CHALLENGING BSM SEARCHES WITH TAUS

JURE ZUPAN U. OF CINCINNATI

1

based on work with I. Bigaran, P. Fox, Y. Gouttenoire, R. Harnik, J. Kopp, G. Krnjaic, T.Menzo, 2412.nnnn

2024 Belle II Physics Week, KEK, Aug 16 2024

GOAL

see, e.g., review by Cirelli, Strumia, JZ, 2406.01705

- diagonal couplings to light DM $\bar{\psi}_i \psi_i \phi_{DM}$ \Rightarrow time dependent signals
 - time-varying constants of nature, α_{em}
 - time-varying electron, proton, neutron masses
- any implications for flavor violating transitions?

GOAL

- yes! DM could be discovered in FCNCs
 - for instance, in $\tau \rightarrow \mu + inv$
 - here, interested in very light DM
 - time dependent $\tau \rightarrow \mu + inv$ rate

J. Zupan Challenging BSM searches with taus

OUTLINE

- light DM and coherent background field oscillations
- light scalars
 - single axion-like particle
 - non-Abelian pNGBs
- time dependent FCNCs

- we are immersed in DM halo
 - non-relativistic DM particles $v \sim \mathcal{O}(10^{-3})$

- local DM density $\rho_{\phi} = 0.4 \,\text{GeV/cm}^3 \approx 3 \times 10^{-42} \,\text{GeV}^4$
- bosonic DM of mass $m_{\phi} \lesssim 30 \,\mathrm{eV}$
 - highly degenerate: many DM particles per de Broglie volume, $n_{\rm DM}(m_{\phi}v)^3 \gg 1$
 - well approximated by oscillating wave $\phi_{cl}(t)$

Amplitude:

$$\rho_{\phi} = V(\phi_0),$$

Oscillation period:

$$T_0 = 2\sqrt{2} \int_0^{\phi_0} \frac{d\phi}{\sqrt{V(\phi_0) - V(\phi)}}.$$

• example: quadratic potential

$$V_{\text{quad}}(\phi) = rac{1}{2}m_{\phi}^2\phi^2.$$

harmonic oscillations

$$\phi_{\rm cl}(t) = \phi_0 \cos(m_{\phi} t + \delta) \ , \ \phi_0 = \frac{\sqrt{2\rho_{\phi}}}{m_{\phi}} \ ,$$

note: oscillation amplitude larger for lighter DM

$$\phi_0 \simeq 2.5 \,\mathrm{TeV} \left(\frac{10^{-15} \,\mathrm{eV}}{m_\phi} \right),$$

• oscillation frequency given by the DM mass $T_0 = 2\pi/m_{\phi}$

$$T_0 \simeq 4.1 \,\mathrm{ns}\left(\frac{1\,\mu\mathrm{eV}}{m_{\phi}}\right) \simeq 4.1 \,\mathrm{s}\left(\frac{10^{-15}\,\mathrm{eV}}{m_{\phi}}\right) \simeq 16 \,\mathrm{month}\left(\frac{10^{-22}\,\mathrm{eV}}{m_{\phi}}\right).$$

• couplings $\bar{\psi}_i \psi_j \phi^n \to n \bar{\psi}_i \psi_j \phi_{cl}^{n-1} \phi \Rightarrow$ time dependent $\psi_j \to \psi_i \phi$ decays

7

•
$$\Gamma(\psi_j \to \psi_i \phi) \propto \cos^{2(n-1)}(m_{\phi} t)$$

J. Zupan Challenging BSM searches with taus

note: $\bar{\psi}_i \psi_j \phi \Rightarrow$ no time dependence need at least $\bar{\psi}_i \psi_j \phi^2$ KEK, Aug 16, 2024

• example: axion-like potential

$$V_{\rm ALP}(\phi) = m_{\phi}^2 f^2 \left(1 - \cos \frac{\phi}{f}\right),$$

• note: for fixed $f \Rightarrow$ max. DM density is $\rho_{\phi}^{\text{max}} = m_{\phi}^2 f^2$

- anharmonic oscillations
 - oscillation period $T_0 = \frac{2\pi}{m_{\phi}} \left(1 + \frac{1}{16} \phi_0^2 + \cdots \right)$ • amplitude of oscil. $\phi_0 = f \cos^{-1} \left(1 - \frac{\rho_{\phi}}{m_{\phi}^2 f^2} \right)$.
- note: ϕ_0 at most $\phi_0^{\max} = \frac{\pi}{2}f$.

J. Zupan Challenging BSM searches with taus

LIGHT SCALAR?

- why can ϕ be light?
 - if a pNGB of a global spontaneously broken symmetry
 - \Rightarrow shift symmetry $\phi \rightarrow \phi + \delta$
 - \Rightarrow mass m_{ϕ} protected
- three limits
 - a single axion-like particle
 - non-Abelian pNGBs
 - general light scalar

J. Zupan Challenging BSM searches with taus

KEK, Aug 16, 2024

9

SINGLE ALP

- pNGB from spont. broken global U(1)
- the most general interaction at low energies starts at dim-5

$$\mathcal{L}_{\rm int} = \frac{\partial_{\mu}\phi}{2f} \,\bar{\psi}_i \gamma^{\mu} (C^V_{\psi_i\psi_j} + C^A_{\psi_i\psi_j}\gamma_5)\psi_j + c_g \frac{\phi}{f} \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \tilde{G}^{a\mu\nu} + c_\gamma \frac{\phi}{f} \frac{\alpha_{\rm em}}{8\pi} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

• if m_{ϕ} due to explicit breaking of shift symmetry also higher order terms

$$\mathcal{L}_{\text{int}} \supset \sum_{n} \frac{m_{\phi}}{f} \left[\left(\frac{\phi}{f}\right)^{n} \bar{\psi}_{i} (C^{S(n)}_{\psi_{i}\psi_{j}} + C^{P(n)}_{\psi_{i}\psi_{j}}\gamma_{5})\psi_{j} + c_{g}^{(n)} \left(\frac{\phi}{f}\right)^{n} \frac{\alpha_{s}}{8\pi} G^{a}_{\mu\nu} \tilde{G}^{a\mu\nu} + c_{\gamma}^{(n)} \left(\frac{\phi}{f}\right)^{n} \frac{\alpha_{\text{em}}}{8\pi} F_{\mu\nu} \tilde{F}^{\mu\nu} + \cdots \right]$$

- for these to be comparable to dim-5 terms requires $\phi_0 \gg f$
 - \Leftarrow hard to arrange in any realistic model
 - \Rightarrow time dependence of $\psi_i \rightarrow \psi_i \phi$ decays highly suppressed

J. Zupan Challenging BSM searches with taus

10

SINGLE ALP

J. Zupan Challenging BSM searches with taus

¹¹

J. Zupan Challenging BSM searches with taus

¹¹

NON-ABELIAN PNGB

- consider $G \rightarrow H$ breaking
- where pNGBs in *G/H* coset *U*(φ) have nonlinear interactions
 - low energy interaction start as

$$\mathcal{L}_{\text{int}} \supset \text{Tr} \left(U^{\dagger} i \partial_{\mu} U \right) \bar{\psi}_{i} \gamma^{\mu} (\tilde{C}_{\psi_{i}\psi_{j}}^{V} + \tilde{C}_{\psi_{i}\psi_{j}}^{A} \gamma_{5}) \psi_{j} + \text{h.c.}$$

• if no U(1) factors, interactions start at $\mathcal{O}(\phi^2)$

$$\mathcal{L}_{\text{int}} \supset \sum_{a} \frac{\phi_a}{f} \frac{i\partial_{\mu}\phi_a}{f} \bar{\psi}_i \gamma^{\mu} (C_{\psi_i\psi_j}^V + C_{\psi_i\psi_j}^A \gamma_5) \psi_j + \text{h.c.},$$

example from QCD+QED: $\pi^+ \partial_\mu \pi^- J^\mu_{em}$

J. Zupan Challenging BSM searches with taus

NON-ÁBELIAN PNGB

• in the light DM background

J. Zupan Challenging BSM searches with taus

TIME DEPENDENT $\tau \rightarrow \mu \phi$

- interaction: $\phi \partial_{\alpha} \phi \bar{\tau} \gamma^{\alpha} \mu$
 - induces $\tau \to \mu \phi \phi$
 - three body decay, large background from $\tau \rightarrow \mu \nu \bar{\nu}$
 - very poor bound on f
 - DM background induces time dependent $\tau \rightarrow \mu \phi$

- two body decay: mono-energetic μ in tau rest- frame
- tau decays additional complication
 - $e^+e^- \rightarrow \tau^+\tau^-$, at least one neutrino on tag side
 - not possible to reconstruct tau rest frame ⇒ use pseudo rest-frame
 - time dependence of the signal helps
- same for $\tau \to e\phi$

J. Zupan Challenging BSM searches with taus 14

two body decay: mono-energetic μ in tau rest-frame

- tau decays additional complication
 - $e^+e^- \rightarrow \tau^+\tau^-$, at least one neutrino on tag side
 - not possible to reconstruct tau rest frame ⇒ use pseudo rest-frame
 - time dependence of the signal helps
- same for $\tau \to e\phi$

J. Zupan Challenging BSM searches with taus 14

HOW TO SEARCH FOR PERIODIC SIGNALS

w/ Ilten et al, work in progress

- Lomb-Scargle periodogram an efficient way of searching for periodic signals
 - example: observed light curve from LINEAR object ID 11375941

HOW TO SEARCH FOR PERIODIC SIGNALS

J. Zupan Challenging BSM searches with taus

15

TIME DEPENDENT $\tau \rightarrow \mu \phi$

TIME DEPENDENT SIGNALS

- any $\psi_i \rightarrow \psi_i \phi$ FCNC process now time dependent
 - $\mu \to e\phi$
 - $s \to d\phi: K^+ \to \pi^+ \phi, K_{S,L} \to \pi^0 \phi, K^+ \to \pi^+ \pi^0 \phi, \Lambda \to n\phi, \dots$
 - $c \to u\phi: D \to \pi\phi, \rho\phi, D_s \to K^{(*)}\phi, \Lambda_c \to p\phi, \dots$
 - $b \to s\phi: B \to K^{(*)}\phi, \Lambda_b \to \Lambda\phi, \dots$
 - $b \to d\phi: B \to \pi\phi, B \to \phi\phi, \Lambda \to n\phi$
- the coherence of the signal is $m_{\phi}/m_{\phi}v^2 \sim v^{-2} \sim 10^6$ oscillations
 - for month-scale oscillations only need time-stamps with precision of seconds
- in principle also contributions to FCNCs without missing energy
 - meson mixing, hadronic and leptonic meson decays

J. Zupan Challenging BSM searches with taus

17

CONCLUSIONS

- we are immersed in DM background
- if DM light ⇒ coherently oscillating field
 - can be searched for through time dependent FCNC transitions

• example: $\tau \rightarrow \mu \phi$ (+many more)

BACKUP SLIDES

LOMB-SCARGLE PERIODOGRAM

- data with time-stamps, $y(t_i)$, i = 1, ..., N
- Lomb-Scargle power for frequency $f = \omega/2\pi$

$$P(f) = \frac{1}{2\sigma^2} \left(\frac{\left[\sum_{i=1}^N W_i \left(y(t_i) - \bar{y}\right) \cos \omega(t_i - \tau)\right]^2}{\sum_{i=1}^N W_i \cos^2 \omega(t_i - \tau)} + \frac{\left[\sum_{i=1}^N W_i \left(y(t_i) - \bar{y}\right) \sin \omega(t_i - \tau)\right]^2}{\sum_{i=1}^N W_i \sin^2 \omega(t_i - \tau)} \right)$$

- \bar{y} is weighted average, σ weighted variance of data
- weights W_i are
- phase factor τ

$$W_i = \frac{1/\sigma_i^2}{\langle 1/\sigma_i^2 \rangle}$$

$$\tan(2\omega\tau) = \frac{\sum_{i=1}^{N} W_i \sin 2\omega t_i}{\sum_{i=1}^{N} W_i \cos 2\omega t_i}$$

J. Zupan Challenging BSM searches with taus