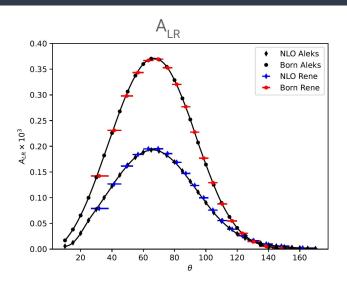
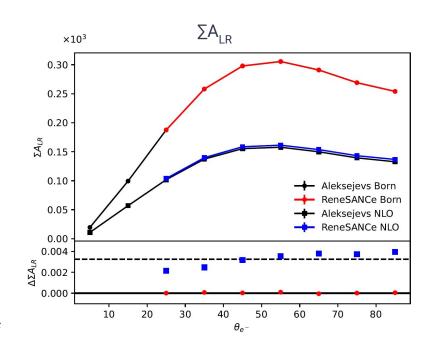

ReneSANCe Generator Update

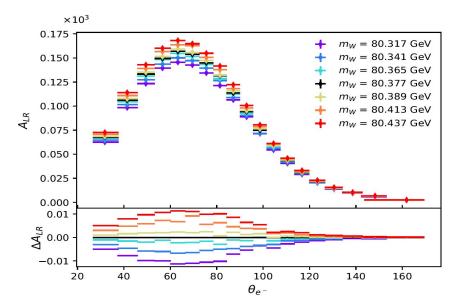
Caleb Miller June 3/2024

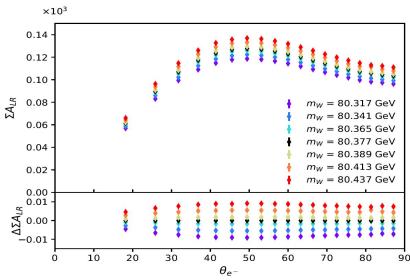


Comparisons to Aleksevejs et al.


- Theory paper presents two observables to compare to: A_{LR} and $\sum A_{LR}$
- A_{LR}
 - The asymmetry at a specific e- angle
 - \circ In ReneSANCe, integrate in angular bins of 0.05 in $\cos\theta$
- ∑A_{LR}
 - The asymmetry integrated over an acceptance a, $|\cos\theta| < \cos a$

Comparisons to Aleksevejs et al.




- Disagreement in ΣA_{LR} at an average 3.3x10⁻⁶ (2.3%)
- Understood to arise from NNLO effects
- Chiral Belle should achieve a statistical uncertainty of 2.0% with 40 ab⁻¹

$sin^2\theta_w$ sensitivity

- In order to determine the expected sensitivity of a $\sin^2\theta_W$ calculation from an A_{LR} measurement, the value of m_W is varied in steps of 12 MeV
- $\sin^2\theta_W^2 = 1 m_W^2 / m_Z^2$

$\sin^2\theta_w$ sensitivity

- The deviations correspond to ~1.5% deviation in A_{LR} value per 12 MeV shift in M_W Using an expected 2% statistical uncertainty in the A_{LR} measurement, gives a $\sin^2\theta_W$
- uncertainty of 0.00033
- The world average is \sim 0.0001, a factor of 3 better, notable contributions come from:
 - LEP + SLD $(A^{0,b}_{FB})$: ±0.00029
 - SLD (A₁): ±0.00026
 - o CMS (137fb⁻¹): ±0.00031

Next Steps

- Some editing to do on the paper
 - o need to check comparison to other measurements (MSbar, etc..)
- Will send to theorists and generator authors for comment and authorship offer