HER beam Touschek lifetime measurements

Andrii Natochii

natochii@bnl.gov

Dedicated beam background measurements in Belle II at SuperKEKB

An example of dedicated beam background measurements in SuperKEKB. Top: typical measured detector background; bottom: measured machine parameters.

One could use the same procedure (different number of bunches to separate Touschek from Beam-gas and different beam currents) and SKB data (archived or separately stored monitored beam parameters) for Touschek lifetime measurements.

Fit model for beam BG rates in the

detector

LER and HER beam loss fit results for May 2020 BG studies

To extract BG sensitivities (B and T) for Beam-gas and Touschek lifetime estimation, one can use beam current change (i.e., losses) data and fit them with the Belle II fit model.

Beam parameters used in the fit

June 3, 2024

HER lifetime estimation for May 2020 BG studies

- All three total lifetime calculations are consistent
 - Archive SKB lifetime calculated online
 - o Calculated offline lifetime using beam current changes
 - o A sum of Touschek and Beam-gas lifetimes from the fit
- Beam-gas lifetime scaled by 1/10 to fit the figure range
- Touschek lifetime is about 2 times lower than Beam-gas

HER lifetime	Measurements	Simulation	Meas./Sim.
Beam-gas	100.368 ± 78.485 [min]	298.516 ± 3.135 [min]	0.336 ± 0.263
Touschek	37.929 ± 0.057 [min]	59.054 ± 0.114 [min]	0.642 ± 0.002
Uncertainty source	Vacuum pressure, and beam sizes	Monte-Carlo simulation statistics	

Assumptions, uncertainties, and possible improvements

$$-rac{\Delta I}{\Delta t} = B imes I \overline{P}_{ ext{eff.}} + T imes rac{I^2}{n_{ ext{b}} \sigma_{ ext{x}} \sigma_{ ext{y}} \sigma_{ ext{z}}}$$

- Archived EPICS PVs used for the analysis (measured beam parameters):
 - Beam current at beam current monitors: I(LER/HER) = SKB2:BM<L/H>DCCT:CURRENT

 \Rightarrow DCCT (KEKB [<u>link</u>]) syst. unc. = 10 μ A

- Beam size at X-ray monitors: $\sigma_{x,y}$ (LER/HER) = SKB2:BM<L/H>XRM:BEAM:SIGMA<X,Y>
 - \Rightarrow Syst. unc. (x/y) = 10/1 μ m (could be overestimated)

 \Rightarrow Offset $\Delta(x/y) = 10/7 \ \mu m \rightarrow \sigma^{corr} = (\sigma^2 - \Delta \sigma^2)^{\frac{1}{2}} [link]$

 \circ Average vacuum pressure in a given section (D01-12): P_i(LER/HER) =

SKB2:VA<L/H>CCG:D<i>_<L/H>ER:PRES:AVG

 \Rightarrow rel. unc. for individual CCG = 10%

- \Rightarrow rel. unc. for a section is assumed = 10%/ \sqrt{N} , where N is the number of CCGs in the given section
- Most SKB PVs have different timestamps; therefore, a linearly interpolated value between two neighbor points is taken at the given time.
- Possible improvements:
 - Clarify uncertainties for the beam parameters used in the fit.
 - \circ The bunch length (σ_z) could be taken from measurements instead of using fit results.

Potential scenario for HER Touschek lifetime measurements

One polarization at a time: the ring is filled with the beam that has one polarization < easier to realize at the machine	Multiple trains of bunches with different polarizations: the ring is filled with the beam that has different polarizations depending on the bunch train or bucket number <i>easier</i> to analyze
Pros: Relaxed requirements for online beam monitoring. Potentially easier control of machine stability.	Pros: Same machine and beam parameters during the measurements for all polarizations.
Cons: Machine and beam parameters (vacuum pressure, stability, and temperature drift of machine equipment) may vary from run to run.	Cons: It could be challenging to monitor beam parameters for each train or bucket separately, turn by turn.

Preliminary steps:

- 1. Belle II HV Off, abort all beams.
- 2. Prepare e-source and fill patterns (number of bunches) for the measurements.
- 3. Nb = 393 bunches (the minimum number of bunches used for the dedicated BG studies in the past):
 - a) Start beam injection.
 - b) Stop injection at 250 mA. Beam decays for 15 min.
 - c) Abort the HER beam.
- 4. Nb = 2346 bunches (the number of bunches used at SuperKEKB in 2024ab). Repeat a)-c).

Human and expertise resources

- The most critical aspect of lifetime measurements is monitoring beam parameters.
 - For the Belle II background study, we can use the data archived in the online KEK archiver, which has a 1second timestamp and minor time jitter between different EPICS PVs, assuming unknown beam parameters.
 - However, for polarization measurements, this level of precision is inadequate. For instance, you cannot rely solely on the expected bunch length based on outdated measurements; you need real-time data.
- Therefore, it is strongly recommended to discuss with the SuperKEKB monitoring group their current instrumentation and identify any gaps that need to be addressed for accurate measurements.
- One person is sufficient to ensure that the data is collected during measurements.
- The most crucial factors are the machine's stability, data acquisition (DAQ), and synchronization. The machine
 team will need to assist in ensuring the beam remains stable (i.e., without beam-size blow-ups or pressure rise, no
 unexpected or uncontrolled orbit drifts).