

Belle and Belle II status and plans for radiative decays of the X(3872)

Vishal Bhardwaj
IISER Mohali
(on behalf of Belle II)

LHCb meets Theory: Probing the nature of the state using radiative decays 27 June 2024

Outline

- Tales of two B
- Charmonium at B-factory
- Radiative decays of X (3872)
- Prospects in Belle II
- Summary

Tales of two B

$\mathrm{e}^{+} \mathrm{e}^{-}$asymmetric colliders, excellent machine build
$>$ To test Standard Model mechanism for CP violation in B decays.
$>$ For precision test and search for New Physics beyond the Standard Model

Clean and ideal place to carry charmonium spectroscopy related business.

Belle to Belle II

Belle to Belle II

Vertex detector
 4 SVD layer $\rightarrow 2$ layers DEPFET + 4 layers DSSD Expected resolution of ~25 $\quad \mathrm{m}$ while in Belle $\sim 50 \mu \mathrm{~m}$

Barrel
Bellell
Super conducting coil

Belle to Belle II

Belle to Belle II

Vertex detector
4 SVD layer $\rightarrow 2$ layers
DEPFET + 4 layers DSSD
Expected resolution of
$\sim 25 \mu \mathrm{~m}$ while in Belle $\sim 50 \mu \mathrm{~m}$

Barrel
Bellell
Super conducting coil

More compact. Time of Propagation (barrel) and prox. foc. ARICH (Endcap) is used. Provide similar K / π separation with worse background condition.

Belle

Belle to Belle II

Belle to Belle II

Vertex detector
4 SVD layer $\rightarrow 2$ layers DEPFET + 4 layers DSSD Expected resolution of ~25 m while in Belle ${ }^{\sim} 50 \mu \mathrm{~m}$

CDC

Larger volume drift chamber, smaller drift cell. Faster electronics

More compact. Time of Propagation (barrel) and prox. foc. ARICH (Endcap) is used. Provide similar K / π separation with worse background condition.

Belle

Barrel
Bellell
Super conducting coil

2400
ECL
Barrel PID

.

KLM
KLM
Resistive place counter (Barrel)
Scintillation + WLSF + MCCP (endcap)

ECL
Old crystals are used with modified waveform sampling electronics to reject pile-up events.

Belle to Belle II

Real particles are color singlet

Baryons are red-bluegreen triplets
$\Lambda=$ usd
Mesons are coloranticolor pairs

Other possible combinations of quarks and gluons :

Pentaquark
$S=+1$
Baryon

Hexaquark
Tightly bound 6 quark state

Molecule loosely bound mesonantimeson "molecule"

Glueball
Color-singlet multigluon bound state
qव̄-gluon hybrid mesons

$$
\pi=\bar{u} d
$$

Tetraquark
Tightly bound diquark \& anti-diquark

$c \bar{c}$ (-like) states till now

- 2 decades has passed after the discovery of first $c \bar{c}$-like [$X(3872)$] by the Belle collaboration.
- Plenty of states have been found.
- Several states are seen in one process (not easy to understand).
- States have a non-zero charge, suggesting them to be tetraquark/molecule-like states.
- Instead of conventional spectroscopy, it is now exotic spectroscopy.

Production of $c \bar{c}$ (-like)

A few \% of B mesons decay into cō and $\mathrm{K}^{(*)}$

Easy to study. Low background. JPC using angular studies.

B-decays

Annihilation at smaller energy. γ

Initial state radiation

Two photon production \mathbf{e}^{+}

$X(3872)$ aka $\chi_{c 1}(3872)$

The most famous cī (-like) state
X(3872) was discovered in 2003 by Belle.

World average mass $\rightarrow 3871.64 \pm 0.06 \mathrm{MeV} / \mathrm{c}^{2}$
LHCb $3871.64 \pm \underset{\text { JEHP, } 08}{0.06 \pm 0.01}(2020) 123$
Belle $\quad 3871.85 \pm 0.27 \pm 0.19$
PRD 85,052004 (2011)
 How is it related to $\mathrm{D}^{0} \overline{\mathrm{D}}^{* 0}$? $\mathrm{D}^{0} \overline{\mathrm{D}}^{* 0}$ molecule or something else ?
$\mathrm{X}(3872)$ much narrower width $(\Gamma=1.19 \pm 0.21 \mathrm{MeV})$ than other charmonium states above \bar{D} threshold.

Observed in $\mathrm{D}^{0} \overline{\mathrm{D}}^{* 0}$ mode. PRD 107, 112011 (2023), PRL 97,162002 (2006), PRD 77,011102 (2008) and PRD 81, 031103 (2010)

eX(3872)otic

eX(3872)otic

X(3872) doesn't fit charmonium scheme with ease. Many explanation for X(3872) are proposed :

Tetraquark

Admixture

Radiative decay and X(3872) structure

Radiative decays can proceed via two mechanisms:
\checkmark Vector meson dominance
\checkmark Light quark annihilation

$$
\begin{aligned}
& \text { If } \mathrm{X}(3872) \text { is } 1^{++} \mathrm{c} \overline{\mathrm{C}}:-\mathrm{PRD} 73,014014(2006) \\
& \\
& \qquad \operatorname{BR}\left(\mathrm{X}(3872) \rightarrow \psi^{\prime} \gamma\right)>\mathscr{B R}(\mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \gamma)
\end{aligned} \sim \mathbf{5 - 1 5}
$$

If $X(3872)$ is admixture of $D^{0} \bar{D}^{* 0}$ bound state with a c \bar{c} meson : $\mathcal{B R}\left(\mathrm{X}(3872) \rightarrow \psi^{\prime} \gamma\right) / \mathcal{B R}(\mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \gamma)$ will suggest the admixture ratio. $\sim 0.5-5$

Precise measurement of this ratio is important to understand $X(3872)$ nature.

Analysis procedure

Reconstruct B (of interest)

Common variable used in analyses

$$
\begin{aligned}
& \boldsymbol{M}_{b c}=\sqrt{\boldsymbol{E}_{\text {beam }}^{2}-\boldsymbol{p}_{B}^{2}} \\
& \Delta \boldsymbol{E}=\boldsymbol{E}_{B}-\boldsymbol{E}_{\text {beam }} \\
& \boldsymbol{M}_{\psi_{\gamma}}
\end{aligned}
$$

Radiative decays in B meson

MC for illustration purpose

Radiative decays in B meson

MC for illustration purpose

PRL 107, 091803 (2011)

Mode	Events	Significance
$\mathrm{B}^{+} \rightarrow \mathrm{X}(\mathbf{3 8 7 2}) \mathrm{K}^{+}$	$30.0_{-7.4}^{+8.2}$	$\mathbf{4 . 9} \boldsymbol{\sigma}$
$\mathrm{~B}^{\mathbf{0}} \rightarrow \mathbf{X (3 8 7 2)} \mathrm{K}_{\mathrm{s}}{ }^{\mathbf{0}}$	$5.7_{-2.8}^{+3.5}$	$\mathbf{2 . 4} \boldsymbol{\sigma}$

Clear observation of $X(3872) \rightarrow J / \psi \gamma$ in $\mathrm{B}^{+} \rightarrow \mathrm{X}(3872) \mathrm{K}^{+}$
$>\mathscr{B R}\left(\mathrm{B}^{+} \rightarrow \mathrm{X}(3872) \mathrm{K}^{+}\right) \times \mathfrak{B R}(\mathrm{X}(3872) \rightarrow$ $\mathrm{J} / \Psi \gamma)$ is $(1.78 \pm 0.46 \pm 0.12) \times 10^{-6}$

$$
\frac{\mathcal{B R}(X(3872) \rightarrow J / \psi \gamma)}{\mathcal{B R}(X(3872) \rightarrow J \psi \pi \pi)}=0.22 \pm 0.05
$$

Using Belle $\mathrm{X}(3872) \rightarrow \mathrm{J} / \psi \pi \pi$ result from
PRD84,052004 (2011)
$>\mathscr{B R}\left(\mathrm{B}^{0} \rightarrow \mathrm{X}(3872) \mathrm{K}^{0}\right) \times \mathscr{B R}(\mathrm{X}(3872) \rightarrow \mathrm{J} / \Psi \gamma)$
is $<2.4 \times 10^{-6}$ (@ 90\% CL)

- Current measurements are statistically limited.
- With current statistics, one can expect.
statistical uncertainty of ~ 0.38.

Search for $X(3872) \rightarrow \psi(2 S) \gamma$
$B \rightarrow(\psi(2 S) \gamma) \mathrm{K}$

- Low energy γ

\circ Cuts used to reduce background in $\mathrm{B} \rightarrow(\mathrm{J} / \psi \gamma) \mathrm{K}$ study, reduce more signal than background in $B \rightarrow(\psi(2 S) \gamma) K$

Photon selection
$\checkmark \mathrm{E}_{\gamma}>100 \mathrm{MeV}$

- $\psi(2 S) K^{*}$ veto used to reduce background coming from $B \rightarrow \psi(2 S) K^{*}$

Background study

Parameterize and fix using large $B \rightarrow \psi \times$ MC and non $-\psi$ data sideband
ψ refers to J / ψ or $\psi(2 S)$

772 M BB

 $\psi(2 S) K^{*}, \psi(2 S) K$ background component
$B \rightarrow X(3872) K$

$\mathbf{B}^{ \pm} \rightarrow \mathbf{X K}^{ \pm}$
5_{-11}^{+12}
$\mathbf{0 . 4 \sigma}$

Combinatorial background

Belle + Belle II combine study

- One can reanalyse the Belle data while analysing the Belle II data.
- This way one can exploit the full potential of both experiments.
- Current available data set
- Belle : $711 \mathrm{fb}^{-1}$
- Belle II: $363 \mathrm{fb}^{-1}$ (processed good runs)
- Belle II reconstruction efficiency is 15-20 \% more than Belle.
- Thanks to the better tracking and reconstruction algorithm.
- In Belle, we plan to re-analyse the data differently
- Extract signal using fit 2D UML fit to $M_{b c}$ and $M_{\psi \gamma}$ distributions

Preliminary

Belle II MC toy
(for illustration purpose)

- This way one can be more confident about the robustness of the analysis.
- Using BDT to suppress $B \rightarrow \psi(2 S) K^{*}$ for better sensitivity.
- Will use $B^{+} \rightarrow X(3872) K^{+}$and $B^{+} \rightarrow X(3872) K_{s}^{0}$ decay mode
- Simultaneous fit to be performed to Belle and Belle II data set.
- Rough estimate suggest :
$>\sim 50$ events for $\mathrm{B}^{+} \rightarrow \mathrm{X}(3872) \mathrm{K}^{+}, \mathrm{X}(3872) \rightarrow \mathrm{J} / \Psi \gamma$
$>$ 24-34 events for $\mathrm{B}^{+} \rightarrow \mathrm{X}(3872) \mathrm{K}^{+}, \mathrm{X}(3872) \rightarrow \psi(2 \mathrm{~S}) \gamma$ (using reeent LHCb result)

In Progress!

Background study

Preliminary MC Arbitrary y-axis
$>$ Reduce the K^{*} component using BDT.
$>$ However, one has to be careful.
$>$ Without understanding BDT, there is a danger of shaping background more like signal
One trained BDT example

$B \rightarrow \psi(2 S) K^{*}$

Conclusion

Radiative decays of $X(3872)$ help in its understanding

- Belle previous result $\mathfrak{B R}\left(\mathrm{X}(3872) \rightarrow \Psi^{\prime} \gamma\right) / \mathfrak{B R}\left(\mathrm{X}(3872) \rightarrow \mathrm{J} / \Psi_{\gamma}\right)<2.1$ result is consistent with recent LHCb result and also BESIII result.

Useful to have theoretical predictions for a particular model in all three ratios :

$$
\frac{\mathscr{B R}(X \rightarrow J / \psi \gamma)}{\mathscr{B R}(X \rightarrow J / \psi \pi \pi)}, \frac{\mathscr{B R}(X \rightarrow J / \psi \omega)}{\operatorname{BR}(X \rightarrow J / \psi \pi \pi)} \text { and } \frac{\operatorname{BR}\left(X \rightarrow \psi^{\prime} \gamma\right)}{\operatorname{BR}(X \rightarrow J / \psi \gamma)}
$$

One should be able to constraint the model

* Belle II is working to (re)analyse the radiative $X(3872)$.
*We expect 24-34 signal events for $\mathrm{B}^{+} \rightarrow \mathrm{X}(3872) \mathrm{K}^{+}, \mathrm{X}(3872) \rightarrow \psi(2 \mathrm{~S}) \gamma$ (using LHCb recent result).
- Even after lot of work put by scientific community. - X(3872) is still playing hide and seek.

Three experiments: Belle II, BESIII and LHCb measurement will help in solving its mystery.

Thank you

m_{x} Distribution, Data vs. MC PRL 102, 132001 (2009)

sPlot fitting

$$
\mathfrak{B R}\left(\mathrm{B}^{+} \rightarrow \chi_{\mathrm{c} 2} \mathrm{~K}^{+}\right)=(1.11 \pm 0.35 \pm 0.09) \times 10^{-5}
$$

Mode	Events	$\Sigma(\sigma)$
$\mathrm{B}^{0} \rightarrow \chi_{\mathrm{cc}} \mathrm{K}_{\mathrm{s}}{ }^{0}$	542 ± 24	
$\mathrm{~B}^{0} \rightarrow \chi_{\mathrm{c} 2} \mathrm{~K}_{\mathrm{s}}{ }^{0}$	$2.8_{-3.9}^{+4.7}$	$\mathbf{0 . 7}$

$\mathcal{B R}\left(\mathrm{B}^{0} \rightarrow \chi_{\mathrm{c} 2} \mathrm{~K}^{0}\right)<1.5 \times 10^{-5}(@ 90 \% \mathrm{CL})$

