LATTICE QCD RESULTS AND TAU measurements exchange: important inputs for precision tests

Mattia Bruno

2024 Belle II Physics week KEK, Japan, October 14th

KONKRAKSAKSA B

 QQ

Hadronic *τ* decays require a non-perturbative approach to QCD this talk: predictions from Lattice Field theories (disclaimer) selection of a few topics, far from complete

- 1. Lattice QCD
- 2. Rates from Lattice QCD
- 3. Hadronic *τ* decays: strange sector
- 4. Hadronic *τ* decays: light sector

Lattice field theories

Mathematically sound non-perturbative formulation of QCD

lattice spacing $a \rightarrow$ regulate UV divergences finite size $L \rightarrow$ infrared regulator

Continuum theory $a \to 0$, $L \to \infty$

Euclidean metric \rightarrow Boltzman interpretation of path integral

$$
\langle O \rangle = \mathcal{Z}^{-1} \int [DU] e^{-S[U]} O(U) \approx \frac{1}{N} \sum_{i=1}^{N} O[U_i]
$$

Very high dimensional integral \rightarrow Monte-Carlo methods

LATTICE QCD

We start from QCD Lagrangian with N_f flavors: $\mathcal{L}(q_0, \{am_a\})$ dimensionless bare coupling q_0 N_f dimensionful quark masses $\{am_q\}$

Sacrifice $N_f + 1$ input quantities makes LQCD predictive typically hadron masses $\pi^-, K^-, \Omega^$ often pion/kaon decay constant instead of $m_Ω$

Primary objects in LQCD are Euclidean correlators physical quantities obtained from their manipulation typically energies $+$ matrix elements of low-lying states e.g. m_{π} , m_{n} , $\pi \rightarrow 0$, $K \rightarrow \pi$

PHENOMENOLOGY

1. Lattice QCD calculation of a quantity statistical errors (lattice) systematic errors possible contaminations from excited states discretization effects finite volume, quark mass dependence

2. Lattice $\mathsf{QCD} \neq \mathsf{Standard}$ Model

(SM) systematic errors QED effects, strong isospin breaking effects of heavy quarks

3. Experimental precision

Hadronic *τ* decays **Fermi theory**

$$
\mathcal{M}_f(P, q, p_1 \cdots p_{n_f}) = \frac{G_{\rm F} V_{\rm ud}}{\sqrt{2}} \bar{u}_{\nu}(-q) \gamma_{\mu}^L u_{\tau}(P) \langle \text{out}, p_1 \cdots p_{n_f} | \mathcal{J}_{\mu}^-(0) | 0 \rangle
$$

$$
d\Gamma = \frac{1}{4m} d\Phi_q \sum_f d\Phi_f \sum_{\text{spin}} |\mathcal{M}_f|^2
$$

$$
= \frac{1}{4m} d\Phi_q \frac{G_{\rm F}^2 |V_{\rm ud}|^2}{2} \mathcal{L}_{\mu\nu}(P, q) \rho_{\mu\nu}^{\rm w}(p)
$$

Transverse and longitudinal components $I = L, T$ Charged spectral densities isospin limit $= \rho_T^{w,0}$ $\left[d\Phi_q = \frac{d^3q}{(2\pi)^3 2\omega_q} \right]$

$$
\frac{d\Gamma(s)}{ds} = G_{\rm F}^2 |V_{\rm ud}|^2 \frac{m^3}{16\pi} \sum_{I} \kappa_I(s) \,\theta(m_\tau^2 - s) \,\rho_I^{\rm w,0}(s)
$$

 \approx DEGLI 5 / 19

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

Time-like processes

Euclidean correlators

Rotation to Euclidean metric \leftarrow Monte Carlo methods

finite noisy data \rightarrow no analytic continuation back to Minkowski

so what physical information in Euclidean correlators?

Toy example:

- 1. $J(t)$ scalar current w/ zero total momentum
- 2. Hamiltonian H , $H|n\rangle = E_n|n\rangle$
- 3. $\langle \tilde{J}(t) \tilde{J}(0) \rangle = \langle 0 | \tilde{J}(0) e^{-tH} \tilde{J}(0) | 0 \rangle = \int d\omega e^{-t\omega} \rho(\omega)$

Spectral density contains physical information experiment → spectral densities ← Lattice [cor](#page-5-0)r[el](#page-7-0)[at](#page-5-0)[or](#page-6-0)[s](#page-7-0)

Inverse Laplace **Method**

7 / 19

 $(1 + 4)$

Lattice correlator $\langle \tilde{J}(t) \tilde{J}(0) \rangle = \int d\omega \, e^{-\omega t} \, \rho(\omega) \qquad [e^{-\omega t}] \to [\kappa(\omega)] \qquad \Gamma = \int d\omega \, \kappa(\omega) \, \rho(\omega)$ Inverse Laplace Physical observable

Inversion of Laplace transform is ill-conditioned problem errors of Lattice correlators amplified, tend to explode regularization scheme is required at intermediate stage regulator acts as a smearing kernel

```
A new frontier for Lattice QCD [HLT][Bailas et al][MB et al][more ..]
inclusive (=all channels) smeared spectral densities
     \checkmark high-precision
exclusive, e.g. 1 \rightarrow 2\checkmark formalism [MB, Hansen][Hansen, Bulava][Tantalo, Patella]
     numerical tests
```


Lattice systematics

1. up, down physical masses $\sqrt{2} \leftarrow$ algorithmic + technological advances strange quark $\sqrt{ }$, sea charm effects if small typically controlled

2. lattice cutoff typically \in [1.7*,* 4] GeV

3. energy resolution $\frac{2\pi}{L} \approx 200$ MeV

4. stat errs grow exponentially at long distances

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

What is better (on paper) for Lattice QCD? s meared $\rho = \int d\omega \, \rho(\omega^2) \, \kappa(\omega)$ w/ broad κ possibly low-pass filter \rightarrow inclusive τ rates perfect candidate

Hadronic *τ* decays require a non-perturbative approach to QCD this talk: predictions from Lattice Field theories (disclaimer) selection of a few topics, far from complete

- 1. Lattice QCD
- 2. Rates from Lattice QCD
- 3. Hadronic *τ* decays: strange sector
- 4. Hadronic *τ* decays: light sector

Hadronic *τ* decays

Recent first works on total rates [ETMC '23 '24] remarkable precision

1. Current
$$
J_{\mu} = \bar{u}(V - A)_{\mu}s
$$

\n2. $\langle J_k(t, \vec{x}) J_k^{\dagger}(0) \rangle = \int d\omega \, e^{-\omega t} \omega^2 \, \rho_T(\omega^2)$
\n3. $[e^{-\omega t} \omega^2] \rightarrow [\kappa_T]$
\n4. $\frac{R_{us}^{(\tau)}}{|V_{us}|^2} \propto \sum_{I = T, L} \int ds \, \kappa_I(s) \, \rho_I(s)$
\n5. experimental $R_{us}^{(\tau)} = \frac{\Gamma(\tau \to X_{us} \nu)}{\Gamma(\tau \to e \nu \bar{\nu})}$

Lattice QCD *<* 1% accuracy in isopin limit isospin-breaking missing demonstrates potential of the method

A possible scenario

Gedanken experiment

Lattice spectral density (two-point correlator) fully inclusive comparison with fully inclusive experimental data known tensions in $|V_{us}|$ with exclusive modes $K_{\ell 3}$, $K_{\ell 2}$

several kernels w/ similar goals already proposed [Boyle et al '10][Boito et al]

suppose systematics at high-energies

family of kernels *κ* w/ smooth cutoff

- \rightarrow beneficial for Lattice QCD (finite-volume)
- \rightarrow examine inclusivity problem

EXAMPLE $N_f = 2$

Example in toy model $N_f = 2 m_\pi \approx 215 \text{ MeV}$

isovector vector spectral density

smearing w / Cauchy kernel
$$
\frac{\epsilon}{(\omega - E_\star)^2 + \epsilon^2}
$$

 $A \equiv \mathbf{1} + A \pmb{\overline{\otimes}} \mathbf{1} + A \pmb{\overline{\otimes}} \mathbf{1} + A \pmb{\overline{\otimes}} \mathbf{1} +$

 ϵ in lattice units, $\epsilon \simeq 0.1 \approx 215$ MeV

Hadronic *τ* decays require a non-perturbative approach to QCD this talk: predictions from Lattice Field theories (disclaimer) selection of a few topics, far from complete

- 1. Lattice QCD
- 2. Rates from Lattice QCD
- 3. Hadronic *τ* decays: strange sector
- 4. Hadronic *τ* decays: light sector

HADRONIC INPUT FOR $(g-2)_\mu$ **Motivations**

Hadronic Vacuum Polarization (HVP) contribution to *a^µ* largest error in theory prediction optical theorem relates it to $\sigma(e^+e^-\to\mathrm{had})$ fragmented experimental situation in *ee* → *ππ*

EM current Final states $I = 0, 1$ neutral

V − *A* current

Final states $I = 1$ charged

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Alemani et al '98] provided isospin-breaking corrections $\rightarrow \tau$ relevant role in $(g - 2)_{\mu}$

Euclidean *τ* windows

15 / 19

Euclidean time windows recently introduced in $(g - 2)$ _µ HVP roughly map onto energy windows

Isospin breaking effects

A possible strategy

 $($ \Box \rightarrow $($ \overline{B} \rightarrow $($ \overline{B} \rightarrow $($ \overline{B} \rightarrow

DEGLIS 16 / 19

W regularization

Short-distance effects

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Sirlin '82][Marciano, Sirlin '88][Braaten, Li '90] Effective Hamiltonian $H_W \propto G_{\rm F}O_{\mu\nu}$

G^F low-energy constant; 4-fermion operator *Oµν*

At $O(\alpha)$ new divergences in EFT \rightarrow need regulator, Z factors

1 $\frac{1}{k^2} = \frac{1}{k^2 - 1}$ $k^2 - m_W^2$ $-\frac{m_W^2}{\frac{12}{4}m_H^2}$ $k^2(k^2 - m_W^2)$

[Sirlin '78]

 q

 \bar{q}^{\prime} ′

1. universal UV divergences re-absorbed in G_F

2. process-specific corrections in *SEW* , like a *Z* factor

 $\mathsf{Effective Hamiltonian}$ at $O(\alpha)$: $H_W \propto G_{\rm F} S_{EW}^{1/2} O_{\mu\nu}$ matching required as noted by [Carrasco et al '15][Di Carlo et al '19]

FIRST RESULTS

Connected strong-isospin breaking

Ideas from stochastic locality [Lüscher '17][RBC/UKQCD '23][MB, Cé et al '23]

18 / 19

Theory meets experiment

Lattice QCD in isospin limit very precise access to inclusive time-like smeared densities now possible isospin-breaking effects relevant and next target

Pheno impactful studies require manipulation of *d*Γ*/ds*, hence:

- i. covariance matrices
- ii. "details on photons" relevant

paired with correct isospin-breaking corrections from LQCD

iii. typically unit normalized rates $\frac{1}{\Gamma}$ *d*Γ *ds* require branching fractions improve determination of those?

Thanks for your attention

Numerical Inverse Laplace

Approximate solution $\sum_t g_t e^{-\omega t} = \kappa(\omega)$

- 1. minimize norm $\int d\omega \big[\sum_t g_t e^{-\omega t} \kappa(\omega)\big]^2$
- 2 . define $A(t,t') = \int d\omega e^{-\omega(t+t')}$, $f(t) = \int d\omega \kappa(\omega) e^{-\omega t}$
- 3. solution is $g_t = \sum_{t'} [A^{-1}]_{t,t'} f(t')$

A ill-conditioned $\rightarrow g_t$ useless in practice

Regulators:

1. covariance matrix [Backus, Gilbert '68][Hansen, Lupo, Tantalo '19] 2. Tikhonov **1988** [MB, Giusti, Saccardi '24] $W[\lambda] = A(1 - \lambda) + \lambda B$ and evaluate $g_t = \sum_{t'} [W^{-1}]_{t,t'} f(t')$ 3. gaussian processes as broader framework [Del Debbio et al '24] 4. truncation to fewer time-slices (improves cond. number of A) $\epsilon_{\text{DEGLISTUDI}}$ DI MIL. Chebyshev polynomials [Bailas, Hashimoto, Ishikawa '20] handful selection of points $[Boito et al]$

DECAY CONSTANTS

Leading-order in electro-weak (tree-level) $\Gamma^{(0)}(\pi^+ \to \ell^+ \nu) = \frac{G_F^2}{8\pi} |V_{ud}|^2 f_\pi^2 m_\ell^2 m_\pi \left(1 - \frac{m_\ell^2}{m_\pi^2}\right)$ \setminus^2 experimental rate very precise \rightarrow NLO

 $\text{Radius} \ \Gamma(\pi^+ \to \ell^+ \nu[\gamma]) = \Gamma^{(0)}(\pi^+ \to \ell^+ \nu)[1 + \delta_{\pi}]$ can be computed in ChPT

IR divergences properly cancel: universal short and long distance parts structure-depedent parts more difficult in ChPT (large syst. errs)

 $A \Box B$ $A \overline{B} B$ $A \overline{B} B$ $A \overline{B} B$

Masses, Matrix elements

