

Panel Dicussion: Precision tests of the Standard Model with Tau physics

Emilie Passemar IFIC Valencia/Indiana University

2024 Belle II Physics Week «Tau and dark sector with Belle II» October 14 - 17, 2024

Discussion topics

- What are the *new ideas* and *information* presented at this workshop?
- What should we focus on?
- Where can Tau physics play an important role?

Talks by *S. Banerjee*, *M. Bruno*, *M. Hoferichter*, *E.P.*, *S. Prell, P. Roig*

1. Leptonic τ **decays**

- Improve on m_{τ} measurement : fundamental parameter of the SM Improve Lepton Universality test + $(g-2)_T$ $m_{\tau}^5~\tau_{\tau}$ $B'(\tau \to e \bar{\nu} \nu) \approx B(\mu \to e \bar{\nu} \nu)$ 5 τ_μ m_μ^5 *arXiv:2305.19116*m₋PDG 2023 m_r HFLAV 2023 prelim. (with Belle II and KEDR 2023) **PDG Average (2022)** 0.1790 **1776.86** ± **0.12** 68% CL contour BES (1996) 1776.96 ^{+0.18} ^{+0.25} BELLE (2007) $1776.61 + 0.13 + 0.35$ KEDR (2007) $0.1785 \cdot$ $1776.81^{+0.25}_{-0.23} \pm 0.15$ BaBar (2009) $\mathbf{p}_{\mathbf{e}}$ $1776.68 + 0.12 + 0.41$ BES III (2014) $1776.91 \pm 0.12 \begin{array}{l} +0.10 \\ -0.13 \end{array}$ **Belle II Preliminary (2023)** 0.1780 **1777.09** ± **0.08** ± **0.11** 1776 1776.5 1777 m_r [MeV/ c^2] 290.5 291.0 291.5 289.5 290.0 τ_{τ} [fs]
- Measure the absolute Brs, they have not been updated since LEP \cdot inneasure the absolute Brs, they have

1. Leptonic τ **decays**

• For constraints on the *Lorentz structure*:

Michel parameters

see talks by *S. Prell* and *P. Roig*

One can constrain sterile neutrinos

• Prospects on $(g-2)_\tau$ with polarized beams \Box see *M. Hoferichter's* talk

2. Hadronic τ **decays**

- Several anomalies where τ physics can help Babar measurement: Rate asymmetry asymmetry and the state asymmetry asymmetry asymmetry asymmetry asymmetry as
Babar measurement: Rate asymmetry asymmetry asymmetry asymmetry asymmetry asymmetry asymmetry asymmetry asymme
	- $-$ Cabibbo angle anomaly: V_{us} extraction

$$
- \frac{\tau^{\pm}}{CP} \frac{\partial K_{0}^{0} \pi^{\pm}}{\partial S} \frac{\partial K_{0}^{0}}{\partial m_{0}} \frac{\partial V_{2}}{\partial m_{1}} \frac{\partial V_{2}}{\partial m_{1}} \frac{\partial V_{2}}{\partial m_{2}} \frac{\partial V_{2}}{\partial m_{2}} \frac{\partial V_{2}}{\partial m_{1}} \frac{\partial V_{2}}{\partial m_{2}} \frac{\partial V_{2}}{\partial m_{1}} \frac{\partial V_{2}}{\partial m_{2}} \frac{\partial V_{2}}{\partial m_{2}} \frac{\partial V_{2}}{\partial m_{1}} \frac{\partial V_{2}}{\partial m_{2}} \frac{\partial V_{2}}{\
$$

Davier et al.'24

2.1 Important experimental inputs **|***Vus* **|** from tau measurements

 $V_{us} K_{13}$, N_f = 2+1+1 $0.2233 + 0.0005$ $V_{us} K_{12}$, N_f = 2+1+1 0.2250 ± 0.0005 \textsf{CKM} unitarity & V $_{\sf ud}$ & V $_{\sf ub}$ $0.2272 + 0.0011$ $\tau \rightarrow X_{s}v$ $0.2184 \pm 0.0018 \pm 0.0010$ $\tau \rightarrow$ Ky / $\tau \rightarrow \pi v$ $0.2229 + 0.0016 + 0.0010$ $\tau \rightarrow$ Kv $0.2223 \pm 0.0015 \pm 0.0008$ τ exclusive average 0.2224 ± 0.0017 τ average 0.2208 ± 0.0014

2.1 Important experimental inputs

• Modes measured in the strange channel for $\tau \rightarrow s$:

HFLAV'23

2.1 Important experimental inputs

• Modes measured in the strange channel for $\tau \rightarrow s$:

HFLAV'23

~70% of the decay modes

2.1 Important experimental inputs

• Modes measured in the strange channel for $\tau \rightarrow s$:

HFLAV'23

~70% of the decay modes

- Up to ~90% Including the 2π modes
- Useful for *Vus* $\overline{}$ inclusive and exclusive

2.2 Lattice QCD

M. Bruno

A possible scenario

Gedanken experiment

Lattice spectral density (two-point correlator) fully inclusive comparison with fully inclusive experimental data known tensions in $|V_{us}|$ with exclusive modes $K_{\ell 3}$, $K_{\ell 2}$

suppose systematics at high-energies

family of kernels κ w/ smooth cuto

 \rightarrow beneficial for Lattice QCD (finite-volume)

 \rightarrow examine inclusivity problem
EDEGLISTUDI

several kernels w/ similar goals already proposed $[Boy]$ e et al '10][Boito et al]

ETMC'24

2.3 Exclusive hadronic Tau decays

- Key measurements:
- $\pi\pi$ vector form factor for g-2 of the muon + also e+e- $\rightarrow \pi^+\pi^-$ with ISR **easurements:**
avector form factor for a 2 of the muon Lakes ator λ -t-muith ICD.

IB corrections should be precisely known (see talk by *M. Bruno*)

2.3 Exclusive hadronic Tau decays

Key measurements: K π invariant mass distribution + FB asymmetry \Box info on $K\pi$ vector and scalar FFs: Crucial inputs for phenomenology

$$
\langle K\pi | \overline{s}\gamma_{\mu}u | 0 \rangle = \left[(p_{K} - p_{\pi})_{\mu} - \frac{\Delta_{K\pi}}{s} (p_{K} + p_{\pi})_{\mu} \right] f_{+}(s) + \frac{\Delta_{K\pi}}{s} (p_{K} + p_{\pi})_{\mu} f_{0}(s)
$$
\nvector scalar
\nvector scalar
\n
$$
A_{FB} = \frac{d\Gamma(\cos\theta) - d\Gamma(-\cos\theta)}{d\Gamma(\cos\theta) + d\Gamma(-\cos\theta)} \begin{array}{c} \text{Beldjoudi & Truong'94} \\ \text{Moussallam, B2TIP} \\ \text{Von Detten'21,} \\ \text{Rendon et al.'24 \end{array}
$$
\n
$$
A_{FB}(s) = \frac{3\Delta_{\pi^{+K^{\circ}}} \sqrt{\lambda_{\pi^{+K^{\circ}}} (s) |f_{V}^{K\pi}(s)| |f_{0}^{K\pi}(s)| \cos(\delta_{1}^{1/2} - \delta_{0}^{1/2})} {[f_{V}^{K\pi}(s)]^{2} \lambda_{\pi^{+K^{\circ}}} (s) [1 + 2s/m_{\pi}^{2}] + 3[f_{0}^{K\pi}(s)]^{2} \Delta_{\pi^{+K^{\circ}}}^{2} } \dots \text{ Never measured before!}\n
$$
\nvanishes at threshold
\n
$$
K\pi
$$
 FFs: building block for many phenomenological analyses:
\n
$$
B \rightarrow K^* II, B \rightarrow K\pi IV, D \rightarrow K\pi IT, ...
$$

Theoretical improvements & Experimental needs

• Inclusion and calculations of Isospin breaking and EM effects which are crucial at the level of precision:

analytical (talk by *P. Roig*) and with lattice QCD (talk by *M. Bruno*)

Measurement of $\tau \rightarrow PP\gamma v_{\tau}$ needed **test the** *structure-dependent radiative* corrections

- Focus on Br with 1 K then K_{π} then $K_{\pi\pi}$
- Invariant mass distribution
- Importance of providing efficiency corrected data with covariance matrix
- Collaboration between experimentalists and theorists is crucial
- Other ideas?

3. Back-up

$2.2 f_{+}(0)$ from lattice QCD

• Recent progress on Lattice QCD for determining $f_{+}(0)$

2011: $V_{us} = 0.2254(5)_{exp}(11)_{hat}$ \rightarrow $V_{us} = 0.2231(4)_{exp}(4)_{hat}$

$$
\frac{|V_{us}|}{|V_{ud}|}\frac{f_K}{f_\pi} = \left(\frac{\Gamma_{K_{\mu2(\gamma)}}m_{\pi^{\pm}}}{\Gamma_{\pi_{\mu2(\gamma)}}m_{K^{\pm}}}\right)^{1/2} \frac{1 - m_{\mu}^2/m_{\pi^{\pm}}^2}{1 - m_{\mu}^2/m_{K^{\pm}}^2} \left(1 - \frac{1}{2}\delta_{\text{EM}} - \frac{1}{2}\delta_{SU(2)}\right)
$$

• Recent progress on radiative corrections computed on lattice:

Di Carlo et al.'19

- Main input hadronic input: f_{K}/f_{π}
- In 2011: $V_{us}/V_{ud} = 0.2312(4)_{exp}(12)_{lat}$
- In 2021: $V_{us}/V_{ud} = 0.2311(3)_{exp}(4)_{lat}$ the lattice error is reducing by a factor of 3 compared to 2011! It is now of the same order as the experimental uncertainty.

-1.8σ away from unitarity

2.2 f_{K}/f_{π} from lattice QCD

Inclusive τ**-decays**

Braaten, Narison, Pich'92

$$
\Gamma_{\tau \to \nu_{\tau} + \text{had}} \sim \text{Im} \left\{ \frac{\tau}{\nu_{\tau}} \left(\frac{W_{\text{max}}}{\overline{u}} \right) \frac{d \text{ s}}{\nu_{\tau}} \right\}
$$

• Quantity of interest :
$$
R_{\tau} = \frac{\Gamma(\tau^- \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to \nu_{\tau} e^- \overline{\nu}_e)}
$$

3.2 Calculation of the QCD corrections

• Calculation of R_T :

Braaten, Narison, Pich'92

$$
\Gamma_{\tau \to \nu_{\tau} + \text{had}} \sim \text{Im} \left\{ \frac{\tau}{\sqrt{\frac{1}{\pi}}} \cdot \frac{1}{\sqrt{\frac{1}{\pi}}} \cdot \frac{1}{\sqrt{\frac{1}{\nu_{\tau}}}} \cdot \frac{
$$

$$
\frac{R_{\tau}(m_{\tau}^{2})=12\pi S_{EW}}{R_{\tau}(m_{\tau}^{2})=12\pi S_{EW}}\int_{0}^{m_{\tau}^{2}}\frac{ds}{m_{\tau}^{2}}\left(1-\frac{s}{m_{\tau}^{2}}\right)^{2}\left[\left(1+2\frac{s}{m_{\tau}^{2}}\right)\left[\text{Im}\,\Pi^{(1)}\left(s+i\varepsilon\right)+\text{Im}\,\Pi^{(0)}\left(s+i\varepsilon\right)\right]\right]
$$

$$
\Pi^{(J)}(s) \equiv |V_{ud}|^2 \left(\Pi^{(J)}_{ud,V}(s) + \Pi^{(J)}_{ud,A}(s) \right) + |V_{us}|^2 \left(\Pi^{(J)}_{us,V}(s) + \Pi^{(J)}_{us,A}(s) \right)
$$

$$
\Pi^{\mu\nu}_{ij,V/A}(q) = (q^{\mu}q^{\nu} - q^2g^{\mu\nu}) \Pi^{(1)}_{ij,V/A}(q^2) + q^{\mu}q^{\nu} \Pi^{(0)}_{ij,V/A}(q^2)
$$

3.2 Calculation of the QCD corrections

Braaten, Narison, Pich'92

Measurements

•
$$
R_{\tau} \equiv \frac{\Gamma(\tau^{-} \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^{-} \to \nu_{\tau} e^{-} \overline{\nu}_{e})} = ?
$$

• Decomposition as a function of observed and separated final states:

$$
R_{\tau,V} \longrightarrow r \rightarrow \nu_{\tau} + h_{\nu,s=0}
$$
\n
$$
R_{\tau,S} \longrightarrow \tau \rightarrow \nu_{\tau} + h_{\nu+s=1}
$$
\n(odd number of pions)\n
$$
R_{\tau,S} \longrightarrow \tau \rightarrow \nu_{\tau} + h_{\nu+s=1}
$$
\n
$$
\downarrow \frac{\frac{3}{2}}{2.5}
$$
\n
$$
\downarrow \frac{\frac{3}{4}}{2.5}
$$
\n

Measurements

•
$$
R_{\tau} \equiv \frac{\Gamma(\tau^{-} \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^{-} \to \nu_{\tau} e^{-} \overline{\nu}_{e})} = ?
$$

• Decomposition as a function of observed and separated final states:

$$
R_{\tau,V} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=0}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{\tau} + h_{\nu,s=1}
$$
\n
$$
R_{\tau,S} \implies \tau^{-} \to \nu_{
$$

Measurements

•
$$
R_{\tau} \equiv \frac{\Gamma(\tau^{-} \to \nu_{\tau} + \text{hadrons})}{\Gamma(\tau^{-} \to \nu_{\tau} e^{-} \overline{\nu}_{e})} = ?
$$

• Decomposition as a function of observed and separated final states:

Emilie Passemar ²⁵ *RR R* ^t ^t =++ **, ,** *^V* ^t *^A R*^t **,***^S R*^t **,***^V v s***, 0** *^h* ^t ^t ⁿ - ® ⁼ ⁺ *R*^t **,***^A A s***, 0** *^h* ^t ^t ⁿ - ® ⁼ ⁺ *R*^t **,***^S V As***, 1** *^h* ^t ^t ⁿ - ® + = ⁺ (even number of pions) (odd number of pions)

3.2 Calculation of the QCD corrections

• Calculation of R_T :

Braaten, Narison, Pich'92

 \neq QCD $\alpha_s(M_Z) = 0.1184 \pm 0.0007$

 Q [GeV]

10

$$
\Gamma_{\tau \to \nu_{\tau} + \text{had}} \sim \text{Im} \left\{ \frac{\sum_{\nu_{\tau}}^{\tau_{\tau}} W_{\nu_{\tau}}}{\sqrt{\nu_{\tau}}} \right\}
$$
\n
$$
\frac{\sum_{\nu_{\tau}} W_{\nu_{\tau}}}{\sqrt{\nu_{\tau}}} \left\{ \frac{a_s}{\sqrt{\nu_{\tau}}} \right\}
$$
\nPythagorean in the form-perturbative region:

\nWe are in the non-perturbative region:

\n
$$
\frac{\sum_{\nu_{\tau}} W_{
$$

Non-Perturbative

 0.1

• Trick: use the analytical properties of Π!

100

3.2 Calculation of the QCD corrections

Calculation of R_{τ} :

$$
R_{\tau}(m_{\tau}^{2}) = 12\pi S_{EW} \int_{0}^{m_{\tau}^{2}} \frac{ds}{m_{\tau}^{2}} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left[\left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \text{Im}\,\Pi^{(1)}\left(s + i\varepsilon\right) + \text{Im}\,\Pi^{(0)}\left(s + i\varepsilon\right)\right]
$$

d,s $\Gamma_{\tau \to \nu_{\tau} + \text{had}} \sim \text{Im} \left\{\right.$

Braaten, Narison, Pich'92

• Analyticity: Π is analytic in the entire complex plane except for s real positive

$$
R_{\tau}(m_{\tau}^{2}) = 6i\pi S_{EW} \oint_{|s|=m_{\tau}^{2}} \frac{ds}{m_{\tau}^{2}} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left[\left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \Pi^{(1)}(s) + \Pi^{(0)}(s)\right]
$$

Cauchy Theorem

• We are now at sufficient energy to use OPE:

μ: separation scale between short and long distances

L

3.3 Operator Product Expansion

$$
\Pi^{(J)}(s) = \sum_{D=0,2,4...} \frac{1}{(-s)^{D/2}} \sum_{\text{dim } D=D} C^{(J)}(s,\mu) \langle O_D(\mu) \rangle
$$
\n*u* separation scale between short and long distances long distances

between short and long distances

- D=0: Perturbative contributions
- D=2: Quark mass corrections
- D=4: Non perturbative physics operators, $\left\langle \frac{\alpha_s}{\pi} G G \right\rangle$, $\left\langle \bm{m}_j \overline{\bm{q}}_i \bm{q}_i \right\rangle$
- D=6: 4 quarks operators, $\left\langle \overline{q}_i \Gamma_1 q_j \overline{q}_j \Gamma_2 q_i \right\rangle$
- $D \geq 8$: Neglected terms, supposed to be small...

$$
\sum_{\tau,\nu}(s_0) = \frac{3}{2} |\nu^{ud}|^2 S_{EW} \left(1 + \delta^{(0)} + \sum_{D=2,4} \delta^{(D)}_{ud,\nu} \right)
$$
 similar for $R_{\tau,A}(s_0)$ and $R_{\tau,S}(s_0)$

similar for $R_{r,d}(s_0)$ and

Perturbative Part

• Calculation of R_{τ} :

$$
R_{\tau}\left(m_{\tau}^{2}\right)=N_{C} S_{EW}\left(1+\delta_{P}+\delta_{NP}\right)
$$

- Electroweak corrections: S_{EW} = 1.0201(3) Marciano &Sirlin'88, Braaten & Li'90, Erler'04
- Perturbative part (D=0):

$$
\delta_p = a_{\tau} + 5.20 \ a_{\tau}^2 + 26 \ a_{\tau}^3 + 127 \ a_{\tau}^4 + ... \approx 20\%
$$

23 4 ^δ *^P* =+ + + + *a aa a* ^τ ττ ^τ **5.20 26 127 ...** ≈ **20%** *Baikov, Chetyrkin, Kühn'08*

Braaten, Narison, Pich'92

 $a_{\tau} = \frac{\alpha_s(m_{\tau})}{m_{\tau}}$ $=\frac{\alpha_s(n)}{\pi}$

Non-perturbative part

Calculation of R_{τ} :

$$
R_{\tau}\left(m_{\tau}^{2}\right) = N_{C} S_{EW}\left(1+\delta_{P}+\delta_{NP}\right)
$$

- Electroweak corrections: S_{EW} = 1.0201(3) Marciano &Sirlin'88, Braaten & Li'90, Erler'04
- Perturbative part (D=0):

 $\delta_p = a_r + 5.20 \ a_r^2 + 26 \ a_r^3 + 127 \ a_r^4 + ... \approx 20\%$ *Baikov, Chetyrkin, Kühn'08*

$$
a_{\tau} = \frac{\alpha_s(m_{\tau})}{\pi}
$$

Braaten, Narison, Pich'92

- D=2: quark mass corrections, *neglected* for $R_{\tau}^{_{NS}}$ $\left(\approx m_{_u}, m_{_d}\right)$ but not for $R_{\tau}^{_S}$ $\left(\approx m_{_S}\right)$
- D ≥ 4: Non perturbative part, not known, *fitted from the data* Use of weighted distributions

Ex: In the non-strange sector:
$$
\blacksquare
$$

$$
\delta_{\scriptscriptstyle NP}^{\scriptscriptstyle NS}=-0.0064(13)
$$

Davier et al.'14

Non-Perturbative part

Le Diberder&Pich'92

• D ≥ 4: Non perturbative part, not known, *fitted from the data* Use of weighted distributions

Exploit shape of the spectral functions to obtain additional experimental information

$$
R_{\tau,U}^{k\ell}(s_0) = \int_0^{s_0} ds \left(1 - \frac{s}{s_0}\right)^k \left(\frac{s}{s_0}\right)^{\ell} \frac{dR_{\tau,U}(s_0)}{ds}
$$

