CHALLENGE: Two Photon Physics In $B \rightarrow K^{(*)}vv$

Y. FAN, on behalf of kvv group

yulan.fan@desy.de

Discrepancy between data and MC

 $B^0 \rightarrow K^{*0} vv$ channel

Charged tracks:

- > CDC acceptance, Pt>0.1 GeV/c, E<5.5 GeV,
- > |dz|<3 cm, dr<0.5 cm (not for K_s⁰'s daughter) Photons:
- > Standard photon list , CDC acceptance,
 > 0.1<E<5.5 GeV</p>

Signal K*0->Kpi: K, π: nPXDHits>0,KaonID>0.75, pionID>0.05, K*⁰ vertex position and momentum is extracted from Treefit, 0.8<M<1.0 GeV

Two candidates with an MVA (using M(K π), q² and vertex position in XY)

Discrepancy between data and MC in lower ROE-mass, (visible) transverse energy, ...

Visible data/mc discrepancy in low range of roe-mass / transverse-energy / visible-energy, ... with missing momentum pointing in forward/backward direction

Veto in K*/K_s channel: θ (Pmiss) in (0.1, 3.0) and transverse energy >2.8 GeV \rightarrow Keep 95-98% signal in K* and K_s channel \rightarrow Residual correction to MC using off-resonance data (BDT_c)

Two photon physics

- The scattered e+e- final states predominantly stay inside the beam pipe
- quasi-two-body vector final state: γγ->VV', V has same J^{PC} as the photon, therefore VV' can be produced in relative S-wave.
- Hadronic physics, not well modeled from first principles

Measurement of two-photon process

Huge amount of measurements done <u>D Morgan et al 1994 J. Phys. G: Nucl. Part. Phys. 20 A1</u>

CERN-LEP-ALEPH	
$\gamma \gamma \rightarrow jets$	Buskulic et al 1993 Phys. Lett. 313B 509
CERN-LEP-OPAL	0.01
$\gamma \gamma \rightarrow hadrons$	Akers et al 1994 Z. Phys. C 61 199
CESR-CLEO	
$\gamma \gamma \rightarrow \overline{p}p$	Artuso et al 1993 CLNS Preprint 93/1245
DESY-DORIS-ARGUS	
$\gamma \rightarrow K^+ K^-$	Albrecht et al 1989 Z. Phys. C 48 183
$\gamma \gamma \rightarrow \overline{p}p$	Albrecht et al 1989 Z. Phys. C 42 543
$\gamma \rightarrow \overline{p} p \pi^0$, etc.	Albrecht et al 1989 Z. Phys. C 42 543
$\gamma \rightarrow \Delta^{++} \overline{p} \pi^{-} + c.c.$	Albrecht et al 1989 Z. Phys. C 42 543
$\gamma \gamma \rightarrow \Delta^0 \overline{\Delta}{}^0$, etc.	Albrecht et al 1989 Z. Phys. C 42 543
$\gamma \rightarrow \pi^+ \pi^- \pi^0 \pi^0$	Albrecht et al 1989 Phys. Lett. 217B 205
$\gamma \rightarrow K^+ K^- \pi^+ \pi^-$	Albrecht et al 1987 Phys. Lett. 198B 255
$\gamma \to 2K_s^0 \pi^+ \pi^-, K_s^0 K^- \pi^0 \pi^+ + c.c.$	Albrecht et al 1988 Phys. Lett. 212B 528
$\gamma \rightarrow 2\pi^+ 2\pi^- \pi^0$	Albrecht et al 1987 Phys. Lett. 196B 101
$\gamma \rightarrow 2\pi^+ 2\pi^- 2\pi^0$	Albrecht et al 1987 Phys. Lett. 198B 577
$\gamma \rightarrow K^+ K^- \pi^+ \pi^- \pi^0$	Albrecht et al 1988 Phys. Lett. 210B 273
$\gamma \to \rho^0 \rho^0$, etc.	Albrecht et al 1991 Z. Phys. C 50 1
$\gamma \rightarrow \rho^+ \rho^-$	Albrecht et al 1991 Phys. Lett. 267B 535
$\gamma \to \rho^0 \omega$	Albrecht et al 1987 Phys. Lett. 196B 101
$\gamma \gamma \rightarrow \omega \omega$, etc.	Albrecht et al 1987 Phys. Lett. 198B 577
$\gamma \rightarrow K^{*+}K^{*-}$	Albrecht et al 1988 Phys. Lett. 212B 528
$\gamma \rightarrow K^{*0}\overline{K}^{*0}$, etc.	Albrecht et al 1987 Phys. Lett. 198B 255
$\gamma \to \phi \rho^0$	Albrecht et al 1987 Phys. Lett. 198B 255
$\gamma \rightarrow \omega \phi$, etc.	Albrecht et al 1988 Phys. Lett. 210B 273
DESY-DORIS-CRYSTAL-BALL	
$\gamma \gamma \rightarrow \pi^0 \pi^0$	Marsiske et al 1990 Phys. Rev. D 41 3324
$\gamma \rightarrow \pi^0 \pi^0$	Bienlein 1992 San Diego Workshop [10f]
$\gamma \gamma \rightarrow \pi^0 \eta$	Antreasyan et al 1986 Phys. Rev. D 33 1847
$\gamma \gamma \rightarrow 3\pi^0$	Antreasyan et al 1990 Z. Phys. C 48 561

first observation of two photons to K^{*0}K^{*0}

 $L = 234.3 \text{ pb}^{-1}$

Decay	cross-section (nb)
$\gamma\gamma \to K^-\pi^+K^-\pi^+$	2.4 ± 0.9
$\gamma\gamma \to K^{*0}K^-\pi^+$	2.0 ± 0.7
$\gamma\gamma\to K^{*0}\bar{K}^{*0}$	1.3 ± 0.4

measurement of K*K*bar in two-photon interaction

Belle Ks pair production in ST two-photon process Belle Ks pair production in two-photon process(zero tag)

Measurement of two-photon process

Two-photon result from Belle, from Uehara-san's talk

process	W (GeV)	L (fb-1)	papers published by Belle	year
π ^ο π ^ο	0.6-4.0	95	PRD 78, 052004	2008
	0.6-4.0	223	PRD 79, 052009	2009
π*π.	0.8-1.5	86	PRD 75, 051101	2007
	0.8-1.5	86	JSPJ 76, 074102	2007
	2.4-4.1	88	PLB 615,39	2005
K⁺K.	1.4-2.4	67	EPJC 32, 323	2004
	2.4-4.1	88	PLB 615,39	2005
K ⁰ sK ⁰ s	2.4-4.0	398	PLB 651, 15	2007
	1.05-4.0	972	PTEP 2013, 123C01	2013
ηη	1.1-3.8	393	PRD 82, 114031	2010
ηπ ⁰	0.84-4.0	223	PRD 80, 032001	2009
4π/4Κ/2Κ2π	2.4-4.1	395	EPJC 53, 1	2008
η'π ⁺ π΄	1.4-3.4	673	PRD 86, 052002	2012
η'π ⁺ π ⁻ ,η _c (1S),η _c (2S)	1.4-3.8	941	PRD 98, 072001	2018
D Dbar	3.7-4.3	395	PRL 96, 082003	2006
γJ/ψ	3.2-3.8	33	PLB 540,33	2002
φ.J/ψ	4.2-5.0	825	PRL 104, 112004	2010
ωJ/ψ	3.9-4.2	694	PRL 104, 092001	2010
ωω/φφ/ωφ	1.5-4.0	870	PRL 108, 232001	2012
ppbar	2.03-4.0	89	PLB 621,41	2005
ppbarK*K*	3.2-5.6	980	PRD 93, 112017	2016
π ⁰	0.6-4.0	759	PRD 86, 092007	2012
π⁰π⁰	0.5-2.1	759	PRD 93, 032003	2016
K ⁰ sK ⁰ s	1.0-2.6	759	PRD 97, 052003	2018

Two-photon process in BELLE II

Easiest but crude way: remove/veto in data, use off-resonance to fix remaining discrepancies (for B-physics) → may need dedicated optimization for each decay channel

Modeling: **TREPS** in BELLE II, however supported decays are only pp, K⁺K⁻, $\pi^{+}\pi^{-}$

 \rightarrow Extend modeling to other final states (e.g. K*K*, also beyond 4-tracks) \rightarrow Dedicated measurements to improve modeling (?)

yulan.fan@desy.de

MODELING: PRIMARY STAGE

YULAN FAN (DESY)

yulan.fan@desy.de

Modeling $\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$

Input parameters, differential cross-section, number of generated events per invariant-mass interval(W): basf2/generators/treps/data/

New-channel configuration:

basf2/generators/scripts/low_multiplicity_sorcery/constants.py basf2/generators/scripts/low_multiplicity_sorcery/utils.py

generators.add_treps_generator(
 path,
 finalstate = 'e+e-KS0KS0',
)

Final state particle: 2 Physics model : 202 Form-factor model:0

```
e- (11)

e+ (-11)

K_S0 (310)

pi+ (211)

pi- (-211)

K_S0 (310)

pi+ (211)

pi- (-211)

e- (11)

e+ (-11)
```

Modeling $\gamma \gamma \rightarrow K_S^0 K_S^0$

1.5

Number of Events/0.05 GeV

Belle, single tag

2.5

Modeling $\gamma \gamma \rightarrow K_{S}^{0} K_{S}^{0}$

 π : thetaInCDCAcceptance 0.45<(K_{s}^{0})<0.55

Modeling $\gamma \gamma \rightarrow KK\pi\pi$

M(KKππ)<2.75 ?

- Extract KKππ, Kπππ, KKKK, ππππ differential cross-section from Belle II data
 - Differential cross-section w>2.7: Implement the angular distribution based on previous measurement w<2,7: (a). Implement the angular distribution based on theory model, tuning to data-shape (b). PWA in Belle II data

No idea of how to model vector production events Generator group ?