

Panel Dicussion: Precision tests of the Standard Model with Tau physics

Emilie Passemar IFIC Valencia/Indiana University

2024 Belle II Physics Week «Tau and dark sector with Belle II» October 14 - 17, 2024

Discussion topics

- What are the *new ideas* and *information* presented at this workshop?
- What should we focus on?
- Where can Tau physics play an important role?

Talks by S. Banerjee, M. Bruno, M. Hoferichter, E.P., S. Prell, P. Roig

1. Leptonic τ decays

- Improve on m_{τ} measurement : fundamental parameter of the SM ٠ Improve Lepton Universality test + $(g-2)_{\tau}$ $m_{\tau}^5 \tau_{\tau}$ $B'(\tau \to e\bar{\nu}\nu) \approx B(\mu \to e\bar{\nu}\nu)$ arXiv:2305.19116 m₇ PDG 2023 m_r HFLAV 2023 prelim. (with Belle II and KEDR 2023) PDG Average (2022) 0.1790 1776.86 ± 0.12 68% CL contour BES (1996) 1776.96 +0.18 +0.25 -0.21 -0.17 **BELLE (2007)** $1776.61 \pm 0.13 \pm 0.35$ KEDR (2007) 1776.81 $^{+0.25}_{-0.23} \pm 0.15$ 0.1785 BaBar (2009) m $1776.68 \pm 0.12 \pm 0.41$ BES III (2014) 1776.91±0.12^{+0.10}_{-0.13} **Belle II Preliminary (2023)** 0.1780 $1777.09 \pm 0.08 \pm 0.11$ 1776 1776.5 1777 m_{τ} [MeV/ c^2] 290.5 291.0 291.5 289.5 290.0 τ_{τ} [fs]
 - Measure the absolute Brs, they have not been updated since LEP

1. Leptonic τ decays

• For constraints on the *Lorentz structure*:

Michel parameters

see talks by S. Prell and P. Roig

One can constrain sterile neutrinos

• Prospects on $(g-2)_{\tau}$ with polarized beams \implies see *M. Hoferichter's* talk

2. Hadronic τ decays

- Several anomalies where τ physics can help
 - Cabibbo angle anomaly: V_{us} extraction

$$- \frac{\tau^{\pm}}{CP} \xrightarrow{K}_{0}^{0} \pi^{\pm} (\geq 0 \pi^{0}) \nu_{\tau} K \pi \nu_{\tau} \\ - \frac{\Gamma(\tau^{+} \to \pi^{+} K_{s}^{0} \nu_{\tau}) - \Gamma(\tau^{-} \to \pi^{-} K_{s}^{0} \nu_{\tau})}{R_{Q}} = \frac{\Gamma(\tau^{+} \to \pi^{+} K_{s}^{0} \overline{\nu_{\tau}}) \Rightarrow \overline{\pi}^{+} (\overline{\tau}_{s}^{0} \overline{\nu_{\tau}}) \Rightarrow \overline{\pi}^{+} \overline{K}_{s}^{0} \overline{\nu_{\tau}})}{\Gamma(\tau^{+} \to \pi^{+} K_{s}^{0} \overline{\nu_{\tau}}) + \Gamma(\tau^{-} \to \pi^{-} K_{s}^{0} \nu_{\tau})}$$

Davier et al.'24

 $V_{us} K_{l3}, N_{f} = 2+1+1$ 0.2233 ± 0.0005 $V_{us} K_{l2}, N_{f} = 2+1+1$ 0.2250 ± 0.0005 CKM unitarity & $V_{ud} & V_{ub}$ 0.2272 ± 0.0011 $\tau \rightarrow X_{s}v$ $0.2184 \pm 0.0018 \pm 0.0010$ $\tau \rightarrow Kv / \tau \rightarrow \pi v$ $0.2229 \pm 0.0016 \pm 0.0010$ $\tau \rightarrow K\nu$ $0.2223 \pm 0.0015 \pm 0.0008$ τ exclusive average 0.2224 ± 0.0017 τ average 0.2208 ± 0.0014

• Modes measured in the strange channel for $\tau ightarrow s$:

HFLAV'23

Branching fraction	HFLAV 2023 fit (%)
$\mathcal{B}(\tau^- \to K^- \nu_{\tau})$	0.6959 ± 0.0096
$\mathcal{B}(\tau^- \to K^- \pi^0 \nu_\tau)$	0.4321 ± 0.0148
$\mathcal{B}(\tau^- \to K^- 2\pi^0 \nu_\tau \; (\mathrm{ex.} K^0))$	0.0634 ± 0.0219
$\mathcal{B}(\tau^- \to K^- 3\pi^0 \nu_\tau \; (\mathrm{ex.} K^0, \eta))$	0.0465 ± 0.0213
$\mathcal{B}(\tau^- o \pi^- \overline{K}^0 \nu_{\tau})$	0.8375 ± 0.0139
$\mathcal{B}(\tau^- o \pi^- \overline{K}^0 \pi^0 \nu_{\tau})$	0.3810 ± 0.0129
$\mathcal{B}(\tau^- \to \pi^- \overline{K}^0 2\pi^0 \nu_\tau \ (\text{ex.}K^0))$	0.0234 ± 0.0231
$\mathcal{B}(\tau^- \to \overline{K}^0 h^- h^- h^+ \nu_{\tau})$	0.0222 ± 0.0202
$\mathcal{B}(\tau^- \to K^- \eta \nu_{\tau})$	0.0155 ± 0.0008
$\mathcal{B}(\tau^- \to K^- \pi^0 \eta \nu_\tau)$	0.0048 ± 0.0012
$\mathcal{B}(\tau^- o \pi^- \overline{K}^0 \eta \nu_{\tau})$	0.0094 ± 0.0015
$\mathcal{B}(\tau^- \to K^- \omega \nu_{\tau})$	0.0410 ± 0.0092
$\mathcal{B}(\tau^- \to K^- \phi(K^+ K^-) \nu_{\tau})$	0.0022 ± 0.0008
$\mathcal{B}(\tau^- \to K^- \phi(K^0_S K^0_L) \nu_{\tau})$	0.0015 ± 0.0006
$\mathcal{B}(\tau^- \to K^- \pi^- \pi^+ \nu_\tau (\text{ex.} K^0, \omega))$	0.2924 ± 0.0068
$\mathcal{B}(\tau^- \to K^- \pi^- \pi^+ \pi^0 \nu_\tau \; (\mathrm{ex.} K^0, \omega, \eta))$	0.0388 ± 0.0142
$\mathcal{B}(\tau^- \to K^- 2\pi^- 2\pi^+ \nu_\tau \text{ (ex.} K^0))$	0.0001 ± 0.0001
$\mathcal{B}(\tau^- \to K^- 2\pi^- 2\pi^+ \pi^0 \nu_\tau \;(\text{ex.}K^0))$	0.0001 ± 0.0001
$\mathcal{B}(\tau^- \to X_s^- \nu_\tau)$	2.9078 ± 0.0478

• Modes measured in the strange channel for $\tau
ightarrow s$:

	Branching fraction	HFLAV 2023 fit (%)	
<	$\mathcal{B}(\tau^- \to K^- \nu_{\tau})$	0.6959 ± 0.0096	>
<	$\mathcal{B}(\tau^- o K^- \pi^0 u_{ au})$	0.4321 ± 0.0148	>
	$\mathcal{B}(\tau^- \to K^- 2\pi^0 \nu_\tau \; (\text{ex.} K^0))$	0.0634 ± 0.0219	
	$\mathcal{B}(\tau^- \to K^- 3 \pi^0 \nu_\tau \ (\text{ex.} K^0, \eta))$	0.0465 ± 0.0213	
<	$\mathcal{B}(\tau^- o \pi^- \overline{K}^0 \nu_{\tau})$	0.8375 ± 0.0139	>
	$\mathcal{B}(\tau^- o \pi^- \overline{K}^0 \pi^0 \nu_{\tau})$	0.3810 ± 0.0129	
	$\mathcal{B}(\tau^- \to \pi^- \overline{K}^0 2\pi^0 \nu_\tau \; (\mathrm{ex.} K^0))$	0.0234 ± 0.0231	
	$\mathcal{B}(\tau^- \to \overline{K}^0 h^- h^- h^+ \nu_{\tau})$	0.0222 ± 0.0202	
	$\mathcal{B}(\tau^- \to K^- \eta \nu_{\tau})$	0.0155 ± 0.0008	
	$\mathcal{B}(\tau^- \to K^- \pi^0 \eta \nu_{\tau})$	0.0048 ± 0.0012	
	$\mathcal{B}(\tau^- o \pi^- \overline{K}^0 \eta \nu_{\tau})$	0.0094 ± 0.0015	
	$\mathcal{B}(\tau^- \to K^- \omega \nu_{\tau})$	0.0410 ± 0.0092	
	$\mathcal{B}(\tau^- \to K^- \phi(K^+ K^-) \nu_{\tau})$	0.0022 ± 0.0008	
	$\mathcal{B}(\tau^- \to K^- \phi(K^0_S K^0_L) \nu_{\tau})$	0.0015 ± 0.0006	
	$\mathcal{B}(\tau^- \to K^- \pi^- \pi^+ \nu_\tau \; (\mathrm{ex.} K^0, \omega))$	0.2924 ± 0.0068	
	$\mathcal{B}(\tau^- \to K^- \pi^- \pi^+ \pi^0 \nu_\tau (\text{ex.} K^0, \omega, \eta))$	0.0388 ± 0.0142	
	$\mathcal{B}(\tau^- \to K^- 2\pi^- 2\pi^+ \nu_\tau \text{ (ex.} K^0))$	0.0001 ± 0.0001	
	$\mathcal{B}(\tau^- \to K^- 2\pi^- 2\pi^+ \pi^0 \nu_\tau \; (\text{ex.} K^0))$	0.0001 ± 0.0001	
	$\mathcal{B}(\tau^- \to X_s^- \nu_\tau)$	2.9078 ± 0.0478	

HFLAV'23

~70% of the decay modes

• Modes measured in the strange channel for $\tau
ightarrow s$:

	Branching fraction	HFLAV 2023 fit (%)	
<	$\mathcal{B}(\tau^- \to K^- \nu_{\tau})$	0.6959 ± 0.0096	
<	$\mathcal{B}(\tau^- \to K^- \pi^0 \nu_{\tau})$	0.4321 ± 0.0148	
<	$\mathcal{B}(\tau^- \to K^- 2\pi^0 \nu_\tau \; (\mathrm{ex.} K^0))$	0.0634 ± 0.0219	
	$\mathcal{B}(\tau^- \to K^- 3\pi^0 \nu_\tau \ (\text{ex.}K^0, \eta))$	0.0465 ± 0.0213	
<	${\cal B}(\tau^- o \pi^- \overline{K}^0 u_ au)$	0.8375 ± 0.0139	
	$\mathcal{B}(\tau^- \to \pi^- \overline{K}^0 \pi^0 \nu_\tau)$	0.3810 ± 0.0129	
	$\mathcal{B}(\tau^- \to \pi^- \overline{K}^0 2\pi^0 \nu_\tau \; (\mathrm{ex.} K^0))$	0.0234 ± 0.0231	
	$\mathcal{B}(\tau^- \to \overline{K}^0 h^- h^- h^+ \nu_{\tau})$	0.0222 ± 0.0202	
	$\mathcal{B}(\tau^- \to K^- \eta \nu_{\tau})$	0.0155 ± 0.0008	
	$\mathcal{B}(\tau^- \to K^- \pi^0 \eta \nu_{\tau})$	0.0048 ± 0.0012	
	$\mathcal{B}(\tau^- \to \pi^- \overline{K}^0 \eta \nu_\tau)$	0.0094 ± 0.0015	
	$\mathcal{B}(\tau^- \to K^- \omega \nu_\tau)$	0.0410 ± 0.0092	
	$\mathcal{B}(\tau^- \to K^- \phi(K^+ K^-) \nu_\tau)$	0.0022 ± 0.0008	
	$\mathcal{B}(\tau^- \to K^- \phi(K^0_S K^0_L) \nu_{\tau})$	0.0015 ± 0.0006	
<	$\mathcal{B}(\tau^- \to K^- \pi^- \pi^+ \nu_\tau \; (\mathrm{ex.} K^0, \omega))$	0.2924 ± 0.0068	
	$\mathcal{B}(\tau^- \to K^- \pi^- \pi^+ \pi^0 \nu_\tau \; (\text{ex.} K^0, \omega, \eta))$	0.0388 ± 0.0142	
	$\mathcal{B}(\tau^- \to K^- 2\pi^- 2\pi^+ \nu_\tau \; (\text{ex.} K^0))$	0.0001 ± 0.0001	
	$\mathcal{B}(\tau^- \to K^- 2\pi^- 2\pi^+ \pi^0 \nu_\tau \; (\text{ex.} K^0))$	0.0001 ± 0.0001	
	$\mathcal{B}(\tau^- \to X_s^- \nu_\tau)$	2.9078 ± 0.0478	

HFLAV'23

~70% of the decay modes

Up to ~90% Including the 2π modes

Useful for V_{us} inclusive and exclusive

2.2 Lattice QCD

M. Bruno

A POSSIBLE SCENARIO

Gedanken experiment

Lattice spectral density (two-point correlator) fully inclusive comparison with fully inclusive experimental data known tensions in $|V_{us}|$ with exclusive modes $K_{\ell 3}$, $K_{\ell 2}$

suppose systematics at high-energies

family of kernels κ w/ smooth cutoff

 \rightarrow beneficial for Lattice QCD (finite-volume)

 \rightarrow examine inclusivity problem

several kernels w/ similar goals already proposed

[Boyle et al '10][Boito et al]

ETMC'24

2.3 Exclusive hadronic Tau decays

- Key measurements:
 - $\pi\pi$ vector form factor for g-2 of the muon + also e⁺e⁻ $\rightarrow \pi^+\pi^-$ with ISR

IB corrections should be precisely known (see talk by M. Bruno)

2.3 Exclusive hadronic Tau decays

• Key measurements: $K\pi$ invariant mass distribution + FB asymmetry info on $K\pi$ vector and scalar FFs: Crucial inputs for phenomenology

Theoretical improvements & Experimental needs

• Inclusion and calculations of Isospin breaking and EM effects which are crucial at the level of precision:

analytical (talk by *P. Roig*) and with lattice QCD (talk by *M. Bruno*)

Measurement of $\tau \rightarrow PP\gamma v_{\tau}$ needed test the *structure-dependent radiative* corrections

- Focus on Br with 1 K then $K\pi$ then $K\pi\pi$
- Invariant mass distribution
- Importance of providing efficiency corrected data with covariance matrix
- Collaboration between experimentalists and theorists is crucial
- Other ideas?

3. Back-up

2.2 $f_+(0)$ from lattice QCD

Recent progress on Lattice QCD for determining f₊(0)

2011: $V_{us} = 0.2254(5)_{exp}(11)_{lat} \rightarrow V_{us} = 0.2231(4)_{exp}(4)_{lat}$

$$\frac{|V_{us}|}{|V_{ud}|}\frac{f_K}{f_{\pi}} = \left(\frac{\Gamma_{K_{\mu^2(\gamma)}}m_{\pi^{\pm}}}{\Gamma_{\pi_{\mu^2(\gamma)}}m_{K^{\pm}}}\right)^{1/2}\frac{1-m_{\mu}^2/m_{\pi^{\pm}}^2}{1-m_{\mu}^2/m_{K^{\pm}}^2}\left(1-\frac{1}{2}\delta_{\rm EM}-\frac{1}{2}\delta_{SU(2)}\right)$$

• Recent progress on radiative corrections computed on lattice:

Di Carlo et al.'19

- Main input hadronic input: f_K/f_{π}
- In 2011: $V_{us}/V_{ud} = 0.2312(4)_{exp}(12)_{lat}$
- In 2021: V_{us}/V_{ud} = 0. 2311(3)_{exp}(4)_{lat} the lattice error is reducing by a factor of 3 compared to 2011! It is now of the same order as the experimental uncertainty.

-1.80 away from unitarity

2.2 f_K/f_{π} from lattice QCD

Progress since 2018: new results from *ETM*²¹ and *CalLat*²⁰ $f_{K^{\pm}}/f_{\pi^{\pm}}$ FLAG2021 Now Lattice collaborations FLAG average for $N_f = 2 + 1 + 1$ include SU(2) IB corr. ETM 21 $N_f = 2 + 1 + 1$ CalLat 20 NAL/MILC 17 For N_f=2+1+1, FLAG2021 `М 14E NAL/MILC 14A HPOCD 13A $f_{\kappa^+}/f_{\pi^+} = 1.1932(21)$ C 13A MILC 11 (stat. err. only) ETM 10E (stat. err. only) FLAG average for $N_f = 2 + 1$ 0.18% uncertainty QCDSF/UKQCD 16 3MW 16 RBC/UKOCD 14B Results have been stable aiho 11. = 2 + 1over the years 4II C 10 OCD/TWOCD 10 BC/UKQCD 10A ž BMW 10 MILC 09A For average substract IB corr. MILC 09 ubin 08 RBC/UKOCD 08 HPQCD/UKQCD 07 $f_{\kappa}/f_{\pi} = 1.1967(18)$ MILČ 04 FLAG average for $N_f = 2$ ETM 14D (stat. err. only) ALPHA 13A 2 In 2011: $f_{\kappa}/f_{\pi} = 1.193(6)$ Ш ETM 10D (stat. err. only) ETM 09 ž OCDSF/UKOCD 07 1.141.181.22 1.26 $V_{us}/V_{ud} = 0.23108(29)_{exp}(42)_{lat}$

Inclusive **t**-decays

Braaten, Narison, Pich'92

• Quantity of interest :
$$R_{\tau}$$

$$R_{\tau} \equiv \frac{\Gamma(\tau^{-} \rightarrow v_{\tau} + \text{hadrons})}{\Gamma(\tau^{-} \rightarrow v_{\tau}e^{-}\overline{v}_{e})}$$

3.2 Calculation of the QCD corrections

• Calculation of R_{T} :

Braaten, Narison, Pich'92

$$\Gamma_{\tau \to \nu_{\tau} + \text{had}} \sim \text{Im} \left\{ \begin{matrix} \tau^{-} & \mathbf{d}, \mathbf{s} \\ W & W \\ V_{\tau} & W \\ \mathbf{u} & V_{\tau} \end{matrix} \right\}$$

$$R_{\tau}(m_{\tau}^2) = 12\pi S_{EW} \int_{0}^{m_{\tau}^2} \frac{ds}{m_{\tau}^2} \left(1 - \frac{s}{m_{\tau}^2}\right)^2 \left[\left(1 + 2\frac{s}{m_{\tau}^2}\right) \operatorname{Im} \Pi^{(1)}(s + i\varepsilon) + \operatorname{Im} \Pi^{(0)}(s + i\varepsilon) \right]$$

$$\Pi^{(J)}(s) \equiv |V_{ud}|^2 \left(\Pi^{(J)}_{ud,V}(s) + \Pi^{(J)}_{ud,A}(s) \right) + |V_{us}|^2 \left(\Pi^{(J)}_{us,V}(s) + \Pi^{(J)}_{us,A}(s) \right)$$
$$\Pi^{\mu\nu}_{ij,V/A}(q) = \left(q^{\mu}q^{\nu} - q^2 g^{\mu\nu} \right) \Pi^{(1)}_{ij,V/A}(q^2) + q^{\mu}q^{\nu} \Pi^{(0)}_{ij,V/A}(q^2)$$

3.2 Calculation of the QCD corrections

Braaten, Narison, Pich'92

Emilie Passemar

22

Measurements

•
$$R_{\tau} = \frac{\Gamma(\tau^- \to v_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to v_{\tau} e^- \overline{v}_e)} = ?$$

• Decomposition as a function of observed and separated final states:

$$R_{\tau} = R_{\tau,V} + R_{\tau,A} + R_{\tau,S}$$

$$R_{\tau,V} \implies \overline{\tau} \rightarrow v_{\tau} + h_{v,s=0}$$
(even number of pions)
$$R_{\tau,A} \implies \overline{\tau} \rightarrow v_{\tau} + h_{A,s=0}$$
(odd number of pions)
$$R_{\tau,S} \implies \overline{\tau} \rightarrow v_{\tau} + h_{V+A,s=1}$$

Measurements

$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to v_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to v_{\tau}e^-\overline{v}_e)} = ?$$

• Decomposition as a function of observed and separated final states:

$$R_{\tau} = R_{\tau,V} + R_{\tau,A} + R_{\tau,S}$$

$$R_{\tau,V} \longrightarrow \tau^{-} \rightarrow v_{\tau} + h_{v,s=0}$$
(even number of pions)
$$R_{\tau,A} \longrightarrow \tau^{-} \rightarrow v_{\tau} + h_{A,s=0}$$
(odd number of pions)
$$R_{\tau,S} \longrightarrow \tau^{-} \rightarrow v_{\tau} + h_{V+A,s=1}$$

$$(dd number of pions)$$

$$R_{\tau,S} \longrightarrow \tau^{-} \rightarrow v_{\tau} + h_{V+A,s=1}$$

$$(dd number of pions)$$

$$R_{\tau,S} \longrightarrow \tau^{-} \rightarrow v_{\tau} + h_{V+A,s=1}$$

$$(dd number of pions)$$

$$R_{\tau,S} \longrightarrow \tau^{-} \rightarrow v_{\tau} + h_{V+A,s=1}$$

•

Measurements

$$R_{\tau} = \frac{\Gamma(\tau^- \to v_{\tau} + \text{hadrons})}{\Gamma(\tau^- \to v_{\tau}e^-\overline{v}_e)} = ?$$

• Decomposition as a function of observed and separated final states:

$$R_{\tau} = R_{\tau,V} + R_{\tau,A} + R_{\tau,S}$$

$$R_{\tau,V} \implies \tau^{-} \rightarrow v_{\tau} + h_{v,s=0}$$
(even number of pions)
$$R_{\tau,A} \implies \tau^{-} \rightarrow v_{\tau} + h_{A,s=0}$$
(odd number of pions)
$$R_{\tau,S} \implies \tau^{-} \rightarrow v_{\tau} + h_{V+A,s=1}$$

Emilie Passemar

•

3.2 Calculation of the QCD corrections

Calculation of R_{T} : ۲

Braaten, Narison, Pich'92

$$\Gamma_{\tau \to v_{\tau} + \text{had}} \sim \text{Im} \underbrace{\int_{v_{\tau}}^{\tau} \frac{d}{ds} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left[\left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \text{Im} \Pi^{(1)}(s + i\varepsilon) + \text{Im} \Pi^{(0)}(s + i\varepsilon)\right]}_{v_{\tau}} \xrightarrow{0.5} \underbrace{\alpha_{s}(Q)}_{s} \underbrace{0.5}_{s} \underbrace{(1 - \frac{s}{m_{\tau}^{2}})^{2} \left[\left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \text{Im} \Pi^{(1)}(s + i\varepsilon) + \text{Im} \Pi^{(0)}(s + i\varepsilon)\right]}_{0.4} \xrightarrow{0.5} \underbrace{\alpha_{s}(Q)}_{s} \underbrace{0.4}_{s} \underbrace{0.5}_{s} \underbrace{(1 - \frac{s}{m_{\tau}^{2}})^{2} \left[\left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \text{Im} \Pi^{(1)}(s + i\varepsilon) + \text{Im} \Pi^{(0)}(s + i\varepsilon)\right]}_{s} \underbrace{0.4}_{s} \underbrace{0.4}_{s} \underbrace{0.5}_{s} \underbrace{0.5}_{s} \underbrace{0.4}_{s} \underbrace{0.5}_{s} \underbrace{0.4}_{s} \underbrace{0.5}_{s} \underbrace{0.4}_{s} \underbrace{0.5}_{s} \underbrace{0.5}$$

Trick: use the analytical properties of $\Pi!$ ٠

Non-Perturbative

3.2 Calculation of the QCD corrections

• Calculation of R_{τ} :

$$R_{\tau}(m_{\tau}^2) = 12\pi S_{EW} \int_{0}^{m_{\tau}^2} \frac{ds}{m_{\tau}^2} \left(1 - \frac{s}{m_{\tau}^2}\right)^2 \left[\left(1 + 2\frac{s}{m_{\tau}^2}\right) \operatorname{Im} \Pi^{(1)}(s + i\varepsilon) + \operatorname{Im} \Pi^{(0)}(s + i\varepsilon) \right]$$

 $\Gamma_{\tau \to v_{\tau} + \text{had}} \sim \text{Im} \left\{ \begin{matrix} \tau & \mathbf{d}, \mathbf{s} \\ W & W & W \\ V_{\tau} & \mathbf{u} \end{matrix} \right\}$

Braaten, Narison, Pich'92

Analyticity: Π is analytic in the entire complex plane except for s real positive

$$R_{\tau}(m_{\tau}^{2}) = 6i\pi S_{EW} \oint_{|s|=m_{\tau}^{2}} \frac{ds}{m_{\tau}^{2}} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left[\left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \Pi^{(1)}(s) + \Pi^{(0)}(s) \right]$$

Cauchy Theorem

• We are now at sufficient energy to use OPE:

µ: separation scale between short and long distances

3.3 Operator Product Expansion

$$\Pi^{(J)}(s) = \sum_{D=0,2,4...} \frac{1}{(-s)^{D/2}} \sum_{\dim O=D} C^{(J)}(s,\mu) \left\langle O_{D}(\mu) \right\rangle$$
Wilson coefficients Operators

 μ separation scale between short and long distances

- D=0: Perturbative contributions
- D=2: Quark mass corrections
- D=4: Non perturbative physics operators, $\left\langle \frac{\alpha_s}{\pi} GG \right\rangle$, $\left\langle m_j \overline{q}_i q_i \right\rangle$
- D=6: 4 quarks operators, $\langle \overline{q_i} \Gamma_1 q_j \overline{q_j} \Gamma_2 q_i \rangle$
- D≥8: Neglected terms, supposed to be small...

$$\square R_{\tau,V}(s_0) = \frac{3}{2} |V^{ud}|^2 S_{EW} \left(1 + \delta^{(0)} + \sum_{D=2,4..} \delta^{(D)}_{ud,V} \right)$$

similar for $R_{\tau,A}(s_0)$ and $R_{\tau,S}(s_0)$

Perturbative Part

• Calculation of R_{τ} :

$$R_{\tau}\left(m_{\tau}^{2}\right) = N_{C} S_{EW}\left(1 + \delta_{P} + \delta_{NP}\right)$$

- Electroweak corrections: $S_{EW} = 1.0201(3)$ Marciano & Sirlin'88, Braaten & Li'90, Erler'04
- Perturbative part (D=0):

$$\delta_{P} = a_{\tau} + 5.20 \ a_{\tau}^{2} + 26 \ a_{\tau}^{3} + 127 \ a_{\tau}^{4} + \dots \approx 20\%$$

Baikov, Chetyrkin, Kühn'08

Braaten, Narison, Pich'92

 $a_{\tau} = \frac{\alpha_s(m_{\tau})}{\pi}$

Non-perturbative part

• Calculation of R_{τ} :

$$R_{\tau}\left(m_{\tau}^{2}\right) = N_{C} S_{EW}\left(1 + \delta_{P} + \delta_{NP}\right)$$

- Electroweak corrections: $S_{EW} = 1.0201(3)$ Marciano & Sirlin'88, Braaten & Li'90, Erler'04
- Perturbative part (D=0): $a_{\tau} = \frac{\alpha_s(m_{\tau})}{\pi}$ $\delta_p = a_{\tau} + 5.20 \ a_{\tau}^2 + 26 \ a_{\tau}^3 + 127 \ a_{\tau}^4 + \dots \approx 20\%$ Baikov, Chetyrkin, Kühn'08
- D=2: quark mass corrections, *neglected* for R_{τ}^{NS} ($\propto m_u, m_d$) but not for R_{τ}^{S} ($\propto m_s$)
- D ≥ 4: Non perturbative part, not known, *fitted from the data* Use of weighted distributions

Ex: In the non-strange sector:
$$\delta_{\lambda}^{I}$$

$$\delta_{NP}^{NS} = -0.0064(13)$$

Davier et al.'14

Braaten, Narison, Pich'92

Non-Perturbative part

Le Diberder&Pich'92

D ≥ 4: Non perturbative part, not known, *fitted from the data*Use of weighted distributions

Exploit shape of the spectral functions to obtain additional experimental information

$$R_{\tau,U}^{k\ell}(s_0) = \int_0^{s_0} ds \left(1 - \frac{s}{s_0}\right)^k \left(\frac{s}{s_0}\right)^\ell \frac{dR_{\tau,U}(s_0)}{ds}$$

