Chiral Belle: SuperKEKB e- Polarization Upgrade

Design interfaces of the spin rotator SC magnets and cryostats

Zhanguo ZONG, zhanguo.zong@kek.jp, Accelerator Laboratory,

High Energy Accelerator Research Organization (KEK), 2024/06/03 (Mon.)

R&D Proposal for Chiral Belle for Polarization Physics at SuperKEKB

Zhanguo ZONG, KEK

Superconducting Multifunction Spin Rotator Unit

Current consideration for the rotator design to replace existing HER warm dipoles with new SC magnets in cryosats

Item	Value	Unit	Comments
Solenoid field	23.4 (4.85 × 6)	T × m (T)	As spin rotator to replace the
Skew gradient	24	T/m	Locally correct for unwanted beam coupling effects due to the solenoid
Dipole field	0.2	Т	Match the existing dipole for no change in ring geometry or optics
Max. combined field	6.15	Т	Peak field (depends on technical design)

Solenoid

Dipole

Skew-Quad (3D View)

Skew-Quad

Dipole Multifunction Spinrotator Unit Concept

Keep working conditions with the accelerator operation

BEPC-II Direct Wind Example

BNL Direct Wind coil fabrication technology for the skew-quadrupole and dipole coils

Zhanguo ZONG, KEK

Considerations of the spin rotator SC magnets and cryostats

Spin rotating, require field: 23.4 T×m

SuperKEKB Accelerator HER:

Current bending magnets: available space for cryostats

(Length, width and height)

Beam pipes (inner constraints): heights of the beam pipes

(1500 or 900 mm) to determine the cryostat size

Case	Comments
Multifunction unit: solenoid+dipole+quadrupole, to replace an existing warm dipole	Baseline
Cryostat: solenoid+quadrupole to replace a warm dipole Double another dipole field to compensate the dipole	Alternative ? to save cryocooler operation time