Study of Ξ^* and other Hyperons at Belle/Belle II

Mizuki Sumihama

Gifu University / Osaka University RCNP

for the Belle/Bellell collaborations

1.Introduction to Belle and Belle II Experiments 2.Experimental Results of Ξ^* and $\Lambda_c(2625)^+$ 3.Summary of the Talk

Belle experiment

• Belle experiment is the experiment at KEK B factory with Belle detector dedicated for the CP violation physics of B mesons.

Data acquisition was finished in June 2010 (running 1999-2010).

 e^+

 $\sqrt{s} \sim 10.6 \ GeV$ 1 ab^{-1} integrated luminosity

A lot of hadrons \rightarrow hadron physics

Huge data enable to study charmed baryons and resonant substructure in decays of charmed baryons Access to various production/decay processes.

Belle detector

Belle → Belle II experiment

- Belle II experiment
 - KEKB -> SuperKEKB
 Belle detector -> Belle II detector
 2 times higher beam current
- Belle II experiment is now running. Upgrades in all parts of the detector

Updated on 2024/05/19 22:55 JST

Ξ^* hyperon and cusp structures in Λ_c^+ decay

Physics motivation -Status of Ξ^{\ast}

From PDG

MM	Particle	J^P	Overall status	Ξπ	ΛK	ΣK	$\Xi(1530)\pi$	Other channels
	$\Xi(1318)$	$\frac{1}{2+}$	****					Decays weakly
	$\Xi(1530)$ $\Xi(1620)$ $\Xi(1690)$	3/2+	**** ** ***	**** ** **	***	**		
→	$\Xi(1820)$ $\Xi(1950)$ $\Xi(2030)$ $\Xi(2120)$	3/2-	*** *** *	** **	*** ** **	** ***	**	
+ + +	$\Xi(2250)$ $\Xi(2370)$ $\Xi(2500)$	$\Xi(2250)$ ** $\Xi(2370)$ • Not much is known about Ξ^* $\Xi(2500)$ • First excited state is not found• Analog of $\Lambda(1405)$ with ½-• $\Xi(1620)/\Xi(1690)$ are candidates for ½ ⁻ , ½ ⁺ \rightarrow Inconsistent with constituent quark model					, ½+ ark model	3-body decays 3-body decays 3-body decays

Prediction by constituent QM

• Predicted first excited state in constituent quark model is around 1800 MeV.

Previous experiments of $\Xi(1620)^0/\Xi(1690)^0$

https://doi.org/10.1103/PhysRevLett.122.072501

$\Xi(1620)/\Xi(1690)$ in $\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$ at Belle

Ξ^{*0} in $\Xi_{c}^{+} \rightarrow \Xi^{-}\pi^{+}\pi^{+}$ at Belle

As a substructure in weak decay of charmed baryons Many charmed baryons in Belle data Charmed baryon has advantage.

$$\Xi_{c}^{+} \rightarrow \Xi^{*0}\pi^{+}$$
$$\rightarrow \Xi^{-}\pi^{+}\pi^{+}$$
$$\rightarrow \Lambda\pi^{-}\pi^{+}\pi^{+}$$
$$\rightarrow p\pi^{-}\pi^{-}\pi^{+}\pi^{+}$$

Dalitz plot and $M(\Xi^-\pi^+)$ of $\Xi_c^+ \to \Xi^-\pi_L^+\pi_H^+$

invariant mass spectrum $\Xi^- \pi_L^+$

Determination of mass and width of $\Xi(1620)^0$

- ✓ Fitting function:
 - $\Xi(1530)$ -relativistic P-wave Breit-Wigner
 - $\Xi(1620)$ -relativistic S-wave Breit-Wigner + Gaussian
 - Ξ(1690) -relativistic S-wave Breit-Wigner + Gaussian (fixed mass/width)
 •Nonresonant- S-wave 3 body decay (phase space)
 - Combinatorial background (sideband events)

Interference between $\Xi(1620)$ and S-wave

invariant mass spectrum $\Xi^- \pi_L^+$

Determination of mass and width of $\Xi(1620)^0$

- Mass: $1610.4 \pm 6.0(stat.)^{+6.1}_{-4.2}(syst.) MeV/c^2$
- Width:
 - $59.9 \pm 4.8(stat.)^{+2.8}_{-7.1}(syst.) MeV$
 - Consistent with previous experiments
 - Much more precise
 - ✓ Large width
- Significance

 25σ for $\Xi(1620)^0$, 4.0σ for $\Xi(1690)^0$

Fitting to invariant mass spectrum

w/ Interference btw $\Xi(1620)$ and s-wave nonresonance

w/o interference

Mass spectrum

Asymmetric shape is near $K\Lambda$ threshold.

-> Interference? Resonance or cusp?

1620~*M*(KΛ)

PHYS. REV. D 108, L031104 (2023)

Peak at $\Lambda\eta$ threshold in pK^- of $\Lambda_c^+ \to pK^-\pi^+$

PHYSICAL REVIEW LETTERS 130, 151903 (2023)

Signal in
$$M(\Lambda \pi^{\pm})$$
 in $\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$

PHYSICAL REVIEW LETTERS 130, 151903 (2023)

Signal in $M(\Lambda \pi^{\pm})$ in $\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$

Theoretical calculations

Eur. Phys. J. C (2023) 83:954 These two resonances are generated dynamically from the interaction in coupled channels of $\pi \Xi$, $\overline{K}\Lambda$, $\overline{K}\Sigma$, $\eta \Xi$ within the chiral unitary approach.

Some studies can generate both $\Xi(1620)$ and $\Xi(1690)$. Some studies mention the $\overline{K}N$ threshold effect.

 $M(\Xi^{-}\pi^{+})$ in $\Xi_{c}^{+} \rightarrow \Xi^{-}\pi_{L}^{+}\pi_{H}^{+}$

Asymmetric shape is near $K\Lambda$ threshold.

-> Interference? Resonance or cusp?

Ξ^* in missing mass – production process

PRL 51.951 (1983)

 $K^-p \to K^+X$

Missing?? Broad width / low statistics PRL 124,032002(2020)

Missing mass of photoproduction from CLAS

No evidence for higher mass Ξ^*

$$M(\Xi^-\pi^+)$$
 in $\Xi_c^+ \rightarrow \Xi^-\pi^+\pi^+$

- Only $\Xi(1530)$ is seen in the sideband spectrum.
- Absent of resonances in the sideband spectrum

EPJ C78, 252 (2018) / EPJC78, 928 (2018)

Observation of $\Xi_c(2930)^{-,0}$

Not seen in prompt process in $e^+e^- \rightarrow c\bar{c}$

Summary of Ξ^{\ast} study

Production processes

- $*K^-$ beam
- Photon beam
- $*e^+e^-$ collider → Direct (prompt) production / Substructure of charmed baryons

Decay processes

Invariant mass missing mass

$\Lambda_c (2625)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^- \text{ and } \Sigma_c \pi$

PRD 107, 032008 (2023)

$$\Lambda_c (2625)^+$$
 in PDG
 $I(J^P) = O(\frac{3}{2}^-)$ Status: ***

Mass difference

$$\Lambda_c (2625)^+ - \Lambda_c^+ = 341.65 \pm 0.13 \, MeV$$

• Width

$$\Gamma < 0.97 MeV$$

• Decay mode

 $\begin{array}{ll} \Lambda_c^+ \pi^+ \pi^- & \sim 67\% \ (\text{P} - \text{wave decay}) \\ \Sigma_c^{++,0} \pi^\pm & < 5\% \ (\text{D} - \text{wave decay}) \end{array}$

/			\sim
	Λ_c^+	$1/2^{+}$	****
	$\Lambda_{c}(2595)^{+}$	$1/2^{-}$	***
	$\Lambda_{c}(2625)^{+}$	$3/2^{-}$	***
	$\Lambda_{c}(2765)^{+}$		*
	$\Lambda_{c}(2860)^{+}$	$3/2^{+}$	***
	$\Lambda_{c}(2880)^{+}$	$5/2^{+}$	***
	$\Lambda_{c}(2940)^{+}$	$3/2^{-}$	***
	$\Sigma_{c}(2455)$	$1/2^{+}$	****
	$\Sigma_{c}(2520)$	$3/2^{+}$	***
	$\Sigma_{c}(2800)$		***

Measurement of Λ_c (2625)⁺ $\rightarrow \Lambda_c^+ \pi^+ \pi^-$

Measurement results of Λ_c (2625)⁺

• Mass difference

 $\Lambda_c (2625)^+ - \Lambda_c^+ = 341.518 \pm 0.006 \pm 0.049 \ MeV/c^2$ (341.65 ± 0.13 \ MeV/c^2 in PDG)

• Width

$$\Gamma < 0.52 MeV$$

(0.97 MeV in PDG)

Much precise

• Branching fractions

$$\frac{B(\Lambda_c \ (2625)^+ \to \Sigma_c^0 \pi^-)}{B(\Lambda_c \ (2625)^+ \to \Lambda_c^+ \pi^+ \pi^-)} = (5.19 \pm 0.23 \pm 0.40)\%$$

$$\frac{B(\Lambda_c \ (2625)^+ \to \Sigma_c^{++} \pi^-)}{B(\Lambda_c \ (2625)^+ \to \Lambda_c^+ \pi^+ \pi^-)} = (5.13 \pm 0.26 \pm 0.32)\% < 5\% \text{ in PDG}$$

Summary

- Belle is actively working on hadron physics.
- Ξ^* resonances

Observe $\Xi(1620)^0$ and $\Xi(1690)^0$ resonances in $\Xi_c^+\to\Xi^-\pi^+\pi^+$ $\Xi(1620)^0$ and $\Xi(1690)^0$ are candidates for $1/2^+$, $1/2^-$

Finding structure at 1620 is asymmetric shape. There is another possibility for this structure, threshold cusp.

• Studies of thershold cusp

Peak in pK^- of $\Lambda_c^+ \to pK^-\pi^+ \to \text{the } \eta\Lambda$ threshold cusp Signal in $M(\Lambda\pi^{\pm})$ in $\Lambda_c^+ \to \Lambda\pi^+\pi^+\pi^- \to \text{the } \overline{K}N$ threshold cusp or Σ resonance?

• $\Lambda_c (2625)^+$

Precise rearmament of mass and width, and first measurement of branching fraction ratio

These measurements can be used as inputs to theoretical models to understand the $\Lambda_c(2625)^+$ resonance.

• Belle & Belle II will discover more hadrons, and measure observables of hadrons.