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What we dream of...

... the PDF of observables x given theory parameters θ

p(x |θ) =
∫

dzd
∫

dzp p(x |zd)︸ ︷︷ ︸
observables

p(zd |zp)︸ ︷︷ ︸
detector response

p(zp|θ)︸ ︷︷ ︸
prediction

Intractability forces us to approximate
MC ∼ p(x |θ)

Ü MC data is model dependent
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What result would we get if we replace the
signal model?

[source]
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https://indico.belle2.org/event/8470/contributions/55881/attachments/21258/31464/likelihood_preservation.pdf


Approaches to reinterpretation

Recasting / simulation based reinterpretation
• Produce and analyse new MC samples
• Requires full analysis strategy
• Relatively accurate (analysis still optimized for original model)
Resource-heavy

Simplified model reinterpretation
• Assumption: acceptances / efficiencies unaffected by kinematic shape
differences
Potentially biased results

Is accurate reinterpretation without new MC samples possible?
Yes, we can reweight samples or even histograms directly!
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A novel reinterpretation method
[EPJC]

github.com/lorenzennio/redist
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https://link.springer.com/article/10.1140/epjc/s10052-024-13038-4
https://github.com/lorenzennio/redist


Templates from kinematic predictions
n(x) =

∫
dz L ε(x |z) σ(z) =

∫
dz n(x , z).

A
B

z – kinematic d.o.f.
x – reconstruction / fitting variable(s)
L – luminosity

ε(x |z) – conditional efficiency
n(x , z) – joint number density
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Reweight to new model

nB(x) =

∫
dz L ε(x |z) σB(z) =

∫
dz L ε(x |z) σA(z)

σB(z)

σA(z)
=

∫
dz nA(x , z)︸ ︷︷ ︸

main object

w(z) .

A
B

A
B

p(x |θ) & n(x , z) = model-agnostic likelihood
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Method limitations
Substantial model changes Ü large weights

A
B

Minimal requirement:
supp(σB) ∈ supp(σA)

Always possible to compare only in supp(σA)

L. Gärtner (LMU) Reinterpretation with model-agnostic likelihoods October 16, 2024 8 / 23



Reinterpretation of B+ → K+νν̄
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Evidence for B+ → K+νν̄ – What next?

Belle II has found "Evidence for B+ → K+νν̄ Decays"
arXiv:2311.14647 [hep-ex]

What does this really mean?
• This statement is based on the model

p(x |SM)

• However, we cannot say much about
p(x |NP)

L. Gärtner (LMU) Reinterpretation with model-agnostic likelihoods October 16, 2024 10 / 23

https://arxiv.org/abs/2311.14647


Benefit of combination
Total of 3 analyses

• ITA
p(xITA|θITA)︸ ︷︷ ︸
BDT2×q2

rec

• HTA
p(xHTA|θHTA)︸ ︷︷ ︸

BDTh

• ITA+HTA
p(x |θ) = p(xITA|θ

′
ITA)︸ ︷︷ ︸

BDT2×q2
rec

·p(xHTA|θ
′
HTA)︸ ︷︷ ︸

BDTh

Ü 10% increase in precision over ITA result
arXiv:2311.14647 [hep-ex]
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https://arxiv.org/abs/2311.14647


There are always open questions...

Excess around 3 GeV2
< q2

rec < 7 GeV2 for ITA best-fit projection.

arXiv:2311.14647 [hep-ex]
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https://arxiv.org/abs/2311.14647


What if the B+ → K+νν̄ signal includes
B+ → K+X?

X – light (mX ≤ mB −mK ) resonant boson, decaying invisibly or escaping
undetected

See arXiv:2311.14629 [hep-ph], arXiv:2312.12507 [hep-ph] for first estimates.
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https://arxiv.org/abs/2311.14629
https://arxiv.org/abs/2312.12507


Ingredients for reinterpretation
1. Likelihood p(x |θ)
2. Joint number density n(x , z)
3. Decay kinematics Ü w(z)
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1. pyhf statistical model

A statistical model for multi-bin histogram-based analy-
sis and its interval estimation.

Likelihood function for observed event counts n is
p(x |θ) = p(n,a|η, χ) = Pois (n|ν(η, χ))︸ ︷︷ ︸

data likelihood

c (a|χ)︸ ︷︷ ︸
constraint likelihood

Expected number of events are

ν (η, χ) = κ(η, χ)
(
ν
0(η, χ) + ∆(η, χ)

)
.

Use redist for bin weights κ(η, χ) = nB(η, χ) / nA .
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https://pyhf.readthedocs.io
https://github.com/lorenzennio/redist


2. Joint number density
The main object for reinterpretation, n(x , z).
Ü This should be published by collaborations.

Belle
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Kinematic binning: q2
gen. = [−1, (0, 22.885, 100)] GeV2
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3. Decay kinematics

• Model as sharp resonance peak,
dB
dq2 =

dBSM

dq2 +µX pRBW (q2
;mX , ΓX )·10

−6
,

with the PDF

pRBW (q2
;mX , ΓX ) =

k
(q2 −m2

X )
2 −m2

XΓ
2
X

• Free parameters are µX , mX (and ΓX )
• Bound by resolution ΓX > 0.1 GeV

0 5 10 15 20

q2 [GeV2]

10−7

10−6

d
B/
d
q2

[G
eV
−2

]

SM

SM+NP: ΓX = 1.0 GeV

SM+NP: ΓX = 0.5 GeV

SM+NP: ΓX = 0.1 GeV

Model shown for µX = 1, mX = 2 GeV.
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What do we want to learn?

Gilles Louppe @ PHYSTAT-SBI 2024
• Frequentist: Find θ̂ maximising p(x |θ). Build confidence interval.
• Bayesian: Compute posterior p(θ|x) ∝ p(x |θ)p(θ). Obtain credible intervals.

Bayesian inference more insightful for multiple, correlated POIs.
Posterior model simply from pyhf likelihood:

p (η, χ|n,a) ∝ Pois (n|ν(η, χ))︸ ︷︷ ︸
data likelihood

p (χ|a)︸ ︷︷ ︸
constraint prior

p (η)︸ ︷︷ ︸
unconstraint prior
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https://indico.cern.ch/event/1355601/contributions/5804529/attachments/2857193/4997773/talk-louppe.pdf


B+ → K+X marginal posterior

• 1d and 2d marginalized posterior

p (η|n,a) =
∫

dχ p (η, χ|n,a)

• Uniform priors for POIs
• Credible intervals (95%) from

ΓX = 0.1 GeV
B(B+ → K+X) ∈ [0.34, 1.4]× 10−5

mX ∈ [1.9, 2.7] GeV

• Consistent with results of
arXiv:2311.14629 [hep-ph],
arXiv:2312.12507 [hep-ph]
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https://arxiv.org/abs/2311.14629
https://arxiv.org/abs/2312.12507


Model comparison
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Pointwise: P-value
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λ = −2 logL(η = 0, ˆ̂χ)/L(η̂, χ̂)
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Fit to data

• Toy study for ΓX = 0.1 GeV model, 10k toys
Ü Significance of Z = 3.1 over SM+background
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Averaged: Bayes factor
Compare the probabilities of the observed data being produced by a given
model.

p(θ|x ,M) =
p(x |θ,M) p(θ|M)

p(x |M)

p(x |M) =

∫
dn

θ p(x |θ,M) p(θ|M)

BM =
p(x |M′

)

p(x |M)
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Ü B → KX models dominate over SM.
Average likelihood in the full parameter space Ü prior dependent
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Summary
Reinterpretability is important
• Necessary for bias-free inference on BSM parameters.
• Enables combinations with other channels and/or experiments.

Ü Increases impact of results.
Reinterpretation can be easy (redist)
• Only requires likelihood and n(x, z) (or MC samples with kinematic information).
• FAST

• B → Kνν̄ reinterpretation i.t.o. B → KX
• High significance model (Z = 3.1) with potential explanation for the observed

excess in data.
• Credible intervals (95%)

BR(B+ → K+X) ∈ [0.34, 1.4]× 10−5 mX ∈ [1.9, 2.7] GeV
• pyhf model and n(x , z) to be published by Belle II (under internal review)

Belle

lorenz.gaertner@physik.uni-muenchen.de
[B2Documents] [method paper]

L. Gärtner (LMU) Reinterpretation with model-agnostic likelihoods October 16, 2024 23 / 23

https://github.com/lorenzennio/redist
https://pyhf.readthedocs.io
mailto:lorenz.gaertner@physik.uni-muenchen.de
https://docs.belle2.org/record/4455
https://link.springer.com/article/10.1140/epjc/s10052-024-13038-4


B → KX posterior

• Based on ITA+HTA likelihood
• Priors are uniform with support

0 ≤ µSM ≤ 10
0 ≤ µX ≤ 20
0 ≤ mX ≤ 4.8 GeV

• Contours encompass 68% and 95% of
samples

• 3 different ΓX cases
Ü bound by resolution ΓX > 0.1 GeV
• consistent with results of

arXiv:2311.14629 [hep-ph]
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B+ → K+νν̄ toy study

• Weak effective theory σ(z|ψ),
ψ = {Ci} (models B)

• Analysis assumes SM (model A)
• CVL ' 6.6 ,Ci = 0 ∀ i 6= VL

• "Data" contains new physics

arXiv:2402.08417 [hep-ph]
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The necessity for reinterpretation

• naive reinterpretation
= simple BR rescaling

Ü biased posterior

arXiv:2402.08417 [hep-ph]
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HistFactory model

Likelihood function for observed event counts n is
L(n,a|η, χ) =

∏
c∈channels

∏
b∈bins

Pois (ncb|νcb(η, χ))︸ ︷︷ ︸
multiple channels

∏
χ∈χ

cχ

(
aχ|χ

)
︸ ︷︷ ︸

constraint terms

Expected number of events per channel per bin are

νcb(η, χ) =
∑

s∈samples

∏
κ∈κ

κscb(η, χ)︸ ︷︷ ︸
multiplicative modifiers

(ν0scb(η, χ) +
∑
∆∈∆

∆scb(η, χ)︸ ︷︷ ︸
additive modifiers

).
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Modifiers
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Custom modifiers
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Modifiers and constraints
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