

Reinterpretation with model-agnostic likelihoods

Constraining new physics with $B^+ o K^+ u ar{ u}$ @ Belle II

Lorenz Gärtner¹, Nikolai Hartmann¹, Lukas Heinrich², Malin Horstmann², Thomas Kuhr¹, Méril Reboud³, Slavomira Stefkova⁴, Danny van Dyk⁵

¹LMU Munich, ²TU Munich, ³ IJCLab, ⁴KIT, ⁵IPPP Durham

October 16, 2024

What we dream of...

What we dream of...

... the PDF of observables x given theory parameters θ

$$p(x|\theta) = \int dz_d \int dz_p \underbrace{p(x|z_d)}_{\text{observables detector response}} \underbrace{p(z_d|z_p)}_{\text{detector response}} \underbrace{p(z_p|\theta)}_{\text{prediction}}$$

What we dream of...

... the PDF of observables x given theory parameters θ

$$p(x|\theta) = \int dz_d \int dz_p \underbrace{p(x|z_d)}_{\text{observables detector response}} \underbrace{p(z_d|z_p)}_{\text{prediction}} \underbrace{p(z_p|\theta)}_{\text{prediction}}$$

Intractability forces us to approximate

 $MC \sim p(x|\theta)$

→ MC data is model dependent

What result would we get if we replace the signal model?

Approaches to reinterpretation

Recasting / simulation based reinterpretation

- Produce and analyse new MC samples
- Requires full analysis strategy
- Relatively accurate (analysis still optimized for original model)
- ৬ Resource-heavy

Approaches to reinterpretation

Recasting / simulation based reinterpretation

- Produce and analyse new MC samples
- Requires full analysis strategy
- Relatively accurate (analysis still optimized for original model)
- ৬ Resource-heavy

Simplified model reinterpretation

- Assumption: acceptances / efficiencies unaffected by kinematic shape differences
- 1 Potentially biased results

Approaches to reinterpretation

Recasting / simulation based reinterpretation

- Produce and analyse new MC samples
- Requires full analysis strategy
- Relatively accurate (analysis still optimized for original model)
- ৬ Resource-heavy

Simplified model reinterpretation

- Assumption: acceptances / efficiencies unaffected by kinematic shape differences
- 1 Potentially biased results

Is accurate reinterpretation without new MC samples possible? A Yes, we can reweight samples or even histograms directly!

A novel reinterpretation method [EPJC] aithub.com/lorenzennio/redist

Templates from kinematic predictions

$$n(x) = \int dz \ L \ \varepsilon(x|z) \ \sigma(z) = \int dz \ n(x,z).$$

- z kinematic d.o.f.
- x reconstruction / fitting variable(s)
- L- luminosity

 $\varepsilon(x|z)$ – conditional efficiency n(x,z) – joint number density

Reweight to new model

$p(x|\theta) \& n(x,z) = \text{model-agnostic likelihood}$

Method limitations

Substantial model changes \rightarrow large weights

Minimal requirement:

 $\operatorname{supp}(\sigma_B) \in \operatorname{supp}(\sigma_A)$

Always possible to compare only in $supp(\sigma_A)$

Reinterpretation of $B^+ \to K^+ \nu \bar{\nu}$

Evidence for $B^+ \rightarrow K^+ \nu \bar{\nu}$ – What next?

Belle II has found "Evidence for $B^+ \rightarrow K^+ \nu \bar{\nu}$ Decays" arXiv:2311.14647 [hep-ex]

What does this really mean?

• This statement is based on the model

p(x|SM)

• However, we cannot say much about

p(x|NP)

Benefit of combination

Total of 3 analyses

• ITA

 $p(x_{ITA}|\theta_{ITA})$ $BDT_2 \times q_{rec}^2$

• ITA+HTA

$$\mathcal{P}(x|\theta) = \underbrace{\mathcal{P}(x_{\textit{ITA}}|\theta_{\textit{ITA}}')}_{\text{BDT}_2 \times q_{\textit{rec}}^2} \cdot \underbrace{\mathcal{P}(x_{\textit{HTA}}|\theta_{\textit{HTA}}')}_{\text{BDTh}}$$

→ 10% increase in precision over ITA result

arXiv:2311.14647 [hep-ex]

There are always open questions...

Excess around 3 $\text{GeV}^2 < q_{\text{rec}}^2 < 7 \text{ GeV}^2$ for ITA best-fit projection.

arXiv:2311.14647 [hep-ex]

What if the $B^+ \to K^+ \nu \bar{\nu}$ signal includes $B^+ \to K^+ X$?

X – light ($m_{\chi} \le m_{B} - m_{K}$) resonant boson, decaying invisibly or escaping undetected

See arXiv:2311.14629 [hep-ph], arXiv:2312.12507 [hep-ph] for first estimates.

L. Gärtner (LMU)

Reinterpretation with model-agnostic likelihoods

Ingredients for reinterpretation

- 1. Likelihood $p(x|\theta)$
- 2. Joint number density n(x,z)
- 3. Decay kinematics $\rightarrow w(z)$

1. pyhf statistical model

A statistical model for multi-bin histogram-based analysis and its interval estimation.

Likelihood function for observed event counts *n* is

$$p(x|\theta) = p(n, \alpha|\eta, \chi) = \underbrace{\operatorname{Pois}\left(n|\nu(\eta, \chi)\right)}_{\text{data likelihood}} \underbrace{\operatorname{c}\left(\alpha|\chi\right)}_{\text{constraint likelihood}}$$

Expected number of events are

$$u\left(\eta,\chi
ight)=\kappa(\eta,\chi)\left(
u^{0}(\eta,\chi)+\Delta(\eta,\chi)
ight).$$

Use redist for bin weights $\kappa(\eta, \chi) = n_B(\eta, \chi) / n_A$.

2. Joint number density

Kinematic binning: $q_{gen.}^2 = [-1, (0, 22.885, 100)] \text{ GeV}^2$

3. Decay kinematics

• Model as sharp resonance peak,

$$\frac{d\mathcal{B}}{dq^2} = \frac{d\mathcal{B}_{SM}}{dq^2} + \mu_{\chi} \, p_{RBW}(q^2; m_{\chi}, \Gamma_{\chi}) \cdot 10^{-6},$$

with the PDF

$${\cal P}_{_{RBW}}(q^2;m_{_X},{\sf F}_{_X})=rac{k}{(q^2-m_{_X}^2)^2-m_{_X}^2{\sf F}_{_X}^2}$$

- Free parameters are μ_X , m_X (and Γ_X)
- Bound by resolution $\Gamma_X > 0.1 \text{ GeV}$

Model shown for $\mu_X = 1$, $m_X = 2$ GeV.

What do we want to learn?

Gilles Louppe @ PHYSTAT-SBI 2024

- **Frequentist**: Find $\hat{\theta}$ maximising $p(x|\theta)$. Build confidence interval.
- **Bayesian**: Compute posterior $p(\theta|x) \propto p(x|\theta)p(\theta)$. Obtain credible intervals.

Bayesian inference more insightful for multiple, correlated POIs.

Posterior model simply from pyhf likelihood:

L. Gärtner (LMU)

$B^+ \rightarrow K^+ X$ marginal posterior

• 1d and 2d marginalized posterior

$$\mathcal{P}\left(\eta|n,a
ight)=\int d\chi \,\,\mathcal{P}\left(\eta,\chi|n,a
ight)$$

- Uniform priors for POIs
- Credible intervals (95%) from $\Gamma_{\chi}=0.1\,\text{GeV}$

 $\mathcal{B}(B^+ \to K^+ X) \in [0.34, 1.4] \times 10^{-5}$ $m_X \in [1.9, 2.7] \text{ GeV}$

• Consistent with results of

arXiv:2311.14629 [hep-ph], arXiv:2312.12507 [hep-ph]

Model comparison

Pointwise: P-value

- Toy study for $\Gamma_{\chi} = 0.1$ GeV model, 10k toys
- → Significance of Z = 3.1 over SM+background

Averaged: Bayes factor

Compare the probabilities of the observed data being produced by a given model.

$$p(\theta|x, M) = \frac{p(x|\theta, M) p(\theta|M)}{p(x|M)}$$
$$p(x|M) = \int d^{n}\theta \ p(x|\theta, M) \ p(\theta|M)$$
$$B_{M} = \frac{p(x|M')}{p(x|M)}$$

 \Rightarrow *B* \rightarrow *KX* models dominate over SM.

▲ Average likelihood in the full parameter space → prior dependent

L. Gärtner (LMU)

Reinterpretation with model-agnostic likelihoods

Summary

Reinterpretability is important

- Necessary for bias-free inference on BSM parameters.
- Enables combinations with other channels and/or experiments.
- → Increases impact of results.
- A Reinterpretation can be easy (redist)
 - Only requires likelihood and n(x, z) (or MC samples with kinematic information).
 - FAST
- ${\it B}
 ightarrow {\it K}
 u ar{
 u}$ reinterpretation i.t.o. ${\it B}
 ightarrow {\it K} {\it X}$
 - High significance model (Z = 3.1) with potential explanation for the observed excess in data.
 - Credible intervals (95%)

 $BR(B^+ \to K^+ X) \in [0.34, 1.4] \times 10^{-5}$ $m_X \in [1.9, 2.7] \text{ GeV}$

• pyhf model and n(x,z) to be published by Belle II (under internal review)

L. Gärtner (LMU)

Reinterpretation with model-agnostic likelihoods

$B \rightarrow KX$ posterior

- Based on ITA+HTA likelihood
- Priors are uniform with support

 $\begin{array}{ll} 0 \leq \mu_{SM} & \leq 10 \\ 0 \leq \mu_{X} & \leq 20 \\ 0 \leq m_{X} & \leq 4.8 \, \mathrm{GeV} \end{array}$

- Contours encompass 68% and 95% of samples
- 3 different Γ_X cases
- → bound by resolution $\Gamma_{\chi} > 0.1 \text{ GeV}$
 - consistent with results of arXiv:2311.14629 [hep-ph]

 $B^+ \to K^+ \nu \bar{\nu}$ toy study

- Weak effective theory $\sigma(z|\psi)$, $\psi = \{C_i\}$ (models B)
- Analysis assumes SM (model A)
 - $C_{VL} \simeq 6.6$, $C_i = 0 \quad \forall \quad i \neq VL$
- "Data" contains new physics

arXiv:2402.08417 [hep-ph]

The necessity for reinterpretation

- naive reinterpretation = simple BR rescaling
- → biased posterior

arXiv:2402.08417 [hep-ph]

HistFactory model

Likelihood function for observed event counts n is

$$L(n, \alpha | \eta, \chi) = \prod_{\substack{c \in \text{channels} \\ b \in \text{bins}}} \prod_{\substack{b \in \text{bins} \\ \text{multiple channels}}} \text{Pois} (n_{cb} | \nu_{cb}(\eta, \chi)) \prod_{\substack{\chi \in \chi \\ \text{constraint terms}}} c_{\chi} (a_{\chi} | \chi)$$

Expected number of events per channel per bin are

$$\nu_{cb}(\eta, \chi) = \sum_{s \in \text{samples}} \underbrace{\prod_{\kappa \in \kappa} \kappa_{scb}(\eta, \chi)}_{\text{multiplicative modifiers}} (\nu_{scb}^{0}(\eta, \chi) + \underbrace{\sum_{\Delta \in \Delta} \Delta_{scb}(\eta, \chi)}_{\text{additive modifiers}})$$

Modifiers

Custom modifiers

Modifiers and constraints

Description	Modification	Constraint Term c_χ	Input
Uncorrelated Shape	$\kappa_{scb}(\gamma_b)=\gamma_b$	$\prod_b \mathrm{Pois}\left(r_b = \sigma_b^{-2} \big ho_b = \sigma_b^{-2} \gamma_b ight)$	σ_b
Correlated Shape	$\Delta_{scb}(lpha) = f_p\left(lpha \Delta_{scb, lpha = -1}, \Delta_{scb, lpha = 1} ight)$	$\mathrm{Gaus}(a=0 \alpha,\sigma=1)$	$\Delta_{scb,lpha=\pm 1}$
Normalisation Unc.	$\kappa_{\mathit{scb}}(lpha) = g_p\left(lpha \kappa_{\mathit{scb}, lpha = -1}, \kappa_{\mathit{scb}, lpha = 1} ight)$	$\mathrm{Gaus}(a=0 \alpha,\sigma=1)$	$\kappa_{scb,lpha=\pm 1}$
MC Stat. Uncertainty	$\kappa_{scb}(\gamma_b)=\gamma_b$	$\prod_b \operatorname{Gaus}\left(a_{\gamma_b}=1 \gamma_b,\delta_b ight)$	$\delta_b^2 = \sum_s \delta_{sb}^2$
Luminosity	$\kappa_{scb}(\lambda)=\lambda$	$\mathrm{Gaus}\left(l=\lambda_{0} \lambda,\sigma_{\lambda} ight)$	$\lambda_0, \sigma_\lambda$
Normalisation	$\kappa_{scb}(\mu_b)=\mu_b$		
Data-driven Shape	$\kappa_{scb}(\gamma_b)=\gamma_b$		