## Dark sector searches with leptons

Stefania Gori UC Santa Cruz



2024 Belle II Physics Week

October 15, 2024

### Outline

Introduction:

Leptons are a very common signature of dark sector models

\* <u>What's done</u>: Searches already performed by Belle II

#### \* Future opportunities:

Next steps in the search for dark sectors with leptonic signatures

- minimal models: dark photon
- non minimal models:
  - \* Inelastic Dark Matter (IDM)
  - \* Leptonically coupled axions
  - \* Strongly interacting massive particles (SIMPs)

 $\epsilon Z^{\mu
u}A'_{\mu
u}$  Dark photon

*yHLN* Neutrino

 $\kappa |H|^2 |S|^2$  Higgs

The portals induce the decay of the dark particle to leptons

Gauging anomaly free approximate symmetries of the Standard Model: e.g.,  $L_{\mu}-L_{\tau}$ : the corresponding Z' will decay to either muons, or taus, or neutrinos



Gauging anomaly free approximate symmetries of the Standard Model: e.g.,  $L_{\mu}-L_{\tau}$ : the corresponding Z' will decay to either muons, or taus, or neutrinos







+ dark sector particles can be produced in association with leptons

Dark Matter (DM) models with DM excited states or additional dark particles: e.g., \* Inelastic DM:  $A' \rightarrow \chi_1 \chi_2$ ,  $\chi_2 \rightarrow \chi_1 \ell^+ \ell^-$  (X<sub>1</sub> is the DM state) \* Strongly Interacting Massive Particles (SIMPs):  $A' \rightarrow \chi_1 V_D$ ,  $V_D \rightarrow \ell^+ \ell^-$ \* models with both a dark photon and a dark scalar: dark Higgs-strahlung

Axion/axion-like-particles (ALPs) with flavor-specific couplings:

$$2g_{\mu\mu}rac{(\partial_{\mu}a)}{m_{\mu}}ar{\mu}\gamma^{\mu}P_{R}\mu$$
 or  $2g_{ee}rac{(\partial_{\mu}a)}{m_{e}}ar{e}\gamma^{\mu}P_{R}e$ 

e.a..

#### Searches currently performed by Belle II, invisible



#### **World-leading bounds**

#### Searches currently performed by Belle II, invisible



#### Searches currently performed by Belle II, invisible



#### Searches currently performed by Belle II, visible

\* 2306.12294: 62.8/fb $e^+e^- 
ightarrow \mu\mu X,$ X 
ightarrow au au

Interpretation:

- \*  $L_{\mu}$ - $L_{\tau}$  Z' gauge bosons
- \* Axion coupled to leptons
- \* leptophilic scalar



#### Searches currently performed by Belle II, visible

\* 2306.12294: 62.8/fb $e^+e^- 
ightarrow \mu\mu X,$ X 
ightarrow au au

Interpretation:

\*  $L_{\mu}$ - $L_{\tau}$  Z' gauge bosons

\* Axion coupled to leptons

\* leptophilic scalar

**\*** 2306.02830: 189/fb

 $B \rightarrow KS, S \rightarrow ee, \mu\mu, \pi\pi, KK$ 

B<sup>0</sup> and B<sup>+</sup>

charged states (including leptons)

Interpretation: Dark scalar mixed with the SM Higgs



World-leading bounds

### Searches currently performed by Belle II, visible



**World-leading bounds** 

 $\mathcal{L}dt = 62.8 \text{ fb}^{-1}$ 

m<sub>7</sub>[GeV/c<sup>2</sup>]

#### Additional new searches for leptonic dark sectors?



Four examples:

- 1. Minimal visible dark photon
- 2. Leptonically coupled axions
- → 3. Inelastic Dark Matter (IDM) reminders from this morning lecture
  - 4.Strongly interacting massive particles (SIMPs)

Some additional missing signature? Can one do a systematic (more model independent) coverage of leptonic signatures?

# **1.** Other minimal models to look for

Dark photon decaying visibly to leptons

$$rac{\epsilon}{2\cos heta}\widehat{Z}_{D\mu
u}\widehat{B}_{\mu
u}$$





Projected limits scaled from BaBar, assuming:

- twice as good mass resolution
- better trigger efficiency for both muons (~ factor 1.1) and electrons (~ factor 2)

# 1.) Other minimal models to look for



### 2. Weak violating axions coupled to leptons

This morning, we saw the most general ALP EFT. Let us focus on these couplings:

$$rac{\left(\partial_{\mu}a
ight)}{m_{e}}\left[ar{e}\gamma^{\mu}\left(ar{g}_{ee}+g_{ee}\gamma_{5}
ight)e+g_{
u}ar{
u}\gamma^{\mu}P_{L}
u
ight]$$

### 2. Weak violating axions coupled to leptons

This morning, we saw the most general ALP EFT. Let us focus on these couplings:

$$rac{\left(\partial_{\mu}a
ight)}{m_{e}}\left[ar{e}\gamma^{\mu}\left(ar{g}_{ee}+g_{ee}\gamma_{5}
ight)e+g_{
u}ar{
u}\gamma^{\mu}P_{L}
u
ight]$$

The SM SU(2) symmetry would lead to  $\ \ ar{g}_{ee} - g_{ee} - g_{
u} = 0$ 

If SU(2) is violated by the axion interactions,  $\bar{g}_{ee} - g_{ee} - g_{\nu} \neq 0$ , some meson, M, decay modes to axions are enhanced:



Altmannshofer, Dror, SG, 2209.00665

New searches can be done at meson factories (PIONEER, NA62, KOTO, Belle II)

# (2.) The reach on the parameter space

#### Altmannshofer, Dror, SG, 2209.00665



### 2. The reach on the parameter space

#### Altmannshofer, Dror, SG, 2209.00665



## **3.** Beyond minimal models: inelastic dark matter (IDM)

Inelastic DM (IDM) models were initially proposed to explain the DAMA anomaly, while being consistent with Dark Matter direct detection bounds from CDMS

Tucker-Smith, Weiner, 0101138

$$-\mathcal{L} \supset m_{D} \eta \xi + \frac{1}{2} \delta_{\eta} \eta^{2} + \frac{1}{2} \delta_{\xi} \xi^{2} + \text{h.c.}$$
2-component Weyl spinors  
with opposite charge under U(1)'  
The only relevant interaction is inelastic:  

$$\mathcal{L} \supset \frac{ie_{D} m_{D}}{\sqrt{m_{D}^{2} + (\delta_{\xi} - \delta_{\eta})^{2}/4}} A'_{\mu} (\bar{\chi}_{1} \gamma^{\mu} \chi_{2} - \bar{\chi}_{2} \gamma^{\mu} \chi_{1})$$
The elastic piece is very small  $(\delta_{\eta,\xi} \ll m_{D})$ :  

$$\mathcal{L} \supset \frac{e_{D} (\delta_{\xi} - \delta_{\eta})}{\sqrt{4m_{D}^{2} + (\delta_{\xi} - \delta_{\eta})^{2}}} A'_{\mu} (\bar{\chi}_{2} \gamma^{\mu} \chi_{2} - \bar{\chi}_{1} \gamma^{\mu} \chi_{1})$$
Two states close in mass: 
$$\Delta \equiv \frac{m_{2} - m_{1}}{m_{1}} \sim \frac{\delta_{\xi} + \delta_{\eta}}{m_{D}} \ll 1$$
2-component Weyl spinors  
with opposite charge under U(1)'  

$$\chi_{1} = i(\eta - \xi)\sqrt{2},$$

$$\chi_{2} = (\eta + \xi)\sqrt{2}$$

$$\frac{A'}{2}$$
Easy to get it small since it is a U(1)'  
breaking effect

Abundance of  $\chi_1$  and  $\chi_2$  is determined by two coupled Boltzmann equations, that keep into account:

- \*  $\chi_1 \chi_2$  co-annihilation,
- \*  $\chi_2 f \rightarrow \chi_1 f$  inelastic scattering,

\* 
$$\chi_2 \rightarrow \chi_1 + SM$$
 decays

# **3.** New opportunities for B-factories

New proposed search for Belle-II:

(Photon) + displaced tracks + missing energy

# **3.** New opportunities for B-factories

#### New proposed search for Belle-II:

(Photon) + displaced tracks + missing energy



**Displaced vertex trigger** is very important 11

### 4. Strongly interacting massive particles in a nutshell



### 4. Strongly interacting massive particles in a nutshell



(\*) If the portal operator is not too small, the dark pions can be in thermal equilibrium with the SM

S.Gori

**Detection?** 

## Spectrum and portal to the SM



 $SU(3)_L imes SU(3)_R o SU(3)_D \supset U(1)_D$  $N_f = 3$ 

## Spectrum and portal to the SM



# **4.** The dark pion relic abundance

Berlin, Blinov, SG, Schuster, Toro, 1801.05805

Several processes can contribute to the dark pion annihilation:

**1.**  $3\pi_D \rightarrow 2\pi_D$  annihilation  $\Gamma(3 \rightarrow 2) = n_\pi^2 \langle \sigma v^2 \rangle$ ,  $\langle \sigma v^2 \rangle \sim \left(\frac{m_\pi}{f_\pi}\right)^{10} \frac{1}{m_\pi^5}$ 

# **4.** The dark pion relic abundance

Berlin, Blinov, SG, Schuster, Toro, 1801.05805

Several processes can contribute to the dark pion annihilation:

- **1.**  $3\pi_D \rightarrow 2\pi_D$  annihilation  $\Gamma(3 \rightarrow 2) = n_\pi^2 \langle \sigma v^2 \rangle$ ,  $\langle \sigma v^2 \rangle \sim \left(\frac{m_\pi}{f_\pi}\right)^{10} \frac{1}{m_\pi^5}$
- **2.**  $\pi_D \pi_D \rightarrow V_D \pi_D$  semi-annihilation



 $m_V < 2m_\pi$ 

(If the dark vectors (V) have a mass close to the mass of the dark pions)

$$\langle \sigma v \rangle \sim \frac{e^{-(m_V - m_\pi)/T}}{m_\pi^2} \gtrsim \frac{e^{-m_\pi/T}}{m_\pi^2}$$

# **4.** The dark pion relic abundance

Berlin, Blinov, SG, Schuster, Toro, 1801.05805

Several processes can contribute to the dark pion annihilation:

- **1.**  $3\pi_D \rightarrow 2\pi_D$  annihilation  $\Gamma(3 \rightarrow 2) = n_\pi^2 \langle \sigma v^2 \rangle$ ,  $\langle \sigma v^2 \rangle \sim \left(\frac{m_\pi}{f_\pi}\right)^{10} \frac{1}{m_\pi^5}$
- **2.**  $\pi_D \pi_D \rightarrow V_D \pi_D$  semi-annihilation



 $m_V < 2m_\pi$ 

(If the dark vectors (V) have a mass close to the mass of the dark pions)

# The dark pion relic abundance

Berlin, Blinov, SG, Schuster, Toro, 1801.05805

Several processes can contribute to the dark pion annihilation:

- **1.**  $3\pi_D \rightarrow 2\pi_D$  annihilation  $\Gamma(3 \rightarrow 2) = n_\pi^2 \langle \sigma v^2 \rangle$ ,  $\langle \sigma v^2 \rangle \sim \left(\frac{m_\pi}{f_\pi}\right)^{10} \frac{1}{m_\pi^5}$
- **2.**  $\pi_D \pi_D \rightarrow V_D \pi_D$  semi-annihilation



10





### **Dark photon decays to SIMPs**



Berlin, Blinov, SG, Schuster, Toro, 1801.05805



$$\alpha_D = 10^{-2}, \ \epsilon = 10^{-3}$$



### **Dark photon decays to SIMPs**





### **DarkQuest and LDMX**

Let us focus on two proposed experiments:



# (4.) The reach for SIMPs (2+3 body decays)



# (4.) The reach for SIMPs (2+3 body decays)



# The reach for SIMPs (2+3 body decays)



In color:

reach of future experiments:

- Belle II: (same Babar signature)  $e^+e^- \rightarrow \gamma A', A' \rightarrow \text{inv}$ 

- I DMX: invisible A'
- LDMX: visible A'
- HPS: electron beam dump experiment. Search for visibly decaying A'

DarkQuest

$$egin{array}{l} A' o \pi_D V_D \ V_D^\pm o \pi_D^\pm \ell^+ \ell^- \end{array}$$

$$V_D^0 
ightarrow \ell^+ \ell^-$$

What about searching for this at Belle II? 18

# (4.) The reach for SIMPs (2 body decays)





### Outlook

Many different leptonic signatures arise in dark sector models

Several searches have been already performed at Belle II probing new interesting regions of parameter space

#### Several new signatures to look for

- Iphoton + 2 charged tracks (prompt or displaced)
  dark photon
- 3 charged leptons from B meson decays
- broader coverage of 1 photon+missing
  - + 2 (or more) displaced charged tracks

axions

**IDM + SIMP** 

### **Rewriting the ALP interaction**



#### Our work:

- importance of the weak vertex
- new bounds on the "standard" vertex

$$\left[rac{(\partial_{\mu}a)}{m_{e}}\left[ar{e}\gamma^{\mu}\left(ar{g}_{ee}+g_{ee}\gamma_{5}
ight)e+g_{
u}ar{
u}\gamma^{\mu}P_{L}
u
ight]
ight.$$

S.Gori

## SU(2) violating models

 $\mathcal{L} \supset -yHLN^c - Me^{ia/f_a}NN^c + \mathrm{h.c.}$ 

$$\mathbf{\mathcal{L}} \supset \frac{\theta^2}{f_a} \partial_\mu a (\bar{\nu}_e \gamma^\mu P_L \nu_e) \bigoplus \begin{cases} g_\nu \ = \ \frac{2\theta^2 m_e}{f_a} = 1.0 \times 10^{-5} \left(\frac{\theta}{0.1}\right)^2 \left(\frac{\text{GeV}}{f_a}\right) \\ g_{ee} \ = \ \bar{g}_{ee} = 0 \end{cases}$$

Batell, et al, 1709.07001



additional constraints from visibly decaying HNL (less robust)

Backup

#### **Complementarity with <u>neutral current</u> decays**

**Neutral current** meson decays are also generated at the 2 or 3-loop level (suppressed by CKM elements as well)



### **Dark sector decays**

$$\begin{split} &\Gamma(A' \to \ell^+ \ell^-) = \frac{\alpha_{\rm em} \, \epsilon^2}{3} \, \left(1 - 4 \, r_\ell^2\right)^{1/2} \ \left(1 + 2 \, r_\ell^2\right) \, m_{A'} \\ &\Gamma(A' \to {\rm hadrons}) = R(\sqrt{s} = m_{A'}) \, \Gamma(A' \to \mu^+ \mu^-) \\ &\Gamma(A' \to \pi\pi) = \frac{2 \, \alpha_D}{3} \, \frac{\left(1 - 4 r_\pi^2\right)^{3/2}}{\left(1 - r_V^{-2}\right)^2} \, m_{A'} \\ &\Gamma(A' \to \pi\pi) = \frac{2 \, \alpha_D}{256 \pi^4} \, \left(\frac{m_\pi/f_\pi}{r_\pi}\right)^4 \, \left[1 - 2 (r_\pi^2 + r_V^2) + (r_\pi^2 - r_V^2)^2\right]^{3/2} \, m_{A'} \\ &\Gamma(A' \to \eta^0 \, \phi) = \frac{\alpha_D \, r_V^2}{128 \pi^4} \, \left(\frac{m_\pi/f_\pi}{r_\pi}\right)^4 \, \left[1 - 2 (r_\pi^2 + r_V^2) + (r_\pi^2 - r_V^2)^2\right]^{3/2} \, m_{A'} \\ &\Gamma(A' \to \pi^0 \, \omega) = \frac{3 \alpha_D \, r_V^2}{256 \pi^4} \, \left(\frac{m_\pi/f_\pi}{r_\pi}\right)^4 \, \left[1 - 2 (r_\pi^2 + r_V^2) + (r_\pi^2 - r_V^2)^2\right]^{3/2} \, m_{A'} \\ &\Gamma(A' \to \pi^0 \, \omega) = \frac{3 \alpha_D \, r_V^2}{256 \pi^4} \, \left(\frac{m_\pi/f_\pi}{r_\pi}\right)^4 \, \left[1 - 2 (r_\pi^2 + r_V^2) + (r_\pi^2 - r_V^2)^2\right]^{3/2} \, m_{A'} \\ &\Gamma(A' \to K^0 \, \overline{K^{*0}} \, , \, \overline{K^0} \, K^{*0}) = \frac{3 \alpha_D \, r_V^2}{128 \pi^4} \, \left(\frac{m_\pi/f_\pi}{r_\pi}\right)^4 \, \left[1 - 2 (r_\pi^2 + r_V^2) + (r_\pi^2 - r_V^2)^2\right]^{3/2} \, m_{A'} \\ &\Gamma(A' \to K^\pm \, K^{*\mp}) = \frac{3 \alpha_D \, r_V^2}{128 \pi^4} \, \left(\frac{m_\pi/f_\pi}{r_\pi}\right)^4 \, \left[1 - 2 (r_\pi^2 + r_V^2) + (r_\pi^2 - r_V^2)^2\right]^{3/2} \, m_{A'} \\ &\Gamma(A' \to K^\pm \, K^{*\mp}) = \frac{3 \alpha_D \, r_V^2}{128 \pi^4} \, \left(\frac{m_\pi/f_\pi}{r_\pi}\right)^4 \, \left[1 - 2 (r_\pi^2 + r_V^2) + (r_\pi^2 - r_V^2)^2\right]^{3/2} \, m_{A'} \\ &\Gamma(A' \to K^\pm \, K^{*\mp}) = \frac{3 \alpha_D \, r_V^2}{128 \pi^4} \, \left(\frac{m_\pi/f_\pi}{r_\pi}\right)^4 \, \left[1 - 2 (r_\pi^2 + r_V^2) + (r_\pi^2 - r_V^2)^2\right]^{3/2} \, m_{A'} \\ &\Gamma(A' \to K^\pm \, K^{*\mp}) = \frac{3 \alpha_D \, r_V^2}{128 \pi^4} \, \left(\frac{m_\pi/f_\pi}{r_\pi}\right)^4 \, \left[1 - 2 (r_\pi^2 + r_V^2) + (r_\pi^2 - r_V^2)^2\right]^{3/2} \, m_{A'} \\ &\Gamma(A' \to VV) = \frac{\alpha_D}{6} \, \frac{(1 - 4 r_V^2)^{1/2} (1 + 16 r_V^2 - 68 r_V^4 - 48 r_V^6)}{(1 - r_V^2)^2} \, m_{A'} \\ &\Gamma(\rho \to \ell^+ \ell^-) = \frac{32 \pi \, \alpha_{\rm em} \, \alpha_D \, \epsilon^2}{3} \, \left(\frac{r_\pi}{m_\pi/f_\pi}\right)^2 \, \left(r_V^2 - 4 r_\ell^2\right)^{1/2} (r_V^2 + 2 r_\ell^2) \, (1 - r_V^2)^{-2} \, m_{A'} \\ \\ &\Gamma(\rho \to \ell^+ \ell^-) = \frac{32 \pi \, \alpha_{\rm em} \, \alpha_D \, \epsilon^2}{3} \, \left(\frac{r_\pi}{m_\pi/f_\pi}\right)^2 \, \left(r_V^2 - 4 r_\ell^2\right)^{1/2} \, \left(r_V^2 + 2 r_\ell^2\right) \, (1 - r_V^2)^{-2} \, m_{A'} \\ \\ &\Gamma(\rho \to \ell^+ \ell^-) = \frac{32 \pi \, \alpha_{\rm em} \, \alpha_D \, \epsilon^2}{3} \, \left(\frac{r_\pi}{m_\pi/f_\pi}\right)^2 \, \left(r_V^2 - 4 r_\ell^2\right)^{1/2} \, \left(r_V^2 + 2 r_\ell^2\right) \, (1 -$$

 $\Gamma(\phi \to \ell^+ \ell^-) = \frac{16\pi \,\alpha_{\rm em} \,\alpha_D \,\epsilon^2}{3} \, \left(\frac{r_\pi}{m_\pi/f_\pi}\right)^2 \, (r_V^2 - 4r_\ell^2)^{1/2} \, (r_V^2 + 2r_\ell^2) \, (1 - r_V^2)^{-2} \, m_{A'}$ 

$$r_i \equiv m_i/m_{A'}$$

 $\Gamma(\omega \to \ell^+ \ell^-) = 0$ 

## **Kinematics of the decays**



Berlin, Blinov, SG, Schuster, Toro, 1801.05805

for the darkquest experiment

## The stability of pions

Pions need to be long-lived on timescales compared to freeze-out. A'However, the neutral pions: \* additional \* SMcontribution: SM pion matrix  $\frac{\alpha_D}{4\pi f_\pi} i \,\epsilon^{\mu\nu\alpha\beta} A'_{\mu\nu} A'_{\alpha\beta} \operatorname{Tr} Q \operatorname{Tr} \left( Q \, M_q \, U^\dagger \right) + \text{h.c.}$  $\Longrightarrow \quad \Gamma(\pi \to 4\ell) \sim \frac{\alpha_D^2 \,\alpha_{\rm em}^2 \,\epsilon^4}{2048 \,\pi^5} \, \frac{m_\pi^{11}}{f_\pi^2 \, m_{A'}^8}$ SMIf  $Q^2 \propto I_{3\times 3}$ e.g. Q = (+1, -1, -1)Lifetime can be comparable to the time no contribution to the neutral pion of recombination. decay from the chiral anomaly.

OK if  $m_{\pi 0} > m_{\pi +}$ 

they can be DM

U(1)<sub>D</sub> charged pions are stable

Backup