Dark sector searches with leptons

Stefania Gori UC Santa Cruz

2024 Belle II Physics Week

October 15, 2024

Outline

***** Introduction:

Leptons are a very common signature of dark sector models

*** What's done:** Searches already performed by Belle II

* Future opportunities:

Next steps in the search for dark sectors with leptonic signatures

- minimal models: dark photon
- non minimal models:
	- * Inelastic Dark Matter (IDM)
	- * Leptonically coupled axions
	- * Strongly interacting massive particles (SIMPs)

 $\epsilon Z^{\mu\nu} A'_{\mu\nu}$ Dark photon

 $yHLN$ Neutrino

 $\kappa |H|^2 |S|^2$ **Higgs**

The portals induce the decay of the dark particle to leptons

Gauging anomaly free approximate symmetries of the Standard Model: e.g., L_{μ} - L_{τ} : the corresponding Z' will decay to either muons, or taus, or neutrinos

Gauging anomaly free approximate symmetries of the Standard Model: e.g., L_{μ} - L_{τ} : the corresponding Z' will decay to either muons, or taus, or neutrinos

S.Gori

+ dark sector particles can be produced in association with leptons

Dark Matter (DM) models with DM excited states or additional dark particles: e.g., ***** Inelastic DM: $A' \rightarrow \chi_1 \chi_2, \ \ \chi_2 \rightarrow \chi_1 \ell^+ \ell^-$ ***** Strongly Interacting Massive Particles (SIMPs): $A' \rightarrow \chi_1 V_D$, $V_D \rightarrow \ell^+ \ell^$ models with both a dark photon and a dark scalar: dark Higgs-strahlung $(X_1$ is the DM state)

Axion/axion-like-particles (ALPs) with flavor-specific couplings:

$$
2g_{\mu\mu} \frac{(\partial_{\mu}a)}{m_{\mu}} \bar{\mu} \gamma^{\mu} P_{R} \mu \quad \text{or} \quad 2g_{ee} \frac{(\partial_{\mu}a)}{m_{e}} \bar{e} \gamma^{\mu} P_{R} e
$$

 Ω

Searches currently performed by Belle II, invisible

World-leading bounds

Searches currently performed by Belle II, invisible

Searches currently performed by Belle II, invisible

S.Gori

Searches currently performed by Belle II, visible

***** 2306.12294: 62.8/fb Interpretation: $e^+e^- \rightarrow \mu\mu X,$ $X \rightarrow \tau \tau$

- L_{μ} -L_τ Z' gauge bosons
- Axion coupled to leptons
- **leptophilic scalar**

Searches currently performed by Belle II, visible

***** 2306.12294: 62.8/fb $e^+e^- \rightarrow \mu\mu X,$ $X \rightarrow \tau \tau$

Interpretation:

 L_{μ} -L_τ Z' gauge bosons

Axion coupled to leptons

leptophilic scalar

***2306.02830: 189/fb**

 $B \to KS$, $S \to ee, \mu\mu, \pi\pi, KK$

 $B⁰$ and $B⁺$

charged states (including leptons)

Interpretation: Dark scalar mixed with the SM Higgs

Searches currently performed by Belle II, visible

World-leading bounds **World-leading bounds**

 m_{7} [GeV/ c^{2}]

Additional new searches for leptonic dark sectors?

Four examples:

- 1. Minimal visible dark photon
- 2. Leptonically coupled axions
- 3. Inelastic Dark Matter (IDM) **reminders from this morning lecture**
	- 4.Strongly interacting massive particles (SIMPs)

Some additional missing signature? Can one do a systematic (more model independent) coverage of leptonic signatures?

Other minimal models to look for 1.

Dark photon decaying visibly to leptons

$$
\frac{\epsilon}{2\cos\theta}\widehat Z_{D\mu\nu}\widehat B_{\mu\nu}
$$

Projected limits scaled from BaBar, assuming:

- ***** twice as good mass resolution
- * better trigger efficiency for both muons (∼ factor 1.1) and electrons (∼ factor 2)

Other minimal models to look for 1.

Weak violating axions coupled to leptons 2.

This morning, we saw the most general ALP EFT. Let us focus on these couplings:

$$
\frac{(\partial_{\mu} a)}{m_e} \left[\bar e \gamma^\mu \left(\bar g_{ee} + g_{ee} \gamma_5 \right) e + g_\nu \bar\nu \gamma^\mu P_L \nu \right]
$$

Weak violating axions coupled to leptons 2.

This morning, we saw the most general ALP EFT. Let us focus on these couplings:

$$
\frac{(\partial_{\mu} a)}{m_e} \left[\bar e \gamma^{\mu} \left(\bar g_{ee} + g_{ee} \gamma_5 \right) e + g_{\nu} \bar \nu \gamma^{\mu} P_L \nu \right]
$$

The SM SU(2) symmetry would lead to $\bar{g}_{ee} - g_{ee} - g_{\nu} = 0$

If SU(2) is violated by the axion interactions, $\bar{g}_{ee} - g_{ee} - g_{\nu} \neq 0$, some meson, M, decay modes to axions are enhanced:

Altmannshofer, Dror, SG, 2209.00665

New searches can be done at meson factories (PIONEER, NA62, KOTO, Belle II)

The reach on the parameter space 2.

Altmannshofer, Dror, SG, 2209.00665

2. The reach on the parameter space

Beyond minimal models: inelastic dark matter (IDM) 3.

Inelastic DM (IDM) models were initially proposed to explain the DAMA anomaly, while being consistent with Dark Matter direct detection bounds from CDMS

Tucker-Smith, Weiner, 0101138

$$
-\mathcal{L} \supset m_D \eta \xi + \frac{1}{2} \delta_{\eta} \eta^2 + \frac{1}{2} \delta_{\xi} \xi^2 + \text{h.c.}
$$
 2-component Weyl spinors with opposite charge under U(1)²
The only relevant interaction is inelastic: $\chi_1 = i(\eta - \xi)\sqrt{2}$,

$$
\mathcal{L} \supset \frac{ie_D m_D}{\sqrt{m_D^2 + (\delta_{\xi} - \delta_{\eta})^2/4}} A'_{\mu} (\bar{\chi}_1 \gamma^{\mu} \chi_2 - \bar{\chi}_2 \gamma^{\mu} \chi_1)
$$
 $\chi_2 = (\eta + \xi)\sqrt{2}$
The elastic piece is very small $(\delta_{\eta, \xi} \ll m_D)$:

$$
\mathcal{L} \supset \frac{e_D (\delta_{\xi} - \delta_{\eta})}{\sqrt{4m_D^2 + (\delta_{\xi} - \delta_{\eta})^2}} A'_{\mu} (\bar{\chi}_2 \gamma^{\mu} \chi_2 - \bar{\chi}_1 \gamma^{\mu} \chi_1)
$$
 Easy to get it small
Two states close in mass: $\Delta = \frac{m_2 - m_1}{m_1} \sim \frac{\delta_{\xi} + \delta_{\eta}}{m_D} \ll 1$ since it is a U(1)²
breaking effect

Abundance of x_1 and x_2 is determined by two coupled Boltzmann equations, that keep into account:

- * X_1 X_2 co-annihilation,
- \star χ_2 f \to χ_1 f inelastic scattering,

$$
\star \ \chi_2 \to \chi_1 + SM \ decays
$$

New opportunities for B-factories 3.

New proposed search for Belle-II:

(Photon) + displaced tracks + missing energy

New opportunities for B-factories 3.

New proposed search for Belle-II:

(Photon) + displaced tracks + missing energy

11

Strongly interacting massive particles in a nutshell 4.

4. Strongly interacting massive particles in a nutshell

If the portal operator is not too small, the dark pions can be in thermal equilibrium with the SM **Detection? (*)**

S.Gori

Spectrum and portal to the SM

 $SU(3)_L \times SU(3)_R \rightarrow SU(3)_D \supset U(1)_D$ $N_f=3$

4.

Spectrum and portal to the SM

4.

Berlin, Blinov, SG, Schuster, Toro, 1801.05805

Several processes can contribute to the dark pion annihilation:

1. $3\pi_D \rightarrow 2\pi_D$ annihilation $\Gamma(3 \rightarrow 2) = n_\pi^2 \langle \sigma v^2 \rangle$, $\langle \sigma v^2 \rangle \sim \left(\frac{m_\pi}{f_\pi}\right)^{10} \frac{1}{m_\pi^5}$

Berlin, Blinov, SG, Schuster, Toro, 1801.05805

Several processes can contribute to the dark pion annihilation:

- **1.** $3\pi_D \rightarrow 2\pi_D$ annihilation $\Gamma(3 \rightarrow 2) = n_\pi^2 \langle \sigma v^2 \rangle$, $\langle \sigma v^2 \rangle \sim \left(\frac{m_\pi}{f_\pi}\right)^{10} \frac{1}{m_\pi^5}$
- **2.** $\pi_D \pi_D \rightarrow V_D \pi_D$ semi-annihilation

 $m_V < 2m_\pi$

(If the dark vectors (V) have a mass close to the mass of the dark pions)

$$
\langle \sigma v \rangle \sim \frac{e^{-(m_V - m_\pi)/T}}{m_\pi^2} \gtrsim \frac{e^{-m_\pi/T}}{m_\pi^2}
$$

Berlin, Blinov, SG, Schuster, Toro, 1801.05805

Several processes can contribute to the dark pion annihilation:

- **1.** $3\pi_D \rightarrow 2\pi_D$ annihilation $\Gamma(3 \rightarrow 2) = n_\pi^2 \langle \sigma v^2 \rangle$, $\langle \sigma v^2 \rangle \sim \left(\frac{m_\pi}{f_\pi}\right)^{10} \frac{1}{m_\pi^5}$
- **2.** $\pi_D \pi_D \rightarrow V_D \pi_D$ semi-annihilation

 $m_V < 2m_\pi$

(If the dark vectors (V) have a mass close to the mass of the dark pions)

$$
\langle \sigma v \rangle \sim \frac{e^{-(m_V - m_\pi)/T}}{m_\pi^2} \gtrsim \frac{e^{-m_\pi/T}}{m_\pi^2}
$$

Berlin, Blinov, SG, Schuster, Toro, 1801.05805

Several processes can contribute to the dark pion annihilation:

- **1.** $3\pi_D \rightarrow 2\pi_D$ annihilation $\Gamma(3 \rightarrow 2) = n_\pi^2 \langle \sigma v^2 \rangle$, $\langle \sigma v^2 \rangle \sim \left(\frac{m_\pi}{f_\pi}\right)^{10} \frac{1}{m_\pi^5}$
- **2.** $\pi_D \pi_D \rightarrow V_D \pi_D$ semi-annihilation

Dark photon decays to SIMPs

mass A' $\frac{V}{\pi}D$

Berlin, Blinov, SG, Schuster, Toro, 1801.05805

$$
\alpha_D=10^{-2},\ \epsilon=10^{-3}
$$

Dark photon decays to SIMPs

DarkQuest and LDMX

Let us focus on two proposed experiments:

The reach for SIMPs (2+3 body decays) 4.

4. The reach for SIMPs (2+3 body decays)

4. The reach for SIMPs (2+3 body decays)

In color:

reach of future experiments:

- Belle II: (same Babar signature) $e^+e^- \rightarrow \gamma A', A' \rightarrow inv$

- LDMX: invisible A'
- LDMX: visible A'
- HPS: electron beam dump experiment. Search for visibly decaying A'

DarkQuest

 $A' \rightarrow \pi_D V_D$ $\sqrt{V_D^{\pm}} \rightarrow \pi_D^{\pm} \ell^+ \ell^-$

$$
V_D^0 \to \ell^+ \ell^-
$$

What about searching for this at Belle II?

The reach for SIMPs (2 body decays) 4.

Outlook

Many different leptonic signatures arise in dark sector models

Several searches have been already performed at Belle II probing new interesting regions of parameter space

Several new signatures to look for

- \triangleright 1 photon + 2 charged tracks (prompt or displaced) **dark photon**
- **▶ 3 charged leptons from B meson** decays
- broader coverage of 1 photon+missing
	- + 2 (or more) displaced charged tracks

axions

IDM + SIMP

Rewriting the ALP interaction

Our work:

- **- importance of the weak vertex**
- new bounds on the "standard" vertex

$$
\boxed{\frac{(\partial_\mu a)}{m_e} \left[\bar{e} \gamma^\mu \left(\bar{g}_{ee} + g_{ee} \gamma_5 \right) e + g_\nu \bar{\nu} \gamma^\mu P_L \nu \right]}
$$

SU(2) violating models

 $\mathcal{L} \supset -yHLN^c - Me^{ia/f_a}NN^c + \text{h.c.}$

$$
\left(\begin{array}{cc} \mathbf{L} \end{array} \right) \frac{\theta^2}{f_a} \partial_\mu a \big(\bar{\nu}_e \gamma^\mu P_L \nu_e \big) \longrightarrow \left\{ \begin{array}{l} g_\nu \end{array} \right. = \frac{2 \theta^2 m_e}{f_a} = 1.0 \times 10^{-5} \left(\frac{\theta}{0.1} \right)^2 \left(\frac{\text{GeV}}{f_a} \right) \nonumber \\ g_{ee} \end{array} \right.
$$

Batell, et al, 1709.07001

additional constraints from S.Gori visibly decaying HNL (less robust)

Backup

Complementarity with neutral current decays

Neutral current meson decays are also generated at the 2 or 3-loop level (suppressed by CKM elements as well)

Dark sector decays

$$
\Gamma(A' \to \ell^+\ell^-) = \frac{\alpha_{\text{em}}\epsilon^2}{3} (1 - 4r_{\ell}^2)^{1/2} (1 + 2r_{\ell}^2) m_{A'}
$$

\n
$$
\Gamma(A' \to \text{hadrons}) = R(\sqrt{s} = m_{A'}) \Gamma(A' \to \mu^+\mu^-)
$$

\n
$$
\Gamma(A' \to \pi\pi) = \frac{2\alpha_D}{3} \frac{(1 - 4r_{\pi}^2)^{3/2}}{(1 - r_{\nu}^2)^2} m_{A'}
$$

\n
$$
\Gamma(A' \to \eta^0 \rho) = \frac{\alpha_D r_V^2}{256\pi^4} \left(\frac{m_{\pi}/f_{\pi}}{r_{\pi}}\right)^4 \left[1 - 2(r_{\pi}^2 + r_V^2) + (r_{\pi}^2 - r_V^2)^2\right]^{3/2} m_{A'}
$$

\n
$$
\Gamma(A' \to \eta^0 \phi) = \frac{\alpha_D r_V^2}{128\pi^4} \left(\frac{m_{\pi}/f_{\pi}}{r_{\pi}}\right)^4 \left[1 - 2(r_{\pi}^2 + r_V^2) + (r_{\pi}^2 - r_V^2)^2\right]^{3/2} m_{A'}
$$

\n
$$
\Gamma(A' \to \pi^0 \omega) = \frac{3\alpha_D r_V^2}{256\pi^4} \left(\frac{m_{\pi}/f_{\pi}}{r_{\pi}}\right)^4 \left[1 - 2(r_{\pi}^2 + r_V^2) + (r_{\pi}^2 - r_V^2)^2\right]^{3/2} m_{A'}
$$

\n
$$
\Gamma(A' \to K^0 \overline{K^{*0}}, \overline{K^0} K^{*0}) = \frac{3\alpha_D r_V^2}{128\pi^4} \left(\frac{m_{\pi}/f_{\pi}}{r_{\pi}}\right)^4 \left[1 - 2(r_{\pi}^2 + r_V^2) + (r_{\pi}^2 - r_V^2)^2\right]^{3/2} m_{A'}
$$

\n
$$
\Gamma(A' \to \pi^{\pm} \rho^{\mp}) = \frac{3\alpha_D r_V^2}{128\pi^4} \left(\frac{m_{\pi}/f_{\pi}}{r_{\pi}}\right)^4 \left[1 - 2(r_{\pi}^2 + r_V
$$

 $\Gamma(\phi \to \ell^+ \ell^-) = \frac{16 \pi \alpha_{\rm em} \alpha_D \epsilon^2}{3} \, \left(\frac{r_\pi}{m_\pi/f_\pi}\right)^2 \, (r_V^2 - 4 r_\ell^2)^{1/2} \, (r_V^2 + 2 r_\ell^2) \, (1 - r_V^2)^{-2} \, m_{A'}$

$$
r_i \equiv m_i/m_{A'}
$$

 $\Gamma(\omega \to \ell^+ \ell^-) = 0$

Kinematics of the decays

Berlin, Blinov, SG, Schuster, Toro, 1801.05805

for the darkquest experiment

The stability of pions

Pions need to be long-lived on timescales compared to freeze-out.

However, the **neutral pions**:

If $Q^2 \propto I_{3\times 3}$

e.g. $Q = (+1, -1, -1)$

no contribution to the neutral pion decay from the chiral anomaly.

contribution: A' pion matrix
 $\frac{\alpha_D}{4\pi f_\pi} i \epsilon^{\mu\nu\alpha\beta} A'_{\mu\nu} A'_{\alpha\beta}$ Tr Q Tr $(Q M_q U^{\dagger})$ + h.c.
 $\implies \Gamma(\pi \to 4\ell) \sim \frac{\alpha_D^2 \alpha_{\rm em}^2 \epsilon^4}{2048 \pi^5} \frac{m_\pi^{11}}{f_\pi^2 m_{A'}^8}$

 A^\prime

Lifetime can be comparable to the time of recombination. OK if $m_{π0}$ > $m_{π+}$

U(1) $_D$ **charged pions** are **stable** \implies **they** can be DM