B Physics at Belle II: Status and Prospecs

Outline

- Beautiful B factories
- B physics highlights
- CP violation
- Tests of lepton-flavour universality
- Evidence for $B^{+} \rightarrow K^{+} v \bar{v}$
- Prospects

B Mesons

- Light enough to be produced abundantly
- Heavy enough to have many decays
- Myriad of final states and interactions to probe from
- Well known Standard Model predictions
- One of the main missions of B factories is to perform searches for physics beyond SM in rare B decays
- Rare B decay: branching fractions $<5 \times 10^{-5}$
- Flavour changing neutral currents (FCNC) decays of B mesons
- Forbidden at tree level, allowed at loop level
- Standard Model (SM) contribution is small, sensitive to beyond SM
- BSM particles can contribute in the loop (eg. charged Higgs) or mediate the process at the tree level (eg leptoquarks).

B Factories

- $\beta \gamma \sim 0.284$
- $\mathrm{BR}(\mathrm{Y}(4 \mathrm{~S}) \rightarrow \mathrm{B} \overline{\mathrm{B}})>96 \%$
- coherent B-meson pair production:
- one B to determine flavour (tag side)
- other B for CP measurement (CP side)
positron ring
positron damping ring

o Vertexing: PXD+SVD
- Tracking: CDC
- K and π : RICH + TOP
o γ and e: ECL
o μ and $\mathrm{K}_{\mathrm{L}} \mathrm{L}$: KLM

KL and muon detector Resistive Plate Counter (barrel outer layers)

Super KEKB and Belle II

SuperKEKB + Belle II@KEK, Tsukuba

- nanobeam scheme to increase instantaneous
luminosity by factor 30
- to collect multi-ab-1 sample
- world record $4.7 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Shutdown from summer 2022 until Feb 2024
- for accelerator upgrades to mitigate background and increase luminosity
- Detector upgrades too
- two-layer pixel detector installed
- Path to $2 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- but new final focus to go beyond
- proposed upgrade from 2028+

KEK status and luminosity

Belle II collected:
$5 x x \mathrm{fb}^{-1}$ at $\mathrm{Y}(4 \mathrm{~S})$

- equivalent to BaBar and $\sim 1 / 2$ of Belle
- current results: $362 \mathrm{fb}^{-1}$
. $42 \mathrm{fb}^{-1}$ of off-resonance data [60 MeV below $\mathrm{Y}(4 \mathrm{~S})$]
- compared to $\sim 90 \mathrm{fb}^{-1}$ from Belle

Belle II Online luminosity

Events at the B Factories:

- Clean environment with on average ~10-15 tracks, 3-4 π^{0}
- Known initial state kinematics

$$
B^{+} B^{-}(51.4 \pm 0.6) \%, \quad B^{0} \bar{B}^{0}(48.6 \pm 0.6) \%
$$

$$
\sigma\left(e^{+} e^{-}\right) \rightarrow \Upsilon(4 S)=1.1 \mathrm{nb}
$$

$$
\sigma\left(e^{+} e^{-}\right) \rightarrow c \bar{c}(g)=1.6 \mathrm{nb}
$$

$$
\sigma\left(e^{+} e^{-}\right) \rightarrow u \bar{u}(\gamma)=1.3 \mathrm{nb}
$$

- Principal background from light quark (continuum)
- Near 100\% efficiency for
B decays

Events Kinematics:

- B-factory-specific variables to exploit information on initial kinematics
- Different event shape to separate B events from continuum background

CKM and CP violation

Flavour Tagging improvement:

$e^{-}(7 \mathrm{GeV})$

Flavour-tagging key: $\Delta z=\Delta t \gamma \beta c$

- leptons, kaons, high momentum tracks etc
- Parameters:
$-\varepsilon$ is the tagging efficiency
${ }^{\circ} \mathrm{w}$ is the probability to wrongly determine flavour

Graph-neural-network approach has improved tagging by 18\% $\varepsilon(1-2 \omega)=37.4 \%$

$\sin \left(2 \phi_{1} / \beta\right)$ from $B \rightarrow J / \varphi K_{s}$

- Exploited this new tagging to update the golden channel
\supset Fit $\Delta \mathrm{E}$ distribution to subtract background
- Fit background-subtracted Δt distribution
o to extract CPV parameters
- $S=0.724 \pm 0.035 \pm 0.014$
- $C=-0.035 \pm 0.026 \pm 0.013$
- To be compared to WA:
- $S=0.695 \pm 0.019$
- $C=0.000 \pm 0.020$

Statistical uncertainties 8\% smaller than with category-based Flavour Tagger
arXiv:2402.17260
Accepted by PRD

Time-dependent CP violation: $\mathbf{B}^{\mathbf{0}} \rightarrow \mathbf{\eta} \mathbf{K}_{\mathbf{s}} \quad$ arxiv:2402.03713 [hep-ex]

- Decay may also have a BSM phase as it is a gluonic penguin
- alter the value of ϕ_{1} from the $b \rightarrow c \bar{c} s$ transitions such as $\mathrm{BO} \rightarrow \mathrm{J} / \varphi \mathrm{K}_{s}{ }^{0}$

Reconstructing $\eta^{\prime} \rightarrow \eta(\gamma \gamma) \pi^{+} \pi^{-}$ and $\eta^{\prime} \rightarrow \rho\left(\pi^{+} \pi^{-}\right) \gamma$

- we select 829 ± 35 events in $362 \mathrm{fb}^{-1}$
$-3 D$ fit to $\Delta E, M_{b c}$ and continuum suppression output
$\sin 2 \phi_{1}=0.67 \pm 0.10 \pm 0.04$
- Consistent with current HFLAV average and that from $\mathrm{b} \rightarrow \mathrm{ccs}$ result

- Update on BR and $A_{c p}$ using full Run-1 statistics:
- Improved selections, new flavour tagger (GflaT),
126 ± 20 signal events reduction of systematics
- Background dominated by continuum
- then $\mathrm{B} \overline{\mathrm{B}}$:
$\mathrm{B}^{+} \rightarrow \mathrm{P}^{+}\left(\rightarrow \pi^{+} \pi^{0}\right) \pi^{0}, \mathrm{~B}^{0} \rightarrow \mathrm{~K}^{0}\left(\rightarrow \pi^{0} \pi^{0}\right) \pi^{0}$
- 4D fit including $\mathrm{M}_{\mathrm{bc}}, \Delta \mathrm{E}$, cont. suppression (C), and w (wrong tag probability - unbinned)
Results:
- $B=(1.26 \pm 0.20 \pm 0.11) \times 10^{-6}$
- $\mathrm{A}_{\mathrm{CP}}=0.06 \pm 0.30 \pm 0.06$

World-best B determination. ACP on par with world best

$M_{\mathrm{hr}}\left[\mathrm{GeV} / \mathrm{c}^{2}\right]$

$\phi_{3} / \gamma:$ Belle/Belle II combined results

Several methods used

- GLW B ${ }^{ \pm} \rightarrow \mathrm{D}^{0}{ }^{\mathrm{cp}} \mathrm{K}^{ \pm}$: arXiv:2308.05048 [hep-ex]
- Use CP eigenstates of D meson
- ADS: PRL 78 (1997) 3257

$$
\phi_{3}=(78.6 \pm 7.3)^{\circ}
$$

- Enhancement of CP violation by using doubly Cabibbo suppressed decays.
- BPGGSZ D ${ }^{0} \rightarrow$ Ksh $^{+} h^{-}$: JHEP 2022(2022), 63

Different amplitude and strong phase in different region of Dalitz plot.

- GLS D ${ }^{0}$ K ${ }_{s} K \pi$: JHEP 09(2023)146
- Likelihood with 60 input observables
- including 15 auxiliary inputs (D-decay)

- 16 free parameters
- $r_{B}\left(\delta_{B}\right)$ with little high fluctuation LHCb: $\phi_{3}=(63.8 \pm 3.6)^{\circ}($ LHCb-CONF-2022-003 $)$ Few ab^{-1} needed for similar statistical result

First measurement of $B \rightarrow K^{*}(892) \gamma$

J Flavour changing neutral current decays sensitive to new physics
\supset First observed FCNC decay [PRL 71 (1993) 674]

- CP (A_{CP}) and isospin (Δ_{+0}) asymmetries are theoretically clean thanks to form factor cancellations
- Asymmetries are ideal for BSM searches
- PRD 88 (2013) 094004, PRL 106 (2011) 141801

Belle measurement found evidence of isospin asymmetry at 3.1 σ

- PRL 119 (2017) 191802

$$
\begin{aligned}
& A_{C P}=\frac{\Gamma\left(\bar{B} \rightarrow \overline{K^{*}} \gamma\right)-\Gamma\left(B \rightarrow K^{*} \gamma\right)}{\Gamma\left(\bar{B} \rightarrow \overline{K^{*}} \gamma\right)+\Gamma\left(B \rightarrow K^{*} \gamma\right)} \quad \text { SM prediction is small (~1\%) } \\
& \Delta A_{C P}=A_{C P}\left(B^{0} \rightarrow K^{* 0} \gamma\right)-A_{C P}\left(B^{+} \rightarrow K^{*+} \gamma\right) \\
& \Delta_{+0}=\frac{\Gamma\left(B^{0} \rightarrow K^{* 0} \gamma\right)-\left(B^{+} \rightarrow K^{*+} \gamma\right)}{\Gamma\left(B^{0} \rightarrow K^{*} \gamma\right)+\left(B^{+} \rightarrow K^{*+} \gamma\right)} \quad \text { SM prediction: 4.9 } \quad \text { [PRD 28 (2013) 094004] }
\end{aligned}
$$

First measurement of $B \rightarrow K^{*}(892) \gamma$

- Analysis based on Run-1 data ($362 \mathrm{fb}^{-1}$)
- Reconstruct $\mathrm{K}^{*} \rightarrow \mathrm{~K}^{+} \pi^{-}, \mathrm{K}^{0} \pi^{0}, \mathrm{~K}^{+} \pi^{0}, \mathrm{~K}_{\mathrm{s}} \pi^{-}$
- Combine K^{*} with a prompt photon to get B candidate

Fit strategy

- Perform 2D fit to $\Delta \mathrm{E}$ and M_{bc} to extract signal yield

Results:

- Consistent with world average and SM

- Asymmetries are statistically limited
- Similar sensitivity to Belle result despite half the data
- Thanks to improved K^{0} efficiency, continuum suppression, and addition of $\Delta \mathrm{E}$ to fit model)
$\mathcal{B}\left[B^{0} \rightarrow K^{* 0} \gamma\right]=(4.16 \pm 0.10 \pm 0.11) \times 10^{-5}$,
$\mathcal{B}\left[B^{+} \rightarrow K^{*+} \gamma\right]=(4.04 \pm 0.13 \pm 0.13) \times 10^{-5}$,
$\mathcal{A}_{C P}\left[B^{0} \rightarrow K^{* 0} \gamma\right]=(-3.2 \pm 2.4 \pm 0.4) \%$,
$\mathcal{A}_{C P}\left[B^{+} \rightarrow K^{*+} \gamma\right]=(-1.0 \pm 3.0 \pm 0.6) \%$,
Uncertainty:
stat. + sys. $+\mathrm{f}_{+-} / \mathrm{f}_{00}\left(\right.$ for $\left.\Delta_{0+}\right)$
$\Delta \mathcal{A}_{C P}=(2.2 \pm 3.8 \pm 0.7) \%$,
$\Delta_{0+}=(5.1 \pm 2.0 \pm 1.0 \pm 1.1) \%$

CKM matrix element Vcb abd Vub:

\supset Long standing tension between inclusive and exclusive measurements:

Lepton flavour/universality violation and rare decays

Measurement of $\mathrm{R}(\mathrm{X})$

- Inclusive ratio $R(X)=B R(B \rightarrow X \tau v) / B R(B \rightarrow X \ell v)$
- A complementary alternative to $R\left(D\left(^{*}\right)\right.$
- Hadronic-tagging method with 189 fb-1
- Hadronic tag pioneered by BaBar PRL 92071802
- MVA version at Belle II

Comput. Softw. Big Sci. 3 (2019) 1, 6

- Use missing-mass squared and lepton momentum to isolate signal above $B \rightarrow$ Xev background
- Background templates calibrated to control samples and sidebands

Measurement of $\mathrm{R}(\mathrm{X})$

- Systematics dominated by control sample reweighting procedures

First at B factories

- Agrees with SM prediction and the WA $R(D(*))$ values

Probing $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathbf{v}$

- Well known in SM but very sensitive to BSM enhancements - 3rd gen
- $\mathrm{B}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} v \mathrm{~V}\right)=(5.6 \pm 0.4) \times 10^{-6}[\mathrm{arXiv}: 2207.13371]$

D Challenging experimentally

- Low branching fraction with large background
- No peak - two neutrinos leads to no good kinematic constraint
- Advantages at Belle II:
- Constraints from initial state kinematics;
- Lower average multiplicity at the Y(4S) compared to hadronic collisions.
NP scenarios:
- Light: axions, dark scalars, axion-like particles
- Heavy: Z', leptoquarks

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{VV}$ analysis strategy

- Two methods: an inclusive tag and conventional hadronic tag
- many common features except tag
- Inclusive event variables to suppress background
o preselect events where missing momentum and signal kaon well reconstructed
- First boosted decision tree (BDT1): 12 variables
- Second BDT2: 35 variables - 3 times sensitivity
- BDT2 fit extraction variable in bins of mass-squared- q2
- Many systematic studies with data-driven corrections and checks with control samples

Two methods: an inclusive tag and conventional hadronic tag

ITA: signal efficiency $=8 \%$ purity $=0.9 \%$

- Inclusive tag analysis (ITA)
- Select first signal kaon that minimizes q^{2} rec (computed as K^{+}recoil)
- Nested BDT to suppress background
- Fit q^{2} rec and BDT output
- Hadronic tag analysis (HTA)
- Select first tag B decaying hadronically
[Comput Softw Big Sci 3, 6 (2019)]
- Single BDT to suppress background
- Fit BDT output

rub vapa

Hadronic K^{+} Final state

$\mathrm{B}^{+} \rightarrow \mathbf{K}^{+} \mathbf{v} \mathbf{v}$ validation

- Signal efficiency checked with signal-embedded $B \rightarrow K J / \psi(\rightarrow \mu \mu)$
- Remove J / ψ and correct the kaon kinematics to match that of signal
- Continuum validated with off-resonance
- $B \rightarrow X_{c}\left(\rightarrow K_{L}\right)$ validated from pion-enriched sideband
- Signal like $B \rightarrow K^{+} K^{0} \mathrm{~K}^{0}\llcorner$ checked with $\mathrm{B} \rightarrow \mathrm{K}^{+} \mathrm{K}_{\mathrm{s}} \mathrm{K}^{0}{ }_{\mathrm{s}}$ [PRD 85 112010]
- Similar treatment for $\mathrm{B} \rightarrow \mathrm{K}^{+} \mathrm{K}_{\mathrm{s}}^{0} \mathrm{~K}_{\mathrm{s}}^{0}$ and $\mathrm{B} \rightarrow \mathrm{K}^{+}$nn
- Closure test: $\mathrm{BR}\left(\mathrm{K}^{0} \pi^{+}\right)=(2.5 \pm 0.5) \times 10^{-5}$ compatible with the WA: $(2.38 \pm 0.08) \times 10^{-5}$

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \boldsymbol{v} \boldsymbol{v}$ results

arXiv:2311.14647 [hep-ex] Accepted PRD

ITA:

- $\mu=5.4 \pm 1.0$ (stat) ± 1.1 (syst)
- corresponds to
$\mathrm{BR}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{vV}\right)=(2.7 \pm 0.5 \pm 0.5) \times 10^{-5}$
- 3.5 σ compatibility wrt bkg only
- 2.9 σ compatibility wrt the SM

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{V}$ vesults

arXiv:2311.14647 [hep-ex] Accepted PRD

- ITA:
- $\mu=5.4 \pm 1.0$ (stat) ± 1.1 (syst)
- corresponds to
$B R\left(B^{+} \rightarrow K^{+} v V\right)=(2.7 \pm 0.5 \pm 0.5) \times 10^{-5}$
- 3.5 σ compatibility wrt bkg only
- 2.9 σ compatibility wrt the SM
- HTA:
- $\mu=2.2_{-1.7}^{+1.8}$ (stat) ${ }_{-1.1}^{+1.6}$ (syst)
corresponds to

$$
\mathrm{BR}\left(\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{vv}\right)=\left(1.1_{-0.8}^{+0.9}+0.8\right) \times 10^{-5}
$$

-1.1 σ compatibility wrt bkg only

- 0.6 σ compatibility wrt the SM

$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{v} \bar{v}$ results

arXiv:2311.14647 [hep-ex] Accepted PRD

- ITA:
$B R\left(B^{+} \rightarrow K^{+} v v\right)=(2.7 \pm 0.5 \pm 0.5) \times 10^{-5}$
HTA:
$\mathrm{BR}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{vv}\right)=\left(1.1_{-0.8}^{+0.9}+0.0\right.$-0.8 $) \times 10^{-5}$
- Combination:
$\mathrm{BR}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{vV}\right)=\left(2.7 \pm 0.5_{-0.4}^{+0.5}\right) \times 10^{-5}$
- 3.5σ compatibility wrt bkg only
- 2.7 σ compatibility wrt the SM
- Combination improves the ITA-only precision by 10\%

Goals with current data to a few inverse $\mathbf{a b}^{-1}$

- Semileptonic decay:
- Vcb: can we make progress on the inclusive vs. exclusive tension \rightarrow KEK report in preparation
- R(D)-R(D*)
- Electroweak penguin
- Missing energy modes like $B \rightarrow K \tau t$ and $K v v$
- CP violation
- a and the gluonic penguins
o tau
- LFV and precision

Snowmass submission is the most up to date prospects document

- Charm
- final states with neutrals, e.g., $D \rightarrow \pi^{0} \pi^{0}$
- Quarkonium
- $Y(10753)$ scan and isospin partners (ISR and B decay)
- Dark sector and low multiplicity
- dark photon and $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-}$

Conclusions

${ }^{-} \mathrm{e}^{+} \mathrm{e}^{-}$has an important role to play in the future of flavour

- Belle II is catching up to first generation sample size, producing competitive and exciting results - 37 papers and 10 preliminary results with a paper in preparation [to be updated]
- More before the summer with the Run-1 data

- A lot more to come once we enter the " 10^{35} era" of Run 2 which is just starting

back-up slides

