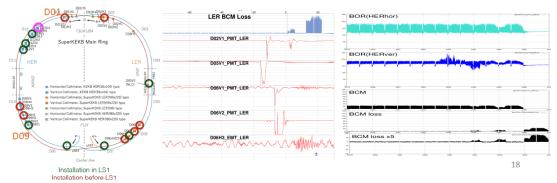

Machine Detector Interface (MDI)

MDI group structure

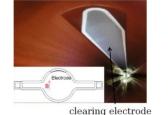
from B2GM MDI session https://kds.kek.jp/event/52430/ (← need KEK KDS account) see also Run Coordinator's talk at B2GM

https://indico.belle2.org/event/13003/contributions/80750/attachments/30756/45438/B2GM_Runco_kuno_2024.10.07.pdf

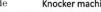

Sudden Beam Loss (SBL)

Adding more monitors help to understand the problem. Faster beam abort.

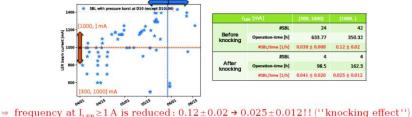
Sudden Beam Loss in 2024c


HER SBL: Not understood yet (no clearing electrode in HER)

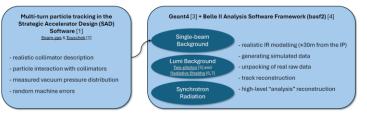
- Need fast beam abort to protect our system against HER SBLs
 - Result of loss monitors: initial loss on all HER SBL is D9V1/D9V3
 - \rightarrow Installed optical fiber around the collimators for beam aborts
- Expectation ~5 us earlier (preliminary) Add Monitors to understand HER SBLs
 - Acoustic sensors around collimators to check electric discharges
 - PMT/EMT around HER collimators to understand feature of HER SBL
- Continue analyzing HER SBLs by combining info of all monitors


Knocker studies

knocked beam pipes on D10 wiggler with clearing electrodes (with beams at 600-1000 mA

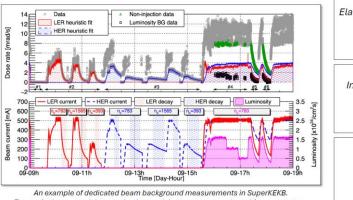


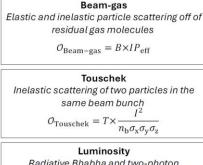
Knocker machine



Beam Background

Background Simulation Software


went | Phys. Conf. Ser. 331 (3)-032024 201


A. Natochii I Background Simulation in Belle I

September 25, 2024

Background Measurements

A dedicated beam-induced background measurement is performed to measure each background component separately, usually twice a year.

Radiative Bhabha and two-photon processes

 $\mathcal{O}_{\text{Lumi}} = L \times \mathcal{L}$

Top: typical measured detector background; bottom: measured machine parameters.

September 25, 2024

· Dominant backgrounds

and neutrons

 LER single-beam Luminosity

HER single-beam background ~10%

· We start to see SEUs due to EM shows

In 2022, due to beam current increase

(<10 ms) we start seeing detector performance degradation (e.g. CDC

SR is of no concern for the PXD

A. Natochii | Background Simulation in Belle II

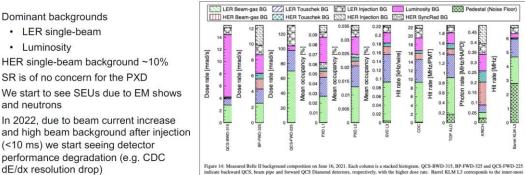
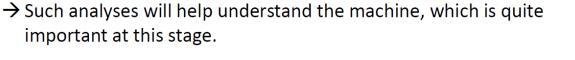
26

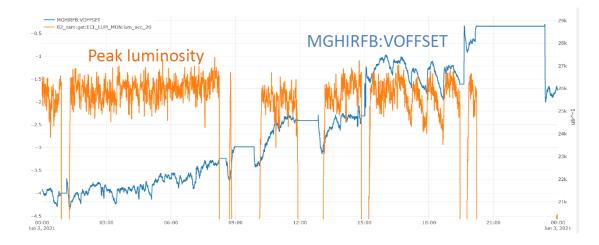
Andrii Natochii, PhD in Physics

E-mail: natochii@bnl.gov

Background Composition

<u>June 16, 2021</u> at the following beam condition: $I^{\text{LER/HER}} = 732.6/647.2 \text{ mA}$, $n_b = 1174$, $\sigma_x^{\text{LER/HER}} = 184.6/151.0 \text{ µm}$, $\sigma_y^{\text{LER/HER}} = 60.7/36.2 \text{ µm}$, $\sigma_z^{\text{LER/HER}} = 6.5/6.8 \text{ nm}$, $P^{\text{LER/HER}}_{--} = 88.7/24.3 \text{ nPa}$, and $\mathcal{L} = 2.6 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$. Beam-


Figure 14: Measured Bellie Hockground composition on June 16, 2021. Each column is a tackock histogram. QCS-BWD 315, BJP-PWD-225 indicate backward QCS, beam pipe and forward QCS Diamond detectors, respectively, with the higher dose rate. Burrel KLM L3 corresponds to the inner-most RPC layer in the hardr region of the KLM detector. TOP ALD shows the averaged background over ALD-type MCP-PMTs, slots from 3 to 9.

dE/dx resolution drop)

Anomaly Detection, Correlation Studies

- EPICS was selected as the base of the KEKB/SuperKEKB/Linac control system.
 - About 140,000 PVs archived for SuperKEKB (<u>SuperKEKB archiver viewer</u>)
 - About 190,000 PVs archived for Linac (Linac archiver viewer)
- These archived PVs could contain some important information that we have missed.
- The strategy of the analyses is to go through all the PVs to find out such information without any bias.
 - 1) Correlation of a PV in question with other PVs.
 - 2) Anomalies in PVs that coincide with an event.

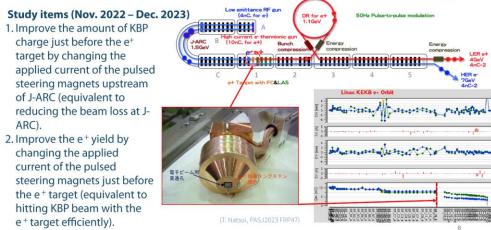
PV (Process Variable): various measured values recorded in EPICS (e.g. temperature, currents, voltages etc.)

Correlation with the luminosity

May 11, stable	Jur
B2_nsm:get:ECL_LUM_MON:lum_acc_20	.B2 ns
D2_NSW_8E4.202_20M_WOVF10H_202_20 CG_0PT:CAP:SIGMAY,0.9539593838409346 CG_0PR:SpecificLuminosity,0.95340081189522	CG OPT
CG_OPR SpecificLuminosity 0_95340081189522	CG OPF
B2_nsm:get:MONZDLMINT:ZDLM_INTVAL:value,0.7323845639724574	MGHIRE
CO KIKAI: AMN013, 0. 6169194285092101	VAHCCO
CO KIKAI: ATU022, 0. 6140406611947532	VAHTME
CO KIKAI: ATU094, 0. 613565996173172	CGHOBT
RFDKPS:DRAB:CATH:V. 0. 612212645892594	B2 PXC
RFDKPS:DRAB:CATH:V,0,612212645892594 MGHPS:ZVQDRME_1:IMON,0,6007336659906405 RFHNC:D04H:DFBCNT:KLYPLL_LW_THETA.0,5975777592616801 PEHKPS:D11CD:66KV:V.0,5926423256571776	BMH:MC
RFHNC:D04H:DFBCNT:KLYPLL_LW_THETA.0.5975777592616801	VAHCCO
RFHKPS:D11CD:66KV:V.0.5926923256571776	BMH:MC
RFHKPS:D04:AFC:HEAD_EXI_WTR, 0. 586420950117708	BMH:MC
RFLNC:D05B:IPPS1:V0L.0.5850282905447053	BMH:MQ
CO_KIKAI:ANK557.0.5844086656511095	BMH: MC
WGLPS:ZHQW8NLP:IRB, 0. 5828148983260628	BMH:MC
MGLPS: ZHQW8NLP: CREG. 0. 5828148983260085	BMH : MC
MGLPS:ZHQW8NLP:KRB, 0. 582814898325963	BMH:MC
WGHPS:ZHQF2E_14:IMON, 0.5825703152043628	BMH: MC
CO_KIKAI:ANK501.0.5825582691703176	BMH:MC
RFLNC:D07A:KPLL:OUT.0.5817426863720431	BMH:MC
WGLPS:ZHQF2P_33:KDIR, 0. 5789501736505192	BMH:MC
CO_KIKAI:AFJOO2.0.5786863442863353	BMH : MC
CO_KIKAI:ANK587.0.578129548285235	BMH:MC
WGLPS:ZHQW6NLP:1MON, 0. 5775863190828942	CGHOPT
WGHPS:ZVQD5E_36:REQVAL.0.5771874493983489	BMHXRM
CO_KIKAI:ANK551.0.5762953079448577	BMHXRM
WGLPS:ZHQT4FOP_2:IMON, 0.5761171382022856	BMH: MC
CO_KIKAI:AMNO21_0_5749461365845326	BML:MC

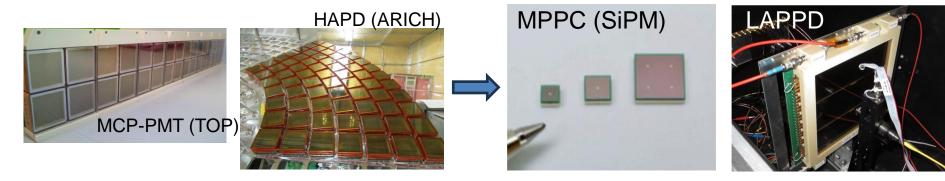
June 2, zig-zag	
, B2_nsm:get:ECL_LUM_MON:lum_acc_20 CG_OPT:CAP:SIGMAY.0.9539216946156772	
CG OPR: SpecificLuminosity, 0. 9524602477964494	
MGH1RFB: VOFFSET, 0. 8373144982809665	
VAHCCG:D02_H23:PRES.0.8023066597214472	
VAHTMP: D02_272: BC1RE: IR, 0. 7950271476802423	
CGH0BT:PMD01H1:Y.0.7902590114295769 B2 PXD:V:BW:PhotonRate:RATE:cur.0.782311554014940	60
BMH: MQLB3LE: POS. PYP. 0. 7738515502989451	00
VAHCCG: D02 H22: PRES. 0. 7592883757536777	
BMH: MQF2E14: POS. PYP, 0. 7493098349812423	
BMH:MQD1E1:POS. PYP, 0. 7483174157558071	
BMH: MQLY3LE: POS. PYP, 0. 7476312673899168	
BMH: MQD3E3: POS. PYP. 0. 7457808461325243	
BMH: MQLA3LE: POS. PYP, 0. 7419381320409151 BMH: MQF4E5: POS. PYP, 0. 7411529768294762	
BMH: MQD5E14: POS. PYP, 0. 7367526431746776	
BMH: MQF2E2: POS. PYP. 0. 7329896361417577	
BMH: MQF2E1: POS. PYP. 0. 7328811288547984	
BMH:MQD5E3:POS. PYP, 0. 7297643598709952	
BMH:MQD3E4:POS. PYP, 0. 7246581150761181	
BMH: MQD3E5: POS. PYP, 0. 7237208359120538	
BMH: MQD5E6: POS. PYP, 0. 7213829602292965	
CGHOPT:IP:SIGMAY.0.7156394309325419 BMHXRM:BEAM:SIGMAYatIP.0.7156394309325419	
BMHXRM: BEAM: SIGMAY, 0. 7156394309322618	
BMH: MQT2TNE2: POS. PYP. 0. 7150191423868437	
BML: MQF4P15: POS. PYP. 0. 7147008146015309	

K. Matsuoka


Machine Learning


KCG shifters need to "watch" or "optimize" ~20-30 parameters (experts handle more.)

H. Nakayama


Black-box optimization-assisted Linac tuning

Black-box optimization-assisted Linac tuning

PID (Photo detector)

Replacement of photodetectors are under consideration (long-time project) For ARICH:

- HAPDs are discontinued (no more production).
- MPPC (SiPM) has better performance (PDE) but has large concern on the dark count and radiation damage (>10¹² n / cm² @ 1 MeV equiv. is expected.)
 - ✓ Cooling (~ -40° C ?) is necessary.
 - Readout electronics with fast timing capability (fastIC chip developed for LHCb ARICH is a candidate)
- LAPPD looks a promising option, but it is still at development.

SVD service tasks

- Open tasks in SVD software, from Luigi's presentation at the SVD parallel:
 - BIISVD-449, Study offline performance of 3-sample acquisition mode
 - [–] BIISVD-464, SVD reconstruction improvements towards 3-sample use
 - ⁻ issue-874, Automate the production of SVD performace and validation plots
 - issue-879, Automate calibration of SVD Hot Strips
 - Software coordinators cannot replace supervisors for helping with technical skills, <u>prerequisite test</u> to be passed by newcomers before requesting for a service task!
- PI supervision and guidance essential to help students ramp up and have positive results
 - Regular attendance to SVD meetings is essential to be aware of what's going on and discuss with all experts possible issues
- New milestones/uncovered issues might require to find new people for service tasks in SVD software
- Any interest in covering the open tasks?