B2GM Spin Rotator Update

Noah Tessema

Yuhao Peng, Mike Roney June 3rd, 2024

University of Victoria

Sokolov-Ternov Effect

- Ohnishi-san's calculation with SAD shows that the Sokolov-Ternov Time for the HER would be ~531 minutes.
- Sokolov-Ternov is not yet implemented in Bmad, but with that lifetime it would be a negligible effect.

Beam-Beam Studies

- We have begun studying the effect of an opposing beam at the IP on the overall stability of the lattice
- Bmad uses a virtual beambeam element to simulate a strong opposing beam
- This beambeam element is sliced and can be prepared with the optical parameters of the LER

The strong beam is divided up into n_slice equal charge (not equal thickness) slices. Propagation through the strong beam involves a kick at the charge center of each slice with drifts in between the kicks. The kicks are calculated using the standard Bassetti–Erskine complex error function formula [Talman 87].

Even though the strong beam can have a finite sig_z , the length of the element is always considered to be zero. This is achieved by adding drifts at either end of any tracking so that the longitudinal starting point and ending point are identical. The longitudinal s-position of the BeamBeam element is at the center of the strong bunch. For example, with $n_slice = 2$ and with a solenoid field, the calculation would proceed as follows:

- 1. Start with the particle longitudinally at the beambeam element (which is considered to have zero longitudinal length) in laboratory coordinates (§15).
- 2. Propagate backwards through the solenoid field so that the particle is in the plane of the first beambeam slice. The fact that the plane of the slice may be, due to finite x_pitch or y_pitch values, canted with respect to the laboratory x-y plane is taken into account.
- 3. Transform the particle coordinates to the beambeam element body coordinates (§15.3).
- 4. Apply the beam–beam kick due to the first slice including a spin rotation.
- 5. Transform back to laboratory coordinates.
- 6. Propagate forwards so that the particle is in the plane of the second slice.
- 7. Transform the particle coordinates to the beambeam element body coordinates.
- 8. Apply the beam-beam kick due to the second slice.
- 9. Transform back to laboratory coordinates.
- 10. Propagate backwards through the solenoid field to end up with the particle longitudinally at the beambeam element.

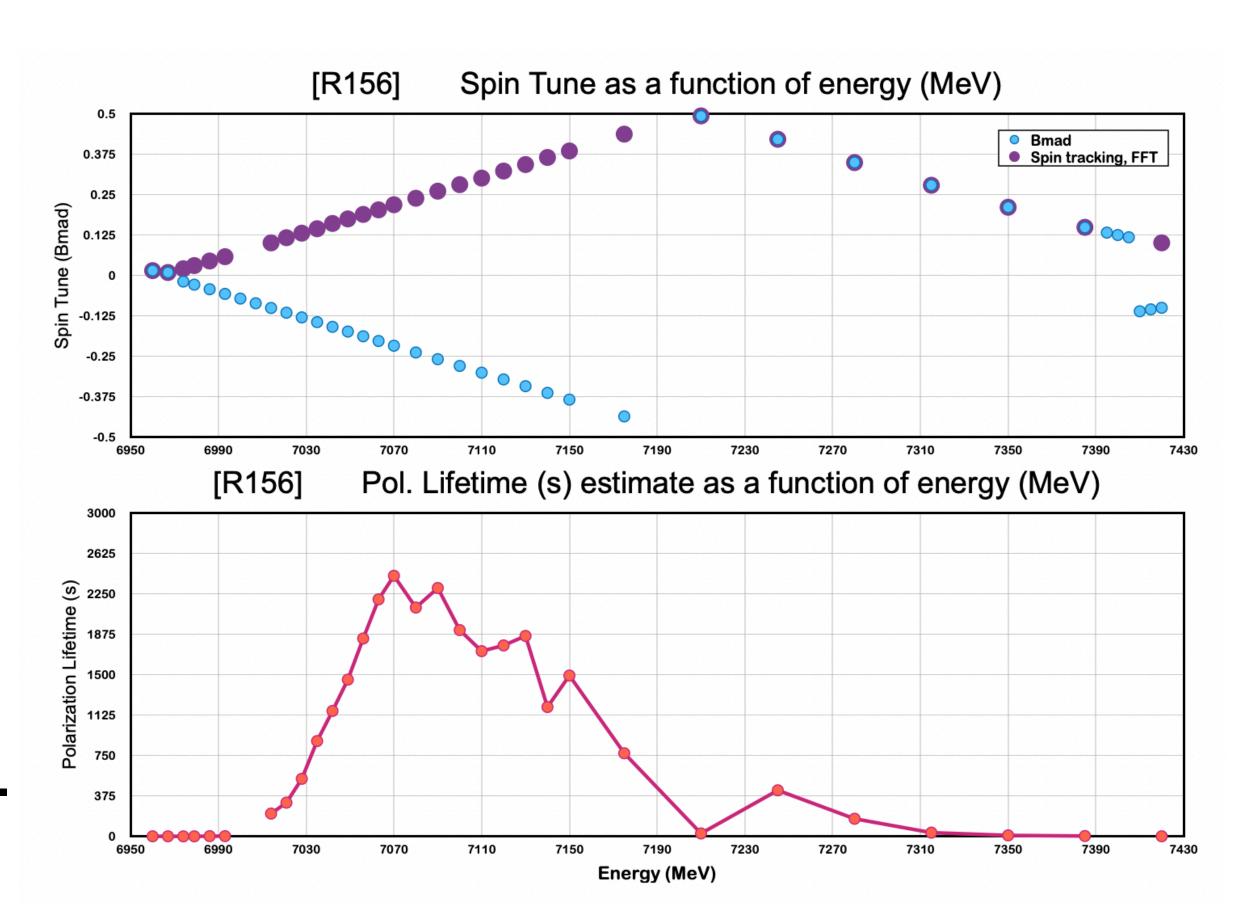
Beam-Beam Studies

HER

HER + BB

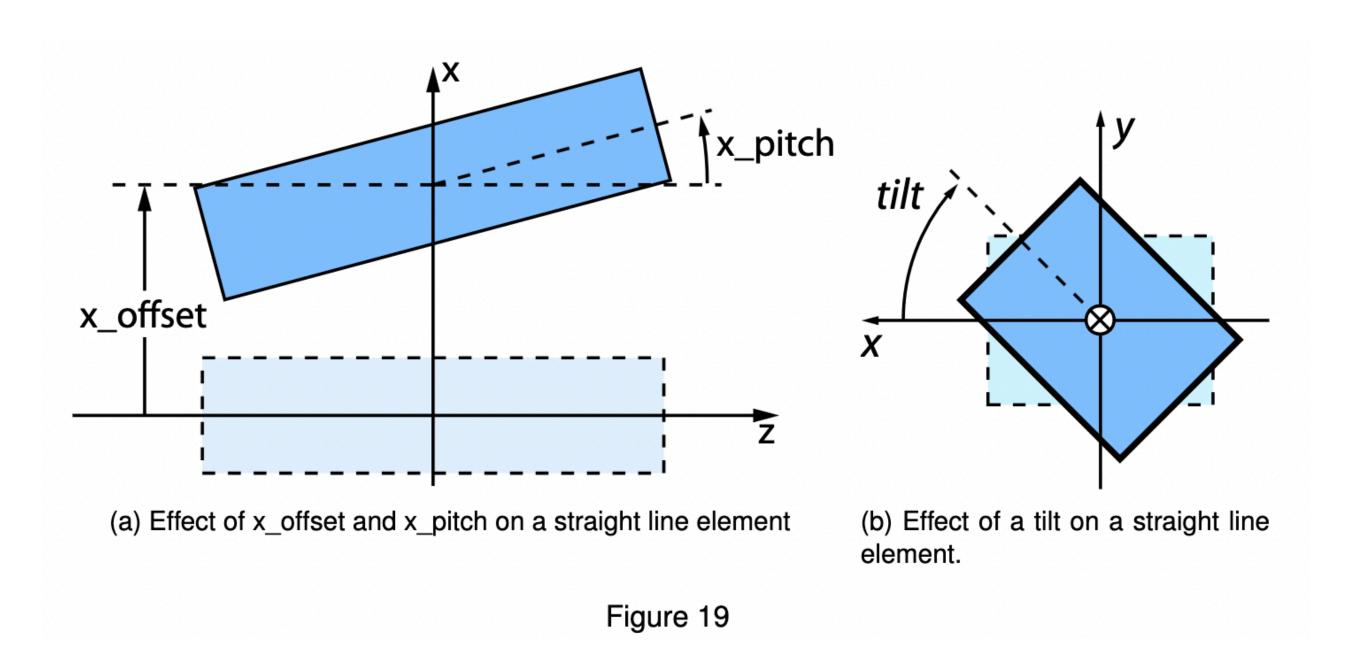
A-Mode		B-Mode	A-Mode B-Mode
		ign Model Design	Model Design Model Design
Q	45.531001 45.531		Q 45.587894 45.587894 43.357465 43.357465 ! Tune
Chrom	1.591891 1.591	891 1.621569 1.621569 ! dQ/(dE/E)	Chrom 1.204034 1.204034 0.153774 0.153774 ! dQ/(dE/E)
J_damp	0.999102 0.999	102 0.999771 0.999771 ! Damping Partition	# J_damp 1.031258 1.031258 0.999773 0.999773 ! Damping Partition #
Emittance	4.43303E-09 4.43303E	-09 5.34956E-13 5.34956E-13 ! Unnormalized	Emittance 0.00000E+00 0.00000E+00 3.55095E-13 3.55095E-13 ! Unnormalized
Emit (photon ve	ert opening angle ignor	ed) 0.00000E+00 0.00000E+00	Emit (photon vert opening angle ignored) 0.00000E+00 0.00000E+00
Alpha_damp	1.78470E-04 1.78470E	-04 1.78590E-04 1.78590E-04 ! Damping per turn	Alpha_damp 1.84217E-04 1.84217E-04 1.78592E-04 1.78592E-04 ! Damping per turn
Damping_time	5.63754E-02 5.63754E	-02 5.63377E-02 5.63377E-02 ! Sec	Damping_time 5.46169E-02 5.46169E-02 5.63369E-02 5.63369E-02 ! Sec
		ign	Model Design
<pre>Z_tune:</pre>	2.73892E-02 2.73892E		Z_tune: 2.73891E-02 2.73891E-02
Sig_E/E:	6.42272E-04 6.42272E	-04	Sig_E/E: 6.42284E-04 6.42284E-04
Sig_z:	5.14535E-03 5.14535E	-03 ! Only calculated when RF is on	Sig_z: 5.14549E-03 5.14549E-03 ! Only calculated when RF is on
Emittance_z:	3.30419E-06 3.30419E	-06 ! Only calculated when RF is on	Emittance_z: 3.30434E-06 3.30434E-06 ! Only calculated when RF is on
Energy Loss:	2.50344E+06 2.50344E	+06 ! Energy Loss (eV / Turn)	Energy Loss: 2.50347E+06 2.50347E+06 ! Energy_Loss (eV / Turn)
J_damp:	1.99931E+00 1.99931E	+00 ! Longitudinal Damping Partition #	J_damp: 1.99921E+00 1.99921E+00 ! Longitudinal Damping Partition #
Alpha_damp:	3.57138E-04 3.57138E	-04 ! Longitudinal Damping per turn	Alpha_damp: 3.57126E-04 3.57126E-04 ! Longitudinal Damping per turn
damp_time:	2.81721E-02 2.81721E	-02 ! Longitudinal Damping time (sec)	damp_time: 2.81731E-02 2.81731E-02 ! Longitudinal Damping time (sec)
Alpha_p:	4.53858E-04 4.53858E	-04 ! Momentum Compaction	Alpha_p: 4.53855E-04 4.53855E-04 ! Momentum Compaction
Eta_p:	4.53853E-04 4.53853E	-04 ! Slip factor	Eta_p: 4.53850E-04 4.53850E-04 ! Slip factor
gamma_trans:	4.69396E+01 4.69396E	+01 ! Gamma at transition	gamma_trans: 4.69398E+01 4.69398E+01 ! Gamma at transition
Spin Tune:	9.76895E-02 9.76895E	-02 ! Spin Tune on Closed Orbit (Units of 2pi)	Spin Tune: 9.76897E-02 9.76897E-02 ! Spin Tune on Closed Orbit (Units of 2pi)
<pz>:</pz>	4.73833E-06 4.73833E	-06 ! Average closed orbit pz (momentum deviation)	<pre><pz>: 4.73834E-06 4.73834E-06 ! Average closed orbit pz (momentum deviation)</pz></pre>

Beam-Beam Studies



- We now have the crab-waist details, so we are conducting studies using them.
- Preliminary tracking studies ongoing with the HER lattice.

Polarization and Spin Tune


- Over the course of the semester, we have been conducting long term tracking studies to gauge polarization stability for HER+ROT lattices at various energies.
- Long term tracking (LTT) was ran over the course of 20,000 turns using 100 particles, and polarization lifetime was extrapolated through a linear regression fit of the decay on a log plot.
- Currently investigating some postprocessing coding errors.

Magnet Misalignments

- We are implementing magnet misalignments within our longterm tracking studies
- Ohnishi-san suggested magnet offset tolerances no greater than 50-100 microns
- Except at a special section near the IP where the error is <10 microns
- Currently, code is being written to generate random errors of <100 microns based on these estimates to propagate offsets to our lattice files

Magnet Misalignments

Using the average V

- In addition, we have been provided rotational measurements for various bending elements of the HER from Ohnishi-san
- Our current task is to cross-check our working HER and spin-rotator lattices with the roll data provided
- Following the above, we plan to implement random roll errors based on this data.

				調整後			
Date	Reference NO	Mag_ID	Туре	Up	Middle	Down	Average (mrad)
				RX	RX	RX	RX
9/10/2015	TL114	BLA2LE	HER-B	0.21	0.11	0.19	0.17
	TL139	BLA4LE.1	HER-B	-0.32	-0.73	1.24	0.06
	TL147	BLA4LE.2	HER-B	-0.82	0.00	0.64	-0.06
	TL171	B2E.4	HER-B	0.02	0.08	0.07	0.06
	TL189	B2E.5	HER-B	0.02	-0.06	0.24	0.07
	TL214	B2E.6	HER-B	0.20	0.10	0.05	0.12
	TL222	B2E.7	HER-B	0.18	0.15	-0.04	0.10
	TL247	B2E.8	HER-B	0.24	0.13	0.17	0.18
	TL264	B2E.9	HER-B	0.17	0.07	0.15	0.13
	TL289	B2E.10	HER-B	0.11	0.03	0.17	0.10
	TL298	B2E.11	HER-B	0.08	0.00	0.25	0.11
	TL322	B2E.12	HER-B	0.17	0.04	0.14	0.12
	TL340	B2E.13	HER-B	0.22	0.15	0.06	0.14
	TL364	B2E.14	HER-B	0.10	0.00	-0.10	0.00
	NR364	B2E.15	HER-B	-0.04	0.03	-0.02	-0.01

HER B* rotation data
Provided by Ohnishi-san