookrightarrow only get access to $\text{Im } F_2$

- **Can also project out Im** F_3 **, but neither one tests** a_r **or** d_r **(in the EFT sense above)**
	- ,→ need **electron polarization**

4 0 8

Polarized cross section for $e^+e^-\to \tau^+\tau^-$ with general $\gamma^*\tau\tau$ vertex

$$
\frac{d\sigma^{S\lambda}}{d\Omega} = \frac{\alpha^2 \beta \lambda}{16s} \left[(s_{-} + s_{+})_{x} X_{+} + (s_{-} - s_{+})_{y} Y_{-} + (s_{-} + s_{+})_{z} Z_{+} \right]
$$
\n
$$
X_{+} = \frac{\sin \theta}{\gamma} \left[|F_{1}|^2 + (1 + \gamma^2) \text{Re} (F_{2} F_{1}^{*}) + \gamma^2 |F_{2}|^2 \right] \qquad Z_{+} = \cos \theta |F_{1} + F_{2}|^2
$$
\n
$$
Y_{+} = -\beta \gamma \sin \theta \left[\text{Re} (F_{3} F_{1}^{*}) + \text{Re} (F_{3} F_{2}^{*}) \right]
$$

• Can now construct helicity difference

$$
d\sigma_{\text{pol}}^S = \frac{1}{2} \left(d\sigma^{S\lambda} \big|_{\lambda=1} - d\sigma^{S\lambda} \big|_{\lambda=-1} \right)
$$

The normal asymmetry with $d\sigma_{\texttt{FB}}\to d\sigma_{\texttt{pol}}^S$ in $\sigma_{L}^{\pm},\sigma_{R}^{\pm}$ gives

$$
A_{N}^{\pm} = \frac{\sigma_{L}^{\pm} - \sigma_{R}^{\pm}}{\sigma_{\text{tot}}} = \alpha_{\pm} \frac{\pi^{2} \alpha^{2} \beta^{2} \gamma}{4 s \sigma_{\text{tot}}} \Big[\text{Re} \left(F_{3} F_{1}^{*} \right) + \text{Re} \left(F_{3} F_{2}^{*} \right) \Big]
$$

 \hookrightarrow provides access to d_{τ} !

4 D F

• To isolate $a_τ$, consider *transverse and longitudinal asymmetries* Bernabéu et al. 2007

$$
A_{\overline{I}}^{\pm} = \frac{\sigma_{\overline{R}}^{\pm} - \sigma_{\overline{L}}^{\pm}}{\sigma_{\text{tot}}} \qquad A_{\overline{L}}^{\pm} = \frac{\sigma_{\text{FB}, R}^{\pm} - \sigma_{\text{FB}, L}^{\pm}}{\sigma_{\text{tot}}}
$$

defined via

$$
\sigma^{\pm}_R=\int_{-\pi/2}^{\pi/2}d\phi_{\pm}\frac{d\sigma^S_{\text{pol}}}{d\phi_{\pm}}\qquad \sigma^{\pm}_L=\int_{\pi/2}^{3\pi/2}d\phi_{\pm}\frac{d\sigma^S_{\text{pol}}}{d\phi_{\pm}}\qquad \sigma^{\pm}_{\text{FB, }R}=\int_0^1d\underline{z}^*_{\pm}\frac{d\sigma^S_{\text{FB, pol}}}{d\underline{z}^*_{\pm}}\qquad \sigma^{\pm}_{\text{FB, }L}=\int_{-1}^0d\underline{z}^*_{\pm}\frac{d\sigma^S_{\text{FB, pol}}}{d\underline{z}^*_{\pm}}\nonumber
$$

• Linear combination

$$
A_{7}^{\pm}-\frac{\pi}{2\gamma}A_{L}^{\pm}=\mp\alpha_{\pm}\frac{\pi^{2}\alpha^{2}\beta^{3}\gamma}{4s\sigma_{\text{tot}}}\left[\text{Re}\left(F_{2}F_{1}^{*}\right)+\left|F_{2}\right|^{2}\right]
$$

gives access to $a_τ$

扂

4 0 8

How to make use of this in practice?

 $\text{Re } F_2^{\text{eff}}((10 \text{ GeV})^2)$

$$
\simeq \mp \frac{0.73}{\alpha_{\pm}} \left(A^{\pm}_{7} - 0.56 A^{\pm}_{L} \right)
$$

Strategy:

• Measure effective $F₂(s)$

$$
\text{Re}\, \mathit{F}_{2}^{\text{eff}} = \mp \frac{8(3-\beta^{2})}{3\pi\gamma\beta^{2}\alpha_{\pm}}\Big(\mathcal{A}_{\mathcal{T}}^{\pm} - \frac{\pi}{2\gamma}\mathcal{A}_{\mathcal{L}}^{\pm}\Big) \hspace{1.5cm} \sigma_{\text{tot}} \simeq \frac{2\pi\alpha^{2}\beta(3-\beta^{2})}{3s}
$$

- Compare measurement to SM prediction for Re $\mathcal{F}_2^{\mathsf{eff}}$, difference gives constraint on a_{τ}^{BSM}
- A measurement of $A^{\pm}_{\overline{I}}-\frac{\pi}{2\gamma}A^{\pm}_{\overline{L}}$ at \lesssim 1% would already be competitive with current limits
- Detector systematics cancel in asymmetries

 \hookrightarrow polarization large[s](#page-16-0)t uncertainty, but \lesssim [0](#page-22-0).5% \times Re $F_2^{\text{eff}}(s) \simeq 1 \times 10^{-6}$ $F_2^{\text{eff}}(s) \simeq 1 \times 10^{-6}$

How to make use of this in practice?

Challenges (experiment):

Cancellation in $A^{\pm}_{7} - \frac{\pi}{2\gamma} A^{\pm}_{L}$: $A^{\pm}_{7,L} = \mathcal{O}(1)$, difference $\mathcal{O}(\alpha)$

 \hookrightarrow need m_{τ} and $M_{\Upsilon(1S)}$ at same level as target precision for a_{τ}

With 40 ab⁻¹ and 60% selection efficiency, 10⁻⁵ for Re F_2^{eff} realistic

 \hookrightarrow Snowmass 2205.12847 also gives a formulation of Re F_2^{eff} in terms of count rates

Beyond 10^{−5}, need more statistics and *m*τ, *M*_{Υ(1S)}

Challenges (theory):

Form factor only dominates for resonant $\tau^+\tau^-$ pairs

$$
|H(M_T)|^2 = \left(\frac{3}{\alpha} \text{Br}(\Upsilon \to e^+e^-)\right)^2 \simeq 100
$$

- However: continuum pairs dominate even at $\Upsilon(nS)$, $n = 1, 2, 3$, due to energy spread
- Need to consider A^{\pm}_{I} , A^{\pm}_{L} also for nonresonant $\tau^{+}\tau^{-}$, requires full calculation of e^+e^- → $\tau^+\tau^-$ including box diagrams
- Ultimately, need two-loop accuracy
- Next slides: first results for implementation in MC integrator MCMULE

K個→ K ヨ X キョ X ヨ → の Q Q →

MCMULE

Fixed-order NNLO QED framework Monte Carlo for MUons and other LEptons

- Provided: matrix elements by MCMULE or others
- **Output: physical cross section** for any physical observable
- MCMULE: phase space generation, subtraction, stabilization, integration, event generation, etc.
- All leptonic 2 \rightarrow 2 processes in QED at NNLO (+ a few others)
- Stable public version is an integrator
- Generator on development branch

Get the code here: <https://mule-tools.gitlab.io>

Read the docs here: <https://mcmule.readthedocs.io>

Further reading: 1811.06461, 1909.10244, 2007.01654, 2112.07570, 2212.[0648](#page-16-0)1

 $MCMUE$

Processes in MCMULE

M. Hoferichter (Institute for Theoretical Physics) Prospects on d_T/a_T [and polarized beams](#page-0-0) Oct 14, 2024 0.19

 299

重

Some first results for $e^+e^-\to \tau^+\tau^-$ (w/o polarization): σ_{tot}

M. Hoferichter (Institute for Theoretical Physics) Prospects on d_T/a_T [and polarized beams](#page-0-0) Oct 14, 2024 20

Some first results for $e^+e^-\to \tau^+\tau^-$ (w/o polarization): $\sigma_{L}-\sigma_{R}$

M. Hoferichter (Institute for Theoretical Physics) Prospects on d_T/a_T [and polarized beams](#page-0-0) Oct 14, 2024 21

MCMULE: getting started

& McMule

Search docs

- **Getting started**
- Structure of McMule
- General aspects of using McMule
- Technical aspects of McMule
- Implementing new processes in McMule
- The FKS² scheme
- Glossary
- Bibliography
- Particle ID
- Available processes and which piece
- Fortran reference guide
- pymule user guide
- pymule reference guide

/ McMule

View nage source

McMule

Yannick Ulrich \mathbb{R}^4 . Pulak Baneriee \mathbb{R}^2 . Antonio Coutinho \mathbb{R}^3 . Tim Engel \mathbb{R}^4 . Andrea Gurgone \mathbb{R}^5 ⁶, Franziska Hagelstein (a⁷⁸, Sophie Kollatzsch (a⁸⁹, Luca Naterop (a⁸⁹, Marco Rocco (a⁸) Nicolas Schalch (6¹, Vladyslava Sharkovska (6⁸⁹, Adrian Signer (6⁸⁹)

- [1] (1. 2] Albert Einstein Center for Eundamental Physics, Universität Bern, CH-3012 Bern, Switzerland
- [2] Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
- [3] IFIC, Universitat de València CSIC, Parc Científic, Catedrático José Beltrán, 2, E-46980 Paterna, Spain
- [4] Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
- [5] Dipartimento di Fisica, Università di Pavia, I-27100 Pavia, Italy
- [6] INFN, Sezione di Pavia, I-27100 Pavia, Italy
- [7] Institut für Kernphysik & PRISMA* Cluster of Excellence, Johannes Gutenberg Universität Mainz, D-55099 Mainz, Germany
- [8] (1, 2, 3, 4, 5. Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- [9] (1, 2, 3, 4) Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Contents:

- Getting started
	- · Obtaining the code
	- o Simple runs at LO
	- ^o Running at NLO and beyond
	- **More complicated runs**
- · Structure of McMule
	- · Modular structure of the code
	- o What hannens when running
- MCMULE manual at https://mule-tools. gitlab.io/manual/
- For general questions contact Yannick Ulrich yannick.ulrich@liverpool.ac.uk
- For $e^+e^- \to \tau^+\tau^$ contact Joël Gogniat gogniat@itp.unibe.ch

イロト イ母 トイヨ トイヨト

Conclusions

- Exciting physics program at **Chiral Belle**
	- Unprecedented precision for neutral-current vector couplings: sin**²** θ*^W* , **universality**
	- Highly complementary to low- and high-energy probes of parity violation
	- Improved precision of τ Michel parameters
	- Improved sensitivity to $\tau \to \mu \gamma$, $\tau \to e \gamma$

\circ Dipole moments of the $τ$

- **•** EDM: could probe $d_τ$ ≈ 10⁻²⁰*e* cm
- $(g-2)_\tau$: could probe $a_\tau^{\rm BSM}\simeq$ 10⁻⁵ (assuming $\,$ current projections for statistics and m_{τ} , $M_{\Upsilon(1S)}$)
- Program for a_{τ} requires theory development up to two-loop level, being implemented into MCMULE
- Important especially in view of ongoing developments

$$
\text{for } \ell = \{\textit{e}, \mu\}
$$

4 D F