LATTICE QCD RESULTS AND TAU MEASUREMENTS EXCHANGE: IMPORTANT INPUTS FOR PRECISION TESTS

Mattia Bruno

2024 Belle II Physics week KEK, Japan, October 14th

イロト 不得 トイラト イラト 一日

Hadronic τ decays require a non-perturbative approach to QCD this talk: predictions from Lattice Field theories (disclaimer) selection of a few topics, far from complete

- 1. Lattice QCD
- 2. Rates from Lattice QCD
- 3. Hadronic τ decays: strange sector
- 4. Hadronic τ decays: light sector

LATTICE FIELD THEORIES

Mathematically sound non-perturbative formulation of QCD

lattice spacing $a \rightarrow$ regulate UV divergences finite size $L \rightarrow$ infrared regulator

Continuum theory $a \to 0, L \to \infty$

$$\label{eq:bound} \begin{split} \text{Euclidean metric} & \rightarrow \text{Boltzman interpretation} \\ & \text{of path integral} \end{split}$$

$$\langle O \rangle = \mathcal{Z}^{-1} \int [DU] e^{-S[U]} O(U) \approx \frac{1}{N} \sum_{i=1}^{N} O[U_i]$$

Very high dimensional integral \rightarrow Monte-Carlo methods

LATTICE QCD

A D F A B F A B F A B F

We start from QCD Lagrangian with $N_{\rm f}$ flavors: $\mathcal{L}(g_0, \{am_q\})$ dimensionless bare coupling g_0 $N_{\rm f}$ dimensionful quark masses $\{am_q\}$

Sacrifice $N_{\rm f}+1$ input quantities makes LQCD predictive typically hadron masses $\pi^-\,,K^-\,,\Omega^-$ often pion/kaon decay constant instead of m_Ω

Primary objects in LQCD are Euclidean correlators physical quantities obtained from their manipulation typically energies + matrix elements of low-lying states e.g. $m_{\pi}, m_p, \pi \to 0, K \to \pi$

Phenomenology

1. Lattice QCD calculation of a quantity

statistical errors (lattice) systematic errors possible contaminations from excited states discretization effects finite volume, quark mass dependence

2. Lattice QCD \neq Standard Model

(SM) systematic errors QED effects, strong isospin breaking effects of heavy quarks

3. Experimental precision

イロト イポト イヨト イヨト

HADRONIC au DECAYS Fermi theory

$$\mathcal{M}_{f}(P,q,p_{1}\cdots p_{n_{f}}) = \frac{G_{\mathrm{F}}V_{\mathrm{ud}}}{\sqrt{2}} \bar{u}_{\nu}(-q)\gamma_{\mu}^{L}u_{\tau}(P) \left\langle \mathrm{out}, p_{1}\cdots p_{n_{f}} | \mathcal{J}_{\mu}^{-}(0) | 0 \right\rangle$$
$$d\Gamma = \frac{1}{4m} d\Phi_{q} \sum_{f} d\Phi_{f} \sum_{\mathrm{spin}} |\mathcal{M}_{f}|^{2}$$
$$= \frac{1}{4m} d\Phi_{q} \frac{G_{\mathrm{F}}^{2} |V_{\mathrm{ud}}|^{2}}{2} \mathcal{L}_{\mu\nu}(P,q) \rho_{\mu\nu}^{\mathsf{w}}(p)$$

Transverse and longitudinal components I = L, TCharged spectral densities isospin limit = $\rho_I^{w,0}$ $\left[d\Phi_q = \frac{d^3q}{(2\pi)^3 2\omega_q} \right]$

$$\frac{d\Gamma(s)}{ds} = G_{\rm F}^2 |V_{\rm ud}|^2 \frac{m^3}{16\pi} \sum_I \kappa_I(s) \,\theta(m_\tau^2 - s) \,\rho_I^{\rm w,0}(s)$$

DEGLI STUDI DI COCCA E OQC 5/19

TIME-LIKE PROCESSES

Euclidean correlators

Rotation to Euclidean metric - Monte Carlo methods

finite noisy data \rightarrow no analytic continuation back to Minkowski

so what physical information in Euclidean correlators?

Toy example:

- 1. $\widetilde{J}(t)$ scalar current w/ zero total momentum
- 2. Hamiltonian $H, H|n\rangle = E_n|n\rangle$
- 3. $\langle \widetilde{J}(t) \, \widetilde{J}(0) \rangle = \langle 0 | \widetilde{J}(0) \, e^{-tH} \, \widetilde{J}(0) | 0 \rangle = \int d\omega \, e^{-t\omega} \, \rho(\omega)$

Spectral density contains physical information experiment \rightarrow spectral densities \leftarrow Lattice correlators

INVERSE LAPLACE Method

 $\begin{array}{ll} \mbox{Lattice correlator} & \mbox{Inverse Laplace} & \mbox{Physical observable} \\ \langle \widetilde{J}(t) \, \widetilde{J}(0) \rangle = \int d\omega \, e^{-\omega t} \, \rho(\omega) & \mbox{[} e^{-\omega t} \mbox{]} \rightarrow [\kappa(\omega) \mbox{]} & \mbox{$\Gamma = \int d\omega \, \kappa(\omega) \, \rho(\omega)$} \end{array}$

Inversion of Laplace transform is ill-conditioned problem errors of Lattice correlators amplified, tend to explode regularization scheme is required at intermediate stage regulator acts as a smearing kernel

```
A new frontier for Lattice QCD [HLT][Bailas et al][MB et al][more ..]
inclusive (=all channels) smeared spectral densities
\checkmark high-precision
exclusive, e.g. 1 \rightarrow 2
\checkmark formalism [MB, Hansen][Hansen, Bulava][Tantalo, Patella]
numerical tests
```


Lattice systematics

1. up, down physical masses $\checkmark \leftarrow$ algorithmic + technological advances strange quark \checkmark , sea charm effects if small typically controlled

2. lattice cutoff typically $\in [1.7,4]~{\rm GeV}$

3. energy resolution $\frac{2\pi}{L} \approx 200 \text{ MeV}$

4. stat errs grow exponentially at long distances

イロト イボト イヨト イヨト

What is better (on paper) for Lattice QCD? smeared $\rho = \int d\omega \ \rho(\omega^2) \ \kappa(\omega) \ w/$ broad κ possibly low-pass filter \rightarrow inclusive τ rates perfect candidate

Hadronic τ decays require a non-perturbative approach to QCD this talk: predictions from Lattice Field theories (disclaimer) selection of a few topics, far from complete

- 1. Lattice QCD
- 2. Rates from Lattice QCD
- 3. Hadronic τ decays: strange sector
- 4. Hadronic τ decays: light sector

Hadronic τ decays

Recent first works on total rates [ETMC '23 '24] remarkable precision

1. Current
$$J_{\mu} = \bar{u}(V - A)_{\mu}s$$

2. $\langle J_k(t, \vec{x}) J_k^{\dagger}(0) \rangle = \int d\omega \, e^{-\omega t} \omega^2 \, \rho_T(\omega^2)$
3. $[e^{-\omega t} \omega^2] \rightarrow [\kappa_T]$
4. $\frac{R_{us}^{(\tau)}}{|V_{us}|^2} \propto \sum_{I=T,L} \int ds \, \kappa_I(s) \, \rho_I(s)$
5. experimental $R_{us}^{(\tau)} = \frac{\Gamma(\tau \rightarrow X_{us}\nu)}{\Gamma(\tau \rightarrow e\nu\bar{\nu})}$

 $\label{eq:lastice_loss} \begin{array}{l} \mbox{Lattice QCD} < 1\% \mbox{ accuracy in isopin limit} \\ \mbox{isospin-breaking missing} \\ \mbox{demonstrates potential of the method} \end{array}$

A POSSIBLE SCENARIO

Gedanken experiment

Lattice spectral density (two-point correlator) fully inclusive comparison with fully inclusive experimental data known tensions in $|V_{us}|$ with exclusive modes $K_{\ell 3}$, $K_{\ell 2}$

several kernels w/ similar goals already proposed

suppose systematics at high-energies

family of kernels κ w/ smooth cutoff

 \rightarrow beneficial for Lattice QCD (finite-volume)

ightarrow examine inclusivity problem

Example $N_{\rm f} = 2$

Example in toy model $N_{\rm f}=2~m_\pi\approx 215~{\rm MeV}$

isovector vector spectral density

smearing w/ Cauchy kernel
$$rac{\epsilon}{(\omega-E_{\star})^2+\epsilon^2}$$

・ロト ・部 ト ・ヨト ・ヨト

 ϵ in lattice units, $\epsilon\simeq 0.1\approx 215~{\rm MeV}$

Hadronic τ decays require a non-perturbative approach to QCD this talk: predictions from Lattice Field theories (disclaimer) selection of a few topics, far from complete

- 1. Lattice QCD
- 2. Rates from Lattice QCD
- 3. Hadronic τ decays: strange sector
- 4. Hadronic τ decays: light sector

Hadronic input for $(g-2)_{\mu}$ Motivations

Hadronic Vacuum Polarization (HVP) contribution to a_{μ} largest error in theory prediction optical theorem relates it to $\sigma(e^+e^- \rightarrow had)$ fragmented experimental situation in $ee \rightarrow \pi\pi$

EM current Final states I = 0, 1 neutral

V-A current

Final states I = 1 charged

イロト イボト イヨト イヨト

[Alemani et al '98] provided isospin-breaking corrections $\rightarrow \tau$ relevant role in $(g-2)_{\mu}$

Euclidean au windows

Euclidean time windows recently introduced in $(g-2)_{\mu}~{\rm HVP}$ roughly map onto energy windows

15/19

ISOSPIN BREAKING EFFECTS

A possible strategy

16/19

W REGULARIZATION

Short-distance effects

イロト イポト イヨト イヨト

[Sirlin '82][Marciano, Sirlin '88][Braaten, Li '90]

Effective Hamiltonian $H_W \propto G_F O_{\mu\nu}$ G_F low-energy constant; 4-fermion operator $O_{\mu\nu}$

At $O(\alpha)$ new divergences in EFT \rightarrow need regulator, Z factors

 $\frac{1}{k^2} = \frac{1}{k^2 - m_W^2} - \frac{m_W^2}{k^2(k^2 - m_W^2)}$

[Sirlin '78]

1. universal UV divergences re-absorbed in $G_{\rm F}$

2. process-specific corrections in ${\cal S}_{EW}$, like a ${\cal Z}$ factor

Effective Hamiltonian at $O(\alpha)$: $H_W \propto G_F S_{EW}^{1/2} O_{\mu\nu}$ matching required as noted by [Carrasco et al '15][Di Carlo et al '19]

FIRST RESULTS

Connected strong-isospin breaking

Ideas from stochastic locality [Lüscher '17][RBC/UKQCD '23][MB, Cé et al '23]

18/19

Theory meets experiment

Lattice QCD in isospin limit very precise access to inclusive time-like smeared densities now possible isospin-breaking effects relevant and next target

Pheno impactful studies require manipulation of $d\Gamma/ds$, hence:

- i. covariance matrices
- ii. "details on photons" relevant paired with correct isospin-breaking corrections from LQCD
- iii. typically unit normalized rates $\frac{1}{\Gamma} \frac{d\Gamma}{ds}$ require branching fractions improve determination of those?

Thanks for your attention

NUMERICAL INVERSE LAPLACE

Approximate solution $\sum_t g_t e^{-\omega t} = \kappa(\omega)$

- 1. minimize norm $\int d\omega \big[\sum_t g_t e^{-\omega t} \kappa(\omega)\big]^2$
- 2. define $A(t,t') = \int d\omega e^{-\omega(t+t')}$, $f(t) = \int d\omega \kappa(\omega) e^{-\omega t}$
- 3. solution is $g_t = \sum_{t'} [A^{-1}]_{t,t'} f(t')$

A ill-conditioned \rightarrow g_t useless in practice

Regulators:

1. covariance matrix[Backus, Gilbert '68][Hansen, Lupo, Tantalo '19]2. Tikhonov[MB, Giusti, Saccardi '24] $W[\lambda] = A(1 - \lambda) + \lambda B$ and evaluate $g_t = \sum_{t'} [W^{-1}]_{t,t'} f(t')$ 3. gaussian processes as broader framework[Del Debbio et al '24]4. truncation to fewer time-slices (improves cond. number of A)Chebyshev polynomials[Bailas, Hashimoto, Ishikawa '20]handful selection of points[Boito etal]

DECAY CONSTANTS

Leading-order in electro-weak (tree-level) $\frac{\Gamma^{(0)}(\pi^+ \to \ell^+ \nu) = \frac{G_F^2}{8\pi} |V_{ud}|^2 f_{\pi}^2 m_{\ell}^2 m_{\pi} \left(1 - \frac{m_{\ell}^2}{m_{\pi}^2}\right)^2$ experimental rate very precise $\to \text{NLO}$

Radiative corrections $\Gamma(\pi^+ \to \ell^+ \nu[\gamma]) = \Gamma^{(0)}(\pi^+ \to \ell^+ \nu) [1 + \delta_{\pi}]$ can be computed in ChPT

IR divergences properly cancel: universal short and long distance parts structure-depedent parts more difficult in ChPT (large syst. errs)

イロト イポト イモト イモト

MASSES, MATRIX ELEMENTS

· ㅁ ▶ 《 @ ▶ 《 문 ▶ 《 문)