Hot Topic in Flavour at the B Factories

Chunhui Chen Iowa State University On behalf of the Belle and Belle II Collaborations 9th Workshop on Theory, Phenomenology and Experiments in Flavor Physic June 19-21, 2024, Anacapri, Capri Island, Italy

Chunhui Chen, Iowa State University

Belle and Belle II experiments

→ Asymmetric $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ with production cross section ~1.1*nb*

- ✓ Belle → Belle II: $e^+(3.5 \text{ GeV})e^-(8 \text{ GeV}) \rightarrow e^+(4 \text{ GeV})e^-(7 \text{ GeV})$
- ✓ Belle II has smaller boost but improved vertex resolution
- ► Belle (1999-2010): 1.4 ab⁻¹ with 711 fb⁻¹ at $\Upsilon(4S)$, $\mathcal{L}_{peak} = 2.1 \times 10^{34} cm^{-2} s^{-1}$
- > Belle II collected 428 fb⁻¹ data for Run 1 with record $\mathcal{L}_{peak} = 4.7 \times 10^{34} cm^{-2} s^{-1}$
 - ✓ Restart data taking in 2024, Final goal: 50 ab⁻¹ data at $L_{peak} = 6.5 \times 10^{35} cm^{-2} s^{-1}$
- > Belle/BelleII: Knowledge of initial state: kinematic constraints for signal reconstruction

$$\Delta E = E_B^* - \sqrt{s/2} \qquad M_{bc} = \sqrt{(\sqrt{s/2})^2 - |\vec{p}_B^*|^2}$$

Outline of the talk

This is not a review talk

- ✓ Some selected recent results from Belle/Belle II
- ✓ Focus on results sensitive to New Physics (NP)
- ✓ Focus on measurements most sensitive at B factory

> Topics:

- ✓ Measurements of CP Violation (CPV) in B decays
- ✓ Rare B decays in the EWP final states
- ✓ Rare and forbidden Charm meson decays
- ✓ Rare and forbidden Tau decays
- ✓ No Dark Sector: see the talk by Marita Laurenza

Comparison to previous results and outlook in the future

B Flavor tagging at Belle II

- Belle II initial B tagging algorithm:
 - Category-based (CB): physics object as BDT input
 - ✓ Similar to Belle & Babar experiments
- Newly developed B tagging algorithm: GFlat
 - ✓ Graph convolutional neural network (GNN)
 - ✓ 25 variables for each track as GNN input
 - ✓ 18% improvement in performance

$$\epsilon_{\text{tag}}(\text{CB}) = (31.7 \pm 0.5 \pm 0.4) \%$$

 $\epsilon_{\text{tag}}(\text{GFlaT}) = (37.4 \pm 0.4 \pm 0.3) \%$

arXiv:2402.17260, Accepted by PRD

CPV in Penguin dominated B decays 🏹

NP may induce a large discrepancy between the CP Asymmetry in $b \rightarrow c\bar{c}s$ and $b \rightarrow q\bar{q}s$, (q = u, d, s) transitions, such as $\eta' K_S^0$, ϕK_S^0 , $K_S^0 \pi^0$, $K_S^0 K_S^0 K_S^0$

$$B^0 \to \eta' K_S^0$$
 with $\eta' \to \eta (\to \gamma \gamma, 3\pi) \pi^+ \pi^-$ or $\eta' \to \rho \gamma$

> Large \mathcal{B} , and theoretically clean

- Signa yield: 829 ± 35
- Still use the old Belle II CB tagging:

 $\begin{array}{rcl} C_{\eta'K^0_S} &=& -0.19 \pm 0.08 \pm 0.03 \\ S_{\eta'K^0_S} &=& +0.67 \pm 0.10 \pm 0.04 \end{array}$

- Consistent with Belle measurement: 711 fb⁻¹
 - ✓ Use More final states $(K_S^0 \to \pi^0 \pi^0, K_L)$ ✓ $\sigma_S = 0.07$
- Belle II expect ~10% improvement of σ_S for same data statistics using GFIaT

CPV in $B^0 \to K_S^0 \pi^0 \gamma$

- Amplitude dominated by electro-weak penguin loop
- Expect very small mixed-induced CPV in the Standard Model (SM)
 - ✓ $b \rightarrow s\gamma_R$ is helicity suppressed by (m_s/m_b) w.r.t. $b \rightarrow s\gamma_L$

$$\mathcal{E} B^0 \to K^0_S \pi^0 \gamma_L \text{ vs. } B^0 \to \overline{B}{}^0 \to K^0_S \pi^0 \gamma_R$$

- ▶ Measurements for resonance $(K^{*0} \rightarrow K_S^0 \pi^0)$ and non-resonance final states
- Vertex with beamspot constraints
 - ✓ Better vertexing of K_S^0 reconstruction at Belle II

Direct CPV in $B^0 \rightarrow \pi^0 \pi^0$

Belle II preliminary

To be submitted to PRD

L dt = 362 fb

Candidates per 4 MeV/c

60 50

- > Update early Belle II measurement (189 fb⁻¹) of \mathcal{B} and A_{CP}
- Improved selections, new flavour tagger (GFIaT), reduction of systemic uncertainties
 - ► Background dominated by continuum, then $B^+ \to \rho^+(\pi^+\pi^0)\pi^0$, $B^0 \to K_S^0(\pi^0\pi^0)\pi^0$

50

Belle II preliminary

L dt = 362 fb⁻¹

- BDT photon selector, continuum suppression trained using off-resonance data
- > 4-D fit: m_{bc} , ΔE , continuum suppression BDT output, wrong B-tag probability

Candidates per 0.8

$$\mathcal{B} = (1.26 \pm 0.20 \pm 0.11)^{-6}$$

 $A_{\rm CP} = 0.06 \pm 0.30 \pm 0.06$

- Compatible with previous results
- World-best branching fraction
- Compatible Direct CP precision
 - ✓ Belle (499 fb⁻¹) & BaBar (436 fb⁻¹)
 - ✓ World average

$$\mathcal{B} = (1.59 \pm 0.26)^{-6}$$

 $A_{\rm CP} = 0.30 \pm 0.20$

$$b^{-1}) \int_{a} \int_$$

 ΔE [GeV]

Electroweak Penguin dominated B decays

- > NP may contributed in the EWP loops $\checkmark b \rightarrow sl^+l^-, b \rightarrow s\nu\bar{\nu}$, and $b \rightarrow s\gamma$ transitions
- Some measurements have tension with SM
 ✓ Branching fraction and angular observables
- Search for $B^+ \to K^+ \nu \bar{\nu}$ at Belle II
 - Theoretically clean (no photon exchange)
 - Experimentally challenging: two neutrinos in the final state, high background and small branching fraction

$$\mathcal{B}_{\rm SM} = (5.58 \pm 0.37) \times 10^{-6}$$

Only accessible at B-factories (constraint using well-know initial kinematics)

Search for $B^+ \to K^+ \nu \overline{\nu}$

Hadronic Tag Analysis (HTA):

- Fully reconstruct "tag" B:
 - ✓ Better measurement of B_{siq} Kinematic variables
- Full-Event-Interpretation (FEI) at Belle II
 - ✓ Multivariate classification using BDT

Comput. Softw. Big Sci. 3, 6 (2019)

- ✓ 50% tag efficiency improvement vs Belle
- Small efficiency but significantly reduce bg
 - \checkmark Signal eff = 0.4%, purity = 3.5%
- Extract signal via a BDT output

Inclusive Tag Analysis (ITA):

- Non exclusive reconstruction of "tag" B:
- Select signal kaon that minimize

 $q_{\rm rec}^2 = s/(4c^4) + m_K^2 - \sqrt{s}E_K^*/c^4$

- Larger efficiency but significantly more bg \checkmark Signal eff = 8%, purity = 0.9%
- \blacktriangleright Extract signal using BDT output and q_{rec}^2

Search for $B^+ \to K^+ \nu \overline{\nu}$

Data driven approach with many validations

- > Signal efficiency check using $B \rightarrow J/\psi(\mu\mu)K$
 - ✓ Remove J/ψ and correct kaon kinematics to match signal distributions

- Continuum validation with off-resonance data
- > $B \rightarrow X_c (\rightarrow K_L^0)$ validate from pion enriched sideband
- Signal like $B \to K^+ K_L^0 K_L^0$ check with $B \to K^+ K_S^0 K_S^0$
- Similar validation for $B \to K^+ K^0_S K^0_L$ and $B \to K^+ nn$
- → Validate method to measure $B \to K^0 \pi^+$
 - ✓ $B = (2.5 \pm 0.5) \times 10^{-5}$
 - ✓ Consistent with PDG: $(2.38 \pm 0.08) \times 10^{-5}$

FIG. 7. Distribution of the classifier output BDT₁ (main figure) and BDT₂ for BDT₁ > 0.9 (inset). The distributions are shown before $(B^+ \to K^+ J/\psi)$ and after $(B^+ \to K^+ J/\phi)$ the muon removal and replacement of the kaon momentum of selected $B^+ \to K^+ J/\psi$ events in simulation and data. As a reference, the classifier outputs directly obtained from simulated $B^+ \to K^+ \nu \bar{\nu}$ signal events are overlaid. The simulation histograms are scaled to the total number of $B^+ \to K^+ J/\psi$ events selected in the data.

arXiv:2311.14647, Accepted by PRD

Results of $B^+ \to K^+ \nu \overline{\nu}$

arXiv:2311.14647, Accepted by PRD

- ▶ First evidence of $B^+ \to K^+ \nu \bar{\nu}$ (3.5 σ), branching fraction in excess of SM 2.7 σ
- Measurement enabled by new inclusive techniques

Results of $B^+ \to K^+ \nu \overline{\nu}$

Other $B \rightarrow K \nu \bar{\nu}$ analysis ongoing at Belle II Expect some results soon

Measurements of $B \rightarrow K^*(892)\gamma$

Large branching fraction and clean experimental signal

$$\mathcal{B} = \frac{N_{\overline{B}}/\epsilon_{\overline{B}} + N_B/\epsilon_B}{2 \times N_{B\overline{B}} \times f^{+-}(f^{00})}, \quad \Delta_{0+} = \frac{(\tau_+/\tau_0) \times \mathcal{B}(B^0 \to K^{*0}\gamma) - \mathcal{B}(B^+ \to K^{*+}\gamma)}{(\tau_+/\tau_0) \times \mathcal{B}(B^0 \to K^{*0}\gamma) + \mathcal{B}(B^+ \to K^{*+}\gamma)},$$
$$\mathcal{A}_{CP} = \frac{N_{\overline{B}}/\epsilon_{\overline{B}} - N_B/\epsilon_B}{N_{\overline{B}}/\epsilon_{\overline{B}} + N_B/\epsilon_B}, \qquad \Delta\mathcal{A}_{CP} = \mathcal{A}_{CP}(B^+ \to K^{*+}\gamma) - \mathcal{A}_{CP}(B^0 \to K^{*0}\gamma),$$

Candidates / (30 MeV) 000 000 000 • Data Fit Belle II $B^0 \rightarrow K^{*0}[K^*\pi]\gamma$ $Ldt = 362 \text{ fb}^{-1}$ ---- gg Background **BB** Background 200 100 0 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 ∆E [GeV]

To be submitted to JHEP

Belle II Results: 362 fb⁻¹

$$\begin{split} \mathcal{B}[B^0 \to K^{*0}\gamma] &= (4.16 \pm 0.10 \pm 0.11) \times 10^{-5}, \\ \mathcal{B}[B^+ \to K^{*+}\gamma] &= (4.04 \pm 0.13 \pm 0.13) \times 10^{-5}, \\ \mathcal{A}_{CP}[B^0 \to K^{*0}\gamma] &= (-3.2 \pm 2.4 \pm 0.4)\%, \\ \mathcal{A}_{CP}[B^+ \to K^{*+}\gamma] &= (-1.0 \pm 3.0 \pm 0.6)\%, \\ \Delta A_{CP} &= (2.2 \pm 3.8 \pm 0.7)\% \\ \Delta_{0+} &= (5.1 \pm 2.0 \pm 1.0 \pm 1.1)\% \\ \end{split}$$

Consistent with the world average and the SM expectation Systematic uncertainties can be reduced with more data

Search for rare $b \rightarrow dl^+l^-$ transition $\underset{mu}{\swarrow}$

- ▶ $b \rightarrow dl^+l^-$ process via loops and highly suppressed, $\mathcal{B}_{SM} \sim O(10^{-8})$
 - ✓ LHCb (3 fb⁻¹) observed final state with π^{\pm} in dimuon mode
- Sensitive to NP contribution in the loop
 - ✓ Rate measurement, Lepton flavor universality

Measurements of R_{D^*} and R_D

$$R_{D^*} = \frac{\mathcal{B}(B \to D^* \tau \nu)}{\mathcal{B}(B \to D^* l \nu)} \quad R_D = \frac{\mathcal{B}(B \to D \tau \nu)}{\mathcal{B}(B \to D l \nu)}$$

Uncertainty from form factor and V_{cb} drop out
 Small uncertainty for the SM prediction

- Ratios test lepton universality
 - ✓ NP change rate, angular and q^2 distributions
- Measurements above the SM prediction

- > Belle II: 189 fb^{-1} data
- Improved sensitivities from FEI
- Dominant systematic due to MC statistics and E_{ECL} can be reduced with more data

Measurements of R_{D^*} and R_D

Measurement of R_D and R_{D^*} exceed the SM predictions by 1.6σ & 2.5σ , respectively, the combined deviation above the SM is 3.31σ

- Other ongoing Belle II measurements
 - ✓ Not systematic limited, reduce with more data
- > Future measurement as a function of q^2 and angular distributions

 \bar{B}^0

- Combined Belle (694 fb⁻¹) and Belle II (362 fb⁻¹) measurement
- Small branching fraction & high background
- Analysis strategy:
 - ✓ Dedicated BDT to suppress continuum, $\pi^0 \rightarrow \gamma \gamma$ and $\eta^0 \rightarrow \gamma \gamma$
 - ✓ Multivariable fit to: ΔE , M_{bc} , and BDT output
 - ✓ Control sample: $B^0 \to K^*(892)[K^+\pi^-]\gamma$
- Significant improvement at Belle II vs Belle
 - ✓ Better signal efficiency
 - ✓ Improved ΔE resolution

	Belle	Belle II	
Sig efficiency	23%	31%	
Exp. bkg/fb-1	~ 0.8		

Measurements of $B \rightarrow \gamma \gamma$

TABLE III.	Summary	of $\mathcal{B}($	$B^0 \rightarrow$	$\gamma\gamma)$	measurements	and
UL's at 90%	$\operatorname{credibility}$	level.				

	$\mathcal{B}(B^0 \to \gamma \gamma)$	UL on $\mathcal{B}(B^0 \to \gamma \gamma)$
Belle	$(5.4^{+3.3}_{-2.6} \pm 0.5) \times 10^{-8}$	$< 9.9 \times 10^{-8}$
Belle II	$(1.7^{+3.7}_{-2.4} \pm 0.3) \times 10^{-8}$	$< 7.4 \times 10^{-8}$
Combined	$(3.7^{+2.2}_{-1.8} \pm 0.5) \times 10^{-8}$	$< 6.4 \times 10^{-8}$
Experiment	Integrated Luminosity ($(\int \mathcal{L} dt)$ Limit @ 90 C.L.
L3	$73~{ m pb}^{-1}$	$3.9 imes 10^{-5}$
Belle	104 fb^{-1}	6.2×10^{-7}
Babar	$426 {\rm ~fb^{-1}}$	3.2×10^{-7}

- Combined signal yield: 11.0^{+6.5}_{-5.5}
 ✓ 2.5σ significance
- Sensitivity approach SM prediction \checkmark SM: $\mathcal{B} = (1.4^{+1.4}_{-0.8}) \times 10^{-8}$ JHEP 12, 169 (2020)
 - ✓ Expected UL: $B < 4.4 \times 10^{-8}$
- UL has 5x improvement over previous best UL by Babar
- Significant better sensitivity improvement at Belle II

arXiv:2405.19734, submitted to PRD

L3: PLB 363 (1995) 137-144 Belle: PRD 73, 051107 (2006) BaBar: PRD 83, 032006 (2011)

Chunhui Chen, Iowa State University

Search for Rare Charm decays: $D^0 \rightarrow h^+h^-e^+e^-$

- ➢ Flavor changing neutral current (FCNC) $c \rightarrow ull$ process is suppressed in the SM
- LD mainly from vector meson dominated mode
- Search for NP and Lepton Flavor Universality (LFU) test

Some previous measurements of Br and UL @90%

Experiment	$K^-K^+e^+e^-$	$\pi^-\pi^+e^+e^-$	$K^-\pi^+e^+e^-$
Babar (2019)			$\begin{array}{c} 40.0\pm5.0\pm2.3~(\rho^0/\omega)\\ stat syst \end{array}$
BESIII (2019)	< 110	< 70	< 410
	$K^-K^+\mu^+\mu^-$	$\pi^-\pi^+\mu^+\mu^-$	$K^-\pi^+\mu^+\mu^-$
LHCb (2016-2017)	$1.54 \pm 0.27 \pm 0.19$	$9.64 \pm 0.48 \pm 1.10$	$4.17 \pm 0.12 \pm 0.40 \ (\rho^0/\omega)$

BaBar: PRL 122, 081802 (2019) BESIII: PRD 97, 072015 (2019) LHCb: PLB 517, 558 (2016); PRL 119, 181805 (2017)

Search for rare charm decays: $D^0 \rightarrow h^+h^-e^+e^-$

To be submitted to PRL

 \blacktriangleright Belle measurement with 942 fb⁻¹ data

Solution > Compatible with Babar and SM expectation
✓ Compatible with Babar and SM expectation

 $\mathcal{B} = (39.06 \pm 4.5(\text{stat}) \pm 2.9(\text{syst})) \times 10^{-7}$

- No significant signal on other final states
 - ✓ UL at 90% around $(2.3 7.7) \times 10^{-7}$
 - ✓ World's best limits to date

TABLE I. $D^0 \rightarrow h^- h^{(')+} e^+ e^-$ modes yields, significance, branching fractions, branching fraction upper limits, and the efficiencies of each m_{ee} region [×10⁻⁷]. A fitted yield and a branching fraction are not reported for $K^- K^+ e^+ e^-$ mode with m_{ee} in the m_{η} region since only one event is observed, and the significance is determined from the CL_s distribution.

m_{ee} region	$[MeV/c^2]$	Yield	Significance	${\cal B}$	UL @ 90% CL	Efficiency
$K^-K^+e^+e^-$						
η	520 - 560	-	$< 0.1\sigma$	-	< 2.3	3.53 ± 0.04
$ ho^0/\omega$	> 675	2.6 ± 1.8	2.0σ	$1.2 \pm 0.9 \pm 0.1$	< 3.0	6.00 ± 0.06
non-resonant	> 200 ^a	3.5 ± 3.3	1.5σ	$3.1 \pm 3.0 \pm 0.4$	< 7.7	3.19 ± 0.04
$\pi^{-}\pi^{+}e^{+}e^{-}$						
η	520-560	0.6 ± 2.3	0.3σ	$0.4 \pm 1.4 \pm 0.2$	< 3.2	5.31 ± 0.05
$ ho^0/\omega$	675-875	3.7 ± 4.1	0.9σ	$2.0 \pm 2.2 \pm 0.8$	< 6.1	5.69 ± 0.05
ϕ	995 - 1035	3.6 ± 3.2	1.1σ	$1.1 \pm 1.1 \pm 0.2$	< 3.1	9.41 ± 0.06
non-resonant	> 200	-0.2 ± 4.1	$< 0.1\sigma$	$-0.2 \pm 3.4 \pm 0.9$	< 7.2	3.69 ± 0.04
$K^-\pi^+e^+e^-$						
η	520 - 560	4.0 ± 2.7	1.6σ	$2.2 \pm 1.5 \pm 0.5$	< 5.6	5.09 ± 0.04
$ ho^0/\omega$	675 - 875	110 ± 13	11.8σ	$39.6 \pm 4.5 \pm 2.9$	-	8.01 ± 0.06
ϕ	990-1034	4.6 ± 2.4	2.5σ	$1.4 \pm 0.8 \pm 0.3$	< 2.9	9.19 ± 0.06
non-resonant	> 560	2.2 ± 4.2	0.4σ	$1.3 \pm 2.4 \pm 0.6$	< 6.5	4.89 ± 0.09

^a Excluding resonance regions, which is same for all three modes.

Search for Rare τ lepton decays

- > Many rare or forbidden τ decays are excellent probes to NP beyond the SM
- > B-factories generated large τ decay data samples
 - ✓ Searches in many different final states with high precisions
 - ✓ Not limited by systematics, sensitivities increases with higher luminosity
 - ✓ Better sensitives than other experiments in many final states

Search for LFV $\tau \rightarrow \mu\mu\mu$ decay

Search for LFV $\tau \rightarrow \mu\mu\mu$ decay

Experiment	Upper Limit at 90% C.L.
ATLAS	$3.8 \times 10^{-7} (\mathscr{L} = 20.3 \text{ fb}^{-1})$
LHCb	$4.6 \times 10^{-8} (\mathscr{L} = 3.0 \text{fb}^{-1})$
CMS	$2.9 \times 10^{-8} (\mathscr{L} = 131 \text{ fb}^{-1})$

CMS - PLB 853 (2024) 138633

Experiment	Upper Limit at 90% C.L.
Belle	$2.1 \times 10^{-8} (\mathcal{L} = 782 \text{ fb}^{-1})$
BaBar	$3.3 \times 10^{-8} \ (\mathscr{L} = 486 \ \text{fb}^{-1})$
Belle II	$1.9 \times 10^{-8} (\mathscr{L} = 424 \text{ fb}^{-1})$

Belle II - arXiv:2405.07386

Most stringent limit to date

Lepton & baryon number violating τ decay $\frac{1}{2}$

> Search for Lepton number & baryon number violating τ decays

$$\tau^- \to \Lambda \pi^-$$
 and $\tau^- \to \bar{\Lambda} \pi^-$

> Belle II measurements: 362 fb⁻¹ data, Similar to $\tau \rightarrow \mu\mu\mu$ analysis

Chunhui Chen, Iowa State University

Test of Lepton flavour universality in τ decay $\frac{1}{2}$

> Most precise test of $\mu - e$ universality in τ decays by a single measurement

- > Consistent with the SM expectation at 1.4σ level
- Dominated by the systematic uncertainty: can be reduced with more data

Summary and Prospect

- A few selected recent highlights from Belle(II)
- Improved sensitivities at Belle II (better detector and analysis)
- More exciting results will eventually come with more data (soon)

Roadmap of possible new evidences and observations

Backup

