TDCPV skim challenge report M. Bartl, T. Bilka, A. Biswas, N. Brenny, S. Cuccuini, V. Raj, M. Veronesi

Status

Skims usage in TDCPV

Pub#	Measurement	Used skims
16	B->D*π mixing frequency	×
20	CPV in B->φKs	
21	CPV in B->πºKs	×
23	CPV in B->KsKsKs	X
34	CPV in B->J/ψKs	×
35	CPV in B->ŋ'Ks	X
36	CPV in B->Ksπ0 γ	$\hat{\mathcal{C}}$
59	CPV in B->J/ψπ0	X
69	CPV in B-> $\rho+\rho$ -	X

Available skims for TDCPV

tdcpv_ccs

Physics channels: bd/u → qqs

Decay Channels:

• B0 -> phi K_S0
• B0 -> phi K_L0
• B0 -> eta K_S0
• B0 -> eta' K_S0
• B0 -> eta K*
• B0 -> eta' K*
• B0 -> K_S0 K_S0 K_S0
• B0 -> pi0 K_S0
• B0 -> rho0 K_S0
• B0 -> omega K_S0
• B0 -> f_0 K_S0
• B0 -> pi0 pi0 K_S0
• B0 -> phi K_S0 pi0
• B0 -> pi+ pi- K_S0
• B0 -> pi+ pi- K_S0 ga
• B0 -> pi0 K_S0 gamma
• B+ -> eta' K+
• B+ -> phi K+
• B+ -> pi+ pi- K+ gamm

<u>tdcpv_qqs</u>

Activities

- Unify skims used for flavor tagger calibration -> flagged skims
- Replace ccs skim (exclusive decay modes with J/psi) -> inclusive J/psi skim
- Add KLong skim for ϕK_L and $\eta' K_L$
- Check efficiencies for modes with piO and gamma in qqs skim

Inclusive J/ψ skim

- All B0->[J/psi,Y(2S)]X decays, including KS->pi0pi0 and KL0
- Higher signal efficiency than previous ccs skim
- Could also be used for BO->J/psiX dalitz analyses

T. Bilka, M. Bartl

KL skim

- Retention rate << 10%
- Working on B->n'[->p \mathbf{y}]KL and B->n'[->n(π + π - π 0) π + π -]KL

N. Brenny, S. Cuccuini, M. Veronesi

TDCPV_qqs skim test on $B_d \rightarrow K_s \pi^{\circ}$

- Replaced pi0:Skim list with pi0:charmlessfit
- Further checks on pi0:charmlessfit:

foxWolframR2 < 0.6 Ο

Signal MC retention rate without any skim: 32.05%

Signal MC Retention

Steering file udst Skim retention rate retention rate on on MC udst TDCPV_qqs skim 53.42% 30.80% TDCPV_qqs skim with 57.31% 34.16% pi0:charmlessfit TDCPV_qqs skim with 53.75% 32.21% pi pi0:charmlessfit + foxWolframR2 cut

Combined MC BGx1 Retention

Skim	Combined MC BGx1 Retention		
TDCPV_qqs skim	6.37%		
TDCPV_qqs skim with pi0:charmlessfit	9.92%	Similar results ir data as well!	
TDCPV_qqs skim with 0:charmlessfit + foxWolframR2 cut	7.57%		

BtoXgamma skim in TDCPV analysis

Reconstructed decay modes: $B^0 \rightarrow X\gamma$ radiative modes

• 1000 signal MC Events generated using release_08_00_10

Decay Mode	Retention Rate with Skim	Reconstructed events without Skim
$B^0 \to \omega \gamma$	82.8%	41%
$B^0 \to \rho^0 \gamma$	82.9%	52.7%
$B^0 \to K^0_s \pi^0 \gamma$	69.1%	42.9%
$B^0 \to K^0_S \pi^+ \pi^- \gamma$	86.2%	49.9%

A. Biswas

de	Retention Rate with Skim	Reconstructed events without Skim	Reconstructed with Skim
$\tau^0\gamma$	55.8%	42.9%	38.0%
π^{γ}	67.2%	49.9%	48.6%

Conclusions

- Opened two MR for the tdcpv skims (<u>13769</u> and <u>13774</u>)
- and B->(Ksto,Ksto,p, ω)
- Please use them for your analysis

• Compared retention rates between tdcpv, bhadronic and ewp skims for B->Ks π O

