Flavor physics: A Theoretical Introduction

Amol Dighe Department of Theoretical Physics, TIFR

Belle-2 Analysis Workshop (BAW 2024) IIT Hyderabad, 19 - 23 Oct 2024

KORKARA KERKER DAGA

Outline

- [Role of flavor physics in building up the SM](#page-2-0)
- 2 [The CKM paradigm and its precision tests](#page-24-0)
- 3 [Some results that have been in the limelight](#page-65-0)
- **[Rare FCNC processes](#page-73-0)**
-
- 5 [Looking for BSM Physics](#page-84-0)
	- [Specific new physics models](#page-87-0)
	- [Model-independent BSM searches](#page-92-0)

KORK ERKER ADAM ADA

Outline

1 [Role of flavor physics in building up the SM](#page-2-0)

- [The CKM paradigm and its precision tests](#page-24-0)
- 3 [Some results that have been in the limelight](#page-65-0)

KEL KALEY KEY E NAG

- [Rare FCNC processes](#page-73-0)
- **[Looking for BSM Physics](#page-84-0)** • [Specific new physics models](#page-87-0) • [Model-independent BSM searches](#page-92-0)

$\bullet \tau - \theta$ puzzle \Rightarrow Parity violation

• Cabibbo angle \Rightarrow weak coupling universality ⊕ quark mixing

- GIM mechanism \Rightarrow no FCNC at tree level, charm
- CKM paradigm \Rightarrow (at least) three quark families
- Large $B-\overline{B}$ mixing \Rightarrow heavy top quark (box)
- Rate of radiative *B* decay \Rightarrow top quark mass (penguin)

- $\bullet \tau \theta$ puzzle \Rightarrow Parity violation
- \bullet Cabibbo angle \Rightarrow weak coupling universality ⊕ quark mixing
- GIM mechanism \Rightarrow no FCNC at tree level, charm
- CKM paradigm \Rightarrow (at least) three quark families
- Large $B-\overline{B}$ mixing \Rightarrow heavy top quark (box)
- Rate of radiative *B* decay \Rightarrow top quark mass (penguin)

KORKARA KERKER DAGA

- $\bullet \tau \theta$ puzzle \Rightarrow Parity violation
- \bullet Cabibbo angle \Rightarrow weak coupling universality ⊕ quark mixing
- GIM mechanism \Rightarrow no FCNC at tree level, charm
- CKM paradigm \Rightarrow (at least) three quark families
- Large $B-\overline{B}$ mixing \Rightarrow heavy top quark (box)
- Rate of radiative *B* decay \Rightarrow top quark mass (penguin)

KORKARA KERKER DAGA

- $\bullet \tau \theta$ puzzle \Rightarrow Parity violation
- \bullet Cabibbo angle \Rightarrow weak coupling universality ⊕ quark mixing
- GIM mechanism \Rightarrow no FCNC at tree level, charm
- CKM paradigm \Rightarrow (at least) three quark families
- Large $B-\overline{B}$ mixing \Rightarrow heavy top quark (box)

• Rate of radiative *B* decay ⇒ top quark mass (penguin)

- $\bullet \tau \theta$ puzzle \Rightarrow Parity violation
- \bullet Cabibbo angle \Rightarrow weak coupling universality ⊕ quark mixing
- GIM mechanism \Rightarrow no FCNC at tree level, charm
- CKM paradigm \Rightarrow (at least) three quark families
- Large $B-\overline{B}$ mixing \Rightarrow heavy top quark (box)

KORKARA KERKER DAGA

Rate of radiative *B* decay ⇒ top quark mass (penguin)

- $\bullet \tau \theta$ puzzle \Rightarrow Parity violation
- \bullet Cabibbo angle \Rightarrow weak coupling universality ⊕ quark mixing
- GIM mechanism \Rightarrow no FCNC at tree level, charm
- CKM paradigm \Rightarrow (at least) three quark families
- Large $B-\overline{B}$ mixing \Rightarrow heavy top quark (box)
- **•** Rate of radiative *B* decay \Rightarrow top quark mass (penguin)

Discovery of parity violation: 1956-57

- $\sigma \tau \theta$ puzzle: Particles with the same mass and lifetime decay to $\pi\pi$ and $\pi\pi\pi$
- Theoretical possibility that mirror world does not behave the same as the real world Phys. Rev. **104**, 254 (1956)
- **•** Experiments: 1957
	- \bullet Wu (${}^{60}Co$)
	- Friedman-Telegdi,

KEL KALEY KEY E NAG

• Nobel prize 1957: Lee–Yang

Discovery of parity violation: 1956-57

- $\sigma \tau \theta$ puzzle: Particles with the same mass and lifetime decay to $\pi\pi$ and $\pi\pi\pi$
- Theoretical possibility that mirror world does not behave the same as the real world T.D.Lee and C.N.Yang, Phys. Rev. **104**, 254 (1956)
- **•** Experiments: 1957
	- \bullet Wu (${}^{60}Co$)
	- **•** Friedman-Telegdi,

KORK ERKER ADAM ADA

• Nobel prize 1957: Lee–Yang

Discovery of parity violation: 1956-57

- $\sigma \tau \theta$ puzzle: Particles with the same mass and lifetime decay to $\pi\pi$ and $\pi\pi\pi$
- Theoretical possibility that mirror world does not behave the same as the real world T.D.Lee and C.N.Yang, Phys. Rev. **104**, 254 (1956)
- **•** Experiments: 1957
	- \bullet Wu (60 Co)
	- **•** Friedman-Telegdi, Garwin-Lederman-Weinrich $(\pi^+ \to \mu^+ \to \mathbf{e}^+)$

KORK ERKER ADAM ADA

o Nobel prize 1957: Lee–Yang

Universality of weak interactions: Cabibbo angle

Interrelated coupling constants:

- (i) muon decay: q_{e_i} $\mu^+\to\nu_\mu$ e $^-\bar{\nu}_e$
- (ii) neutron decay : *gud* $n \rightarrow pe^{-}\bar{\nu}_{e}$ (*d* $\rightarrow ue^{-}\bar{\nu}_{e}$)
- (ii) kaon decay: *gus* $\mathcal{K}^- \rightarrow \pi^0 e^- \bar{\nu}_e$ ($s \rightarrow u e^- \bar{\nu}_e$)

 $|g_{e\mu}|^2=|g_{\mu d}|^2+|g_{\mu s}|^2$

Universality:

- There is only one coupling constant, $g = g_{e\mu}$
- *u* quark couples to only one combination of *d* and *s*: $d' \equiv \cos \theta_c \cdot d + \sin \theta_c \cdot s$

• Cabibbo angle θ_c : the first quark mixing angle Phys. Rev. Lett. **10**, 531 (1963)**KORK ERKER ADAM ADA**

Universality of weak interactions: Cabibbo angle

Interrelated coupling constants:

- (i) muon decay: *g*_{eu} $\mu^+\to\nu_\mu$ e $^-\bar{\nu}_e$
- (ii) neutron decay : *gud* $n \rightarrow pe^{-}\bar{\nu}_{e}$ (*d* $\rightarrow ue^{-}\bar{\nu}_{e}$)
- (ii) kaon decay: *gus* $\mathcal{K}^- \rightarrow \pi^0 e^- \bar{\nu}_e$ ($s \rightarrow u e^- \bar{\nu}_e$) $|g_{e\mu}|^2=|g_{\mu d}|^2+|g_{\mu s}|^2$

Universality:

- There is only one coupling constant, $g = g_{e\mu}$
- *u* quark couples to only one combination of *d* and *s*: $d' \equiv \cos \theta_c \cdot d + \sin \theta_c \cdot s$

• Cabibbo angle θ_c : the first quark mixing angle N. Cabibbo, "Unitary Symmetry and Leptonic Decays," Phys. Rev. Lett. **10**, 531 (1963)**KORKAR KERKER E VOOR**

Suppression of flavor-changing neutral currents

- Cabibbo angle unable to explain why $\Gamma(K_L \to \mu^+ \mu^-) << \Gamma(K^+ \to \mu^+ \nu_\mu)$
- **•** Possible explanation via another "c" quark: charge $+2/3$, couples to

 ${\boldsymbol s}' \equiv - \sin \theta_c \cdot {\boldsymbol d} + \cos \theta_c \cdot {\boldsymbol s}$

KOD KOD KED KED E VOOR

- The $s \rightarrow u \rightarrow d$ and $s \rightarrow c \rightarrow d$ contribution cancel, leading to the suppression of FCNC $s \rightarrow d$
- GIM mechanism: existence of the "charmed" quark.

Phys. Rev. D **2**, 1285 (1970)

Suppression of flavor-changing neutral currents

- Cabibbo angle unable to explain why $\Gamma(K_L \to \mu^+ \mu^-) << \Gamma(K^+ \to \mu^+ \nu_\mu)$
- **•** Possible explanation via another "c" quark: charge $+2/3$, couples to

 ${\bf s}' \equiv -\sin\theta_c\cdot{\bm d}+\cos\theta_c\cdot{\bm s}$

KOD KOD KED KED E VOOR

• The $s \rightarrow u \rightarrow d$ and $s \rightarrow c \rightarrow d$ contribution cancel. leading to the suppression of FCNC *s* → *d*

GIM mechanism: existence of the "charmed" quark. Phys. Rev. D **2**, 1285 (1970)

Suppression of flavor-changing neutral currents

- Cabibbo angle unable to explain why $\Gamma(K_L \to \mu^+ \mu^-) << \Gamma(K^+ \to \mu^+ \nu_\mu)$
- **•** Possible explanation via another "c" quark: charge $+2/3$, couples to

 ${\bf s}' \equiv -\sin\theta_c\cdot{\bm d}+\cos\theta_c\cdot{\bm s}$

KORK ERKER ADAM ADA

- The $s \rightarrow u \rightarrow d$ and $s \rightarrow c \rightarrow d$ contribution cancel, leading to the suppression of FCNC $s \rightarrow d$
- GIM mechanism: existence of the "charmed" quark.

S. L. Glashow, J. Iliopoulos and L. Maiani, "Weak Interactions with Lepton-Hadron Symmetry," Phys. Rev. D **2**, 1285 (1970)

Can Charge ⊕ Parity may be conserved ?

Parity: left landed \leftrightarrow right handed

- Neutrinos violate parity: they are only left-handed
- But antineutrinos are right-handed !
- Does that mean C and P violations cancel each other to give CP conservation ?

K ロ ⊁ K 個 ≯ K 違 ≯ K 違 ≯ … 違

 Ω

Charge-parity violated slightly

"Day and Night", M.C.Escher (Modifications by Tobias Hurth)

(ロトイ部) (君) (君) (君

 299

Testing CP violation in *K* decay

$K^0 \equiv d\bar{s}$ $\overline{K^0} \equiv s\bar{d}$

• CP eigenstates:

*K*₁ ≡ $(K^0 + \overline{K})/\sqrt{2}$ ⁄2 (CP even) $K_2 \equiv (K^0 - \overline{K})/\sqrt{2}$ (CP odd)

• CP even decay channel: $\pi\pi$

• CP odd decay channel: $\pi\pi\pi$

CP conservation ⇒

 $K_1 \rightarrow \pi \pi$ short-lived, K_{Short} $K_2 \rightarrow \pi \pi \pi$ long-lived, K_{Lone}

KORK ERKER ADAM ADA

 $\text{Original } K^0 = (K_{\text{Short}} + K_{\text{Long}})/\sqrt{2}$ 2

Testing CP violation in *K* decay

$$
K^0 \equiv d\bar{s} \qquad \overline{K^0} \equiv s\bar{d}
$$

• CP eigenstates:

*K*₁ ≡ $(K^0 + \overline{K})/\sqrt{2}$ ⁄2 (CP even) $K_2 \equiv (K^0 - \overline{K})/\sqrt{2}$ (CP odd)

- CP even decay channel: $\pi\pi$
- **•** CP odd decay channel: $\pi\pi\pi$
- CP conservation ⇒

 $K_1 \rightarrow \pi \pi$ short-lived, K_{Short} $K_2 \rightarrow \pi \pi \pi$ long-lived, K_{Long}

KORK ERKER ADAM ADA

 $\text{Original } K^0 = (K_{\text{Short}} + K_{\text{Long}})/\sqrt{2}$ 2

Testing CP violation in *K* decay

$$
K^0 \equiv d\bar{s} \qquad \overline{K^0} \equiv s\bar{d}
$$

• CP eigenstates:

$$
K_1 \equiv (K^0 + \overline{K})/\sqrt{2}
$$
 (CP even)

$$
K_2 \equiv (K^0 - \overline{K})/\sqrt{2}
$$
 (CP odd)

- **CP** even decay channel: $\pi\pi$
- CP odd decay channel: $\pi\pi\pi$
- CP conservation ⇒

 $K_1 \rightarrow \pi \pi$ short-lived, K_{Short} $K_2 \rightarrow \pi \pi \pi$ long-lived, K_{Long}

KORK ERKER ADAM ADA

 $\text{Original } K^0 = (K_{\text{Short}} + K_{\text{Long}})/\sqrt{2}$ 2

Discovery of CP violation: 1964

K ロ ト K 何 ト K ヨ ト K ヨ ト \Rightarrow 2990

Questions raised by the discovery of CP violation

- Is it small or large ? Is CP an approximate symmetry ?
- Is the symmetry breaking spontaneous?
- Where does it come from ? Are there extra interactions ?

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X 2 0

- 2 [The CKM paradigm and its precision tests](#page-24-0)
- 3 [Some results that have been in the limelight](#page-65-0)

KOD KARD KED KED BE YOUR

- [Rare FCNC processes](#page-73-0)
- **[Looking for BSM Physics](#page-84-0)** • [Specific new physics models](#page-87-0) • [Model-independent BSM searches](#page-92-0)

Nobel Prize 2008

Makato Kobayashi Toshihide Maskawa

イロメイ団メイ君メイ君メー君

 2990

... for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature

The Kobayashi-Maskawa paradigm

Flavor basis vs. mass basis:

$$
U' \equiv \begin{pmatrix} u \\ c \\ t \end{pmatrix} , D' \equiv \begin{pmatrix} d \\ s \\ b \end{pmatrix}
$$

Charged current in the basis of flavor eigenstates:

 $\mathcal{L}_{\textit{CC}} = \frac{g}{\sqrt{2}} \overline{U'_L} \gamma^\mu D'_L W^+_\mu + h.c.$

• Charged current in the basis of mass eigenstates:

 $\mathcal{L}_{CC} = \frac{g}{\sqrt{2}}\overline{U_{\!L}}\gamma^{\mu}(V_{UL}^{\dagger}V_{DL})D_{\!L}W_{\mu}^{+} + H.c.$

 V_{U} , V_{D} : unitary matrices that change the basis

Coupling between *U^L* and *DL*: (*g*/ 2)*VCKM*

The Kobayashi-Maskawa paradigm

Flavor basis vs. mass basis:

$$
U' \equiv \begin{pmatrix} u \\ c \\ t \end{pmatrix} , D' \equiv \begin{pmatrix} d \\ s \\ b \end{pmatrix}
$$

Charged current in the basis of flavor eigenstates:

 $\mathcal{L}_{\textit{CC}} = \frac{g}{\sqrt{2}} \overline{U'_L} \gamma^\mu D'_L W^+_\mu + h.c.$

• Charged current in the basis of mass eigenstates:

 $\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} \overline{U_L} \gamma^{\mu} (V_{UL}^{\dagger} V_{DL}) D_L W^+_{\mu} + H.c.$

 V_{U} , V_{D} : unitary matrices that change the basis

Coupling between *U^L* and *DL*: (*g*/ 2)*VCKM*

The Kobayashi-Maskawa paradigm

Flavor basis vs. mass basis:

$$
U' \equiv \begin{pmatrix} u \\ c \\ t \end{pmatrix} , D' \equiv \begin{pmatrix} d \\ s \\ b \end{pmatrix}
$$

Charged current in the basis of flavor eigenstates:

 $\mathcal{L}_{\textit{CC}} = \frac{g}{\sqrt{2}} \overline{U'_L} \gamma^\mu D'_L W^+_\mu + h.c.$

• Charged current in the basis of mass eigenstates:

 $\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} \overline{U_L} \gamma^{\mu} (V_{UL}^{\dagger} V_{DL}) D_L W^+_{\mu} + H.c.$

 V_{U} , V_{D} : unitary matrices that change the basis

Cabibbo-Kobayashi-Maskawa (CKM) matrix

Coupling between *U^L* and *DL*: (*g*/ √ 2)*VCKM*

 $V_{CKM} \equiv V_{UL}^{\dagger} V_{DL}$

$$
V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}
$$

=
$$
\begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)
$$

KORK ERKER ADAM ADA

- $\bullet \lambda \approx 0.2$: Cabibbo angle
- **•** *η*: the imaginary component of *V_{CKM}*
- \bullet η/ρ large \Rightarrow CP violation is large, not approximate
- All CP violation in terms of a single number:

$$
V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}
$$

=
$$
\begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)
$$

KORK ERKER ADAM ADA

$\bullet \lambda \approx 0.2$: Cabibbo angle

- **•** *η*: the imaginary component of *V_{CKM}*
- \bullet η/ρ large \Rightarrow CP violation is large, not approximate
- All CP violation in terms of a single number:

$$
V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}
$$

=
$$
\begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)
$$

KORKAR KERKER E VOOR

- $\bullet \lambda \approx 0.2$: Cabibbo angle
- **•** *η*: the imaginary component of *V_{CKM}*
- \bullet η/ρ large \Rightarrow CP violation is large, not approximate
- All CP violation in terms of a single number:

$$
V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}
$$

=
$$
\begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)
$$

KORKAR KERKER E VOOR

- $\bullet \lambda \approx 0.2$: Cabibbo angle
- **•** *η*: the imaginary component of *V_{CKM}*
- η/ρ large \Rightarrow CP violation is large, not approximate
- All CP violation in terms of a single number:

$$
V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}
$$

=
$$
\begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)
$$

KORK ERKEY EL POLO

- $\bullet \lambda \approx 0.2$: Cabibbo angle
- **•** *η*: the imaginary component of *V_{CKM}*
- η/ρ large \Rightarrow CP violation is large, not approximate
- All CP violation in terms of a single number: J arlskog invariant $J \equiv s_1 s_2 s_3 c_1^2 c_2 c_3 s_\delta = A^2 \lambda^6 \eta$

Unitarity relations and triangles

Unitarity relation $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

$$
\alpha \equiv \text{Arg}\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right) , \quad \beta \equiv \text{Arg}\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) , \quad \gamma \equiv \text{Arg}\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right) ,
$$

 $\bullet \ \alpha, \beta, \gamma$ rephase invariant, so well-defined $\alpha + \beta + \gamma = 180^{\circ}$ KID K@ K R B K R R B K DA C

More unitarity triangles

KEL KALEYKEN E YAN

All triangles have the same area, *J*/2 $\chi \equiv \beta_{\mathcal{S}} \equiv \phi_{\mathcal{S}} \equiv \text{Arg}\left(-\frac{V_{cs}V_{cb}^*}{V_{ts}V_{tb}^*}\right) \sim \lambda^2,$ $\chi'\equiv \beta_{\pmb{K}}\equiv {\rm Arg}\left(-\frac{V_{\pmb{\omega}}V_{\pmb{\omega}}^*}{V_{\pmb{\alpha}}V_{\pmb{\omega}}^*}\right)\sim \lambda^{\pmb{4}}\;,$
Only one phase controls CPV, only one Jarlskog invariant

KORK ERKER ADAM ADA

- SM predictions are severely restricted !
- A triangle can be constructed in multiple ways
- Measure sides, angles and check consistency

Only one phase controls CPV, only one Jarlskog invariant

KORK ERKER ADAM ADA

- SM predictions are severely restricted !
- A triangle can be constructed in multiple ways
- Measure sides, angles and check consistency

• Only one phase controls CPV, only one Jarlskog invariant

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

- SM predictions are severely restricted !
- A triangle can be constructed in multiple ways
- Measure sides, angles and check consistency

Only one phase controls CPV, only one Jarlskog invariant

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

- SM predictions are severely restricted !
- A triangle can be constructed in multiple ways
- Measure sides, angles and check consistency

Measurements for determination of CKM elements

$$
\begin{pmatrix}\nV_{ud} & V_{us} & V_{ub} \\
\pi \rightarrow \mu \nu & K \rightarrow \pi \ell \nu & B \rightarrow \pi \ell \nu, B_s \rightarrow K \ell \nu \\
K \rightarrow \mu \nu & A_b \rightarrow p \ell \nu\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\nV_{cd} & V_{cs} & V_{cb} \\
D \rightarrow \pi \ell \nu & D \rightarrow K \ell \nu & B_{(s)} \rightarrow D_{(s)}, D^*_{(s)} \ell \nu \\
D \rightarrow \ell \nu & D_s \rightarrow \ell \nu\n\end{pmatrix}
$$
\n
$$
\begin{pmatrix}\nV_{cd} & V_{cs} & V_{cb} \\
D \rightarrow \ell \nu & D_s \rightarrow \ell \nu \\
V_{td} & V_{ts} & V_{tb} \\
B^0 - \overline{B}^0 & B_s^0 - \overline{B}_s^0\n\end{pmatrix}
$$

Kロトメ部トメミトメミト ミニのQC

Semileptonic decays

 $|V_{ub}|$ and $|V_{cb}|$:

$$
\Gamma(b \to c\ell\nu) \approx \frac{G_F^2}{192\pi^2} |V_{cb}|^2 m_b^3 (m_b - m_c)^2
$$

$$
\Gamma(b \to u\ell\nu) \approx \frac{G_F^2}{192\pi^2} |V_{ub}|^2 m_b^5
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

Semileptonic constraints in the UT plane

• Semileptonic decays $b \rightarrow c \ell \nu$, $b \rightarrow u \ell \nu$

イロトメ 御 トメ きと メ きとし

 \Rightarrow

Measurement of angle γ

CPV in decay to charmed mesons:

CPV \propto *A*₁*A*₂ sin($\theta_2 - \theta_1$) sin($\delta_2 - \delta_1$) \propto sin($\delta_2 - \delta_1$) sin $\left[\text{Arg}\left(\frac{V_{ub}^* V_{cs}}{V_{ts} V}\right)\right]$ $\left[\frac{V_{\mu b}^* V_{cs}}{V_{cb}^* V_{us}}\right)\right]$ \propto sin γ $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 QQ

Constraints on γ in the UT plane

- **•** Semileptonic decays $b \rightarrow c \ell \nu$, $b \rightarrow u \ell \nu$
- "Charmed" decays *B* → *DK*

イロト イ押 トイヨ トイヨ トーヨー

Neutral meson mixing and oscillations

 B_q – $\overline{B_q}$ mixing: parametrization

 \bullet Oscillation and decay of $a|B_q\rangle + b|\overline{B}_q\rangle$:

$$
i\frac{d}{dt}\begin{pmatrix} a \\ b \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\Gamma\right)\begin{pmatrix} a \\ b \end{pmatrix}
$$

$$
\mathbf{M} \equiv \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} , \quad \Gamma \equiv \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22} \end{pmatrix}
$$

 $\langle CP|B_q\rangle = e^{i\varphi}|\bar{B}_q\rangle, \ \langle CP|\bar{B}_q\rangle = e^{-i\varphi}|B_q\rangle$

• CPT invariance : $M_{11} = M_{22}$, $\Gamma_{11} = \Gamma_{22}$

Hermiticity $M_{21} = M_{12}^*$, $\Gamma_{21} = \Gamma_{12}^*$

Mass difference and lifetime difference

• Mass eigenstates: $|B_{L,H}\rangle = p|B_{q}\rangle \pm q|\bar{B}_{q}\rangle$ $\langle |q|^2 + |p|^2 = 1 \rangle$ Mass difference Lifetime difference $\Delta m = M_H - M_I$ $\Delta \Gamma = \Gamma_I - \Gamma_H$ $(\rightarrow \Delta m > 0, \Delta \Gamma > 0$ in SM)

• Eigenvalue equations:

$$
(\Delta m)^{2} - \frac{1}{4}(\Delta \Gamma)^{2} = (4|M_{12}|^{2} - |\Gamma_{12}|^{2})
$$

$$
\Delta m \Delta \Gamma = -4 \text{Re}(M_{12}^{*} \Gamma_{12}).
$$

$$
\Delta m = 2|M_{12}| + O(m_b^4/m_t^4)
$$

\n
$$
\Delta \Gamma = -\frac{2\text{Re}(M_{12}^*\Gamma_{12})}{|M_{12}|} + O(m_b^4/m_t^4).
$$

Mass difference and lifetime difference

• Mass eigenstates: $|B_{L,H}\rangle = p|B_{q}\rangle \pm q|\bar{B}_{q}\rangle$ $\langle |q|^2 + |p|^2 = 1 \rangle$ Mass difference Lifetime difference $\Delta m = M_H - M_I$ $\Delta \Gamma = \Gamma_I - \Gamma_H$ $(\rightarrow \Delta m > 0, \Delta \Gamma > 0$ in SM)

• Eigenvalue equations:

$$
(\Delta m)^{2} - \frac{1}{4}(\Delta \Gamma)^{2} = (4|M_{12}|^{2} - |\Gamma_{12}|^{2})
$$

$$
\Delta m \Delta \Gamma = -4 \text{Re}(M_{12}^{*} \Gamma_{12}).
$$

$$
\Delta m = 2|M_{12}| + O(m_b^4/m_t^4)
$$

\n
$$
\Delta \Gamma = -\frac{2\text{Re}(M_{12}^*\Gamma_{12})}{|M_{12}|} + O(m_b^4/m_t^4).
$$

Mass difference and lifetime difference

• Mass eigenstates: $|B_{L,H}\rangle = p|B_{q}\rangle \pm q|\bar{B}_{q}\rangle$ $\langle |q|^2 + |p|^2 = 1 \rangle$ Mass difference Lifetime difference $\Delta m = M_H - M_I$ $\Delta \Gamma = \Gamma_I - \Gamma_H$ $(\rightarrow \Delta m > 0, \Delta \Gamma > 0$ in SM)

• Eigenvalue equations:

$$
(\Delta m)^{2} - \frac{1}{4}(\Delta \Gamma)^{2} = (4|M_{12}|^{2} - |\Gamma_{12}|^{2})
$$

$$
\Delta m \Delta \Gamma = -4 \text{Re}(M_{12}^{*} \Gamma_{12}).
$$

$$
\Delta m = 2|M_{12}| + O(m_b^4/m_t^4)
$$

\n
$$
\Delta \Gamma = -\frac{2\text{Re}(M_{12}^*\Gamma_{12})}{|M_{12}|} + O(m_b^4/m_t^4).
$$

Time evolution of a tagged B_q or \bar{B}_q decay

$$
A_f \equiv \langle f|B_q \rangle, \ \overline{A}_f \equiv \langle f|\overline{B}_q \rangle \ , \quad \lambda_f \equiv \frac{q}{\rho} \frac{\overline{A}_f}{A_f}
$$

 $(\lambda_f$ independent of the unphysical phase φ)

$$
\Gamma(B_q(t) \to f) = \mathcal{N}_f |A_f|^2 \frac{1 + |\lambda_f|^2}{2} e^{-\Gamma t} \times
$$

$$
\left[\cosh \frac{\Delta \Gamma_q t}{2} + \mathcal{A}_{CP}^{\text{dir}} \cos(\Delta m t) + \mathcal{A}_{\Delta \Gamma} \sinh \frac{\Delta \Gamma_q t}{2} + \mathcal{A}_{CP}^{\text{mix}} \sin(\Delta m t) \right],
$$

$$
\Gamma(\overline{B}_q(t) \to f) = \mathcal{N}_f |\overline{A}_f|^2 \frac{1 + |\lambda_f|^2}{2} e^{-\Gamma t} \times \left[\cosh \frac{\Delta \Gamma_q t}{2} - \mathcal{A}_{CP}^{\text{dir}} \cos(\Delta m t) + \mathcal{A}_{\Delta \Gamma} \sinh \frac{\Delta \Gamma_q t}{2} - \mathcal{A}_{CP}^{\text{mix}} \sin(\Delta m t)\right].
$$

$$
\mathcal{A}_{CP}^{\text{dir}}=\frac{1-\left|\lambda_f\right|^2}{1+\left|\lambda_f\right|^2},\qquad \qquad \mathcal{A}_{CP}^{\text{mix}}=-\frac{2\,\text{Im}\lambda_f}{1+\left|\lambda_f\right|^2}\quad \mathcal{A}_{\Delta\Gamma}=-\frac{2\,\text{Re}\lambda_f}{1+\left|\lambda_f\right|^2}\,,
$$

Constraints in the UT plane from ϵ in $K - \bar{K}$ system

- Semileptonic decays
	- $b \rightarrow c \ell \nu$, $b \rightarrow u \ell \nu$
- "Charmed" decays *B* → *DK*

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

 2990

o CP violation in K mesons

B_d - \bar{B}_d mixing constraints in the UT plane

$$
\Delta M_d = 2|M_d^{12}| \approx (V_{tb}V_{td}^*)^2 \frac{G_F^2}{6\pi^2} M_{B_d} B_{B_d} f_{B_d}^2 M_W^2 S_0(x_t)
$$

- Semileptonic decays $b \rightarrow c \ell \nu$, $b \rightarrow u \ell \nu$
- "Charmed" decays *B* → *DK*

K ロ X × 伊 X × ミ X × ミ X → ミ ミ …

- **CP violation in K mesons**
- ∆*M* in *B^d* –*B^d* system

B_s - \bar{B}_s mixing constraints in the UT plane

$$
\Delta M_{\rm s}=2|M_{\rm s}^{12}|\approx (V_{tb}V_{ts}^*)^2\frac{G_F^2}{6\pi^2}M_{B_{\rm s}}B_{B_{\rm s}}f_{B_{\rm s}}^2M_W^2S_0(x_t)
$$

- Semileptonic decays $b \rightarrow c \ell \nu$, $b \rightarrow u \ell \nu$
	- "Charmed" decays *B* → *DK*

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

- **CP violation in K mesons**
- ∆*M* in *B^d* –*B^d* system
- ∆*M* in *Bs*–*B^s* system

α measurement from decays to π and K

4 ロ > 4 何 > 4 ヨ > 4 ヨ > 1 299 B

- Semileptonic decays $b \rightarrow c \ell \nu$, $b \rightarrow u \ell \nu$
- "Charmed" decays *B* → *DK*

K ロ X × 伊 X × ミ X × ミ X → ミ ミ …

- **o** CP violation in K mesons
- ∆*M* in *B^d* –*B^d* system
- ∆*M* in *Bs*–*B^s* system
- \bullet Decays to π and K

β measurement from CP asymmetry in $B_d \to J/\psi K_S$

q p A¯ *A* $= e^{2i\beta}$

$$
\mathcal{A}_{J/\psi K_S} \equiv \frac{\frac{d\Gamma}{dt}(\bar{B}_d(t) \to J/\psi K_S) - \frac{d\Gamma}{dt}(B_d(t) \to J/\psi K_S)}{\frac{d\Gamma}{dt}(\bar{B}_d(t) \to J/\psi K_S) + \frac{d\Gamma}{dt}(B_d(t) \to J/\psi K_S)} \approx \sin 2\beta \sin(\Delta m t) .
$$

(ロ)→(個)→(理)→(理)→

重

β constraints in the UT plane

- Semileptonic decays $b \to c \ell \nu$, $b \to u \ell \nu$
- "Charmed" decays *B* → *DK*
- **CP violation in K mesons**
- ∆*M* in *B^d* –*B^d* system
- ∆*M* in *Bs*–*B^s* system
- **o** Decays to π and K
- **•** CP asymmetry in $B \to J/\psi K_S$

イロト イ押 トイヨ トイヨ トーヨー

More and more stringent tests of the CKM mechanism

• Semileptonic decays $b \rightarrow c \ell \nu$, $b \rightarrow u \ell \nu$

4 ロ > 4 何 > 4 ヨ > 4 ヨ > 1

 \Rightarrow

More and more stringent tests of the CKM mechanism

- Semileptonic decays $b \rightarrow c \ell \nu$, $b \rightarrow u \ell \nu$
- "Charmed" decays *B* → *DK*

(ロトイ部) (君) (君) (君

- Semileptonic decays
	- $b \rightarrow c \ell \nu$, $b \rightarrow u \ell \nu$
- "Charmed" decays *B* → *DK*

K ロ ⊁ K 個 ≯ K 違 ≯ K 違 ≯ … 違

 2990

o CP violation in K mesons

- Semileptonic decays $b \rightarrow c \ell \nu$, $b \rightarrow u \ell \nu$
- "Charmed" decays *B* → *DK*

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

- **o** CP violation in K mesons
- ∆*M* in *B^d* –*B^d* system

More and more stringent tests of the CKM mechanism

- Semileptonic decays $b \to c \ell \nu$, $b \to u \ell \nu$
- "Charmed" decays *B* → *DK*

- **CP violation in K mesons**
- ∆*M* in *B^d* –*B^d* system
- ∆*M* in *Bs*–*B^s* system

- Semileptonic decays $b \to c \ell \nu$, $b \to u \ell \nu$
- "Charmed" decays *B* → *DK*

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

- **o** CP violation in K mesons
- \circ ΔM in $B_d \overline{B_d}$ system
- ∆*M* in *Bs*–*B^s* system
- \bullet Decays to π and K

- Semileptonic decays $b \to c \ell \nu$, $b \to u \ell \nu$
- "Charmed" decays *B* → *DK*
- **CP violation in K mesons**
- ∆*M* in *B^d* –*B^d* system
- ∆*M* in *Bs*–*B^s* system
- \bullet Decays to π and K
- \bullet CP asymmetry in $B \rightarrow J/\psi K_S$

イロト イ押 トイヨ トイヨ トーヨー

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 9 Q Q *

1 [Role of flavor physics in building up the SM](#page-2-0)

- [The CKM paradigm and its precision tests](#page-24-0)
- 3 [Some results that have been in the limelight](#page-65-0)

KOD KARD KED KED BE YOUR

- [Rare FCNC processes](#page-73-0)
- **[Looking for BSM Physics](#page-84-0)** • [Specific new physics models](#page-87-0) • [Model-independent BSM searches](#page-92-0)

|*Vus*|: Cabibbo Angle Anomaly (CAA)

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

$\phi_{\mathtt{s}}^{\mathtt{J}/\psi\phi}$ $s^{\prime\prime\phi\phi}_{s}$: Angular analysis of $B_{s}\to J/\psi\phi$

 $\phi_{\bm{s}} = -2\beta_{\bm{s}}^{\bm{J/\psi}\phi}$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

x \equiv Δ*m*/Γ *y* \equiv ΔΓ/(2Γ)

イロトメ 倒 トメ 君 トメ 君 トー

 \equiv 990

τ vs electrons/muons

KOD KARD KED KED BE YOUR

• Affect $b \rightarrow c\tau\nu$, indicate lepton-universality violation ?

- **For semileptonic** *B* decays $b \to u \ell \nu$ and $b \to c \ell \nu$, inclusive decay rates are systematically larger than the exclusive ones.
- Lepton non-universality at play in $b \to c \ell \nu$?
- Lepton non-universality is severely constrained in the first
- A single hint may not be sufficient, but overall trends may point the way..

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q
- **For semileptonic** *B* decays $b \to u \ell \nu$ and $b \to c \ell \nu$, inclusive decay rates are systematically larger than the exclusive ones.
- Lepton non-universality at play in $b \to c \ell \nu$?
- Lepton non-universality is severely constrained in the first two generations, not so much for the third one. Models with *H* ⁺/*Z* ′ are natural candidates.
- A single hint may not be sufficient, but overall trends may point the way..

KORK ERKEY EL POLO

1 [Role of flavor physics in building up the SM](#page-2-0)

- [The CKM paradigm and its precision tests](#page-24-0)
- 3 [Some results that have been in the limelight](#page-65-0)

イロメイ団メイ君メイ君メー君

 2990

- [Rare FCNC processes](#page-73-0)
- **[Looking for BSM Physics](#page-84-0)** • [Specific new physics models](#page-87-0) • [Model-independent BSM searches](#page-92-0)

Flavour changing neutral current processes

- Suppressed in the SM due to the loop factor, CKM hierarchy, chiral structure and GIM mechanism.
- Boxes and penguins

CKM hierarchy predicts specific pattern of effects in the SM

$$
\frac{V_{ts}^* V_{td}}{K \text{ system}} \sim 5 \cdot 10^{-4} \ll \frac{V_{tb}^* V_{td}}{B_d \text{ system}} \sim 10^{-2} \ll \frac{V_{tb}^* V_{ts}}{B_s \text{ system}} \sim 4 \cdot 10^{-2}
$$

 $\triangleright K$ decays in general most sensitive to BSM physics

(Slide from M. Blanke)

KEL KALEYKEN E YAN

Exp-hard but Th-clean decays $K \to \pi \nu \bar{\nu}$:

NA62

Models can change the relative BRs of $\mathsf{K}_L \to \pi^0 \nu \bar{\nu}$ and $\mathsf{K}^+ \rightarrow \pi^+ \nu \bar{\nu}$ to a large extent

KEL KALEY KEY E NAG

Branching ratios of $B_s \to \mu^+\mu^-$ and $B_d \to \mu^+\mu^-$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ \Rightarrow 2990

Angular distributions

Angular distribution in $B \to K^* \mu^+ \mu^-$: $\frac{1}{\mathrm{d}\Gamma/dq^2}\frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi\,\mathrm{d}q^2} = \hspace{-.1cm}\frac{9}{32\pi}\left[\frac{3}{4}(1-F_{\rm L})\sin^2\theta_K + F_{\rm L}\cos^2\theta_K + \frac{1}{4}(1-F_{\rm L})\sin^2\theta_K\cos2\theta_\ell\right.$ $- F_{\rm L} \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi$ $+ S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi$ $+ S_6 \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi$ + $S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi$,

> **K ロ ト K 何 ト K ヨ ト K ヨ ト** 2990

The P_5' anomaly in $B\to K^*\mu\mu$

 $P'_5 = \frac{S_5}{\sqrt{F_1(1)}}$ *FL*(1−*FL*) , largely free from formfactor uncertainties Local discrepancy of 3.7 σ in P_5' .

Muons vs electrons:

4 ロ > 4 何 > 4 ヨ > 4 ヨ > 1 \equiv $2Q$ Flavor physics exploration is not linear. There are intricate networks and intertwined patterns

- **BSM Physics may be searched using deviations from SM** predictions. Needs good understanding of SM predictions
- Identification of theoretically clean and experimentally feasible decay modes / observables necessary
- Indirect hints for BSM physics possible, access to particles that have masses in excess of energies at colliders

KORK ERKER ADAM ADA

- Flavor physics exploration is not linear. There are intricate networks and intertwined patterns
- BSM Physics may be searched using deviations from SM predictions. Needs good understanding of SM predictions
- Identification of theoretically clean and experimentally feasible decay modes / observables necessary
- Indirect hints for BSM physics possible, access to particles that have masses in excess of energies at colliders

KORK ERKER ADAM ADA

- Flavor physics exploration is not linear. There are intricate networks and intertwined patterns
- BSM Physics may be searched using deviations from SM predictions. Needs good understanding of SM predictions
- Identification of theoretically clean and experimentally feasible decay modes / observables necessary
- Indirect hints for BSM physics possible, access to particles that have masses in excess of energies at colliders

KORK ERKEY EL POLO

- Flavor physics exploration is not linear. There are intricate networks and intertwined patterns
- BSM Physics may be searched using deviations from SM predictions. Needs good understanding of SM predictions
- Identification of theoretically clean and experimentally feasible decay modes / observables necessary
- Indirect hints for BSM physics possible, access to particles that have masses in excess of energies at colliders

KORK ERKEY EL POLO

1 [Role of flavor physics in building up the SM](#page-2-0)

- [The CKM paradigm and its precision tests](#page-24-0)
- 3 [Some results that have been in the limelight](#page-65-0)
- [Rare FCNC processes](#page-73-0)
- 5 [Looking for BSM Physics](#page-84-0) • [Specific new physics models](#page-87-0) • [Model-independent BSM searches](#page-92-0)

- Models motivated by broad open questions
- Models motivated by observed anomalies
- **Classes of models consistent with current data**
- Model-independent parameterizations of BSM physics

K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

Quantifying and constraining BSM physics

- [Role of flavor physics in building up the SM](#page-2-0)
- 2 [The CKM paradigm and its precision tests](#page-24-0)
- 3 [Some results that have been in the limelight](#page-65-0)
- **[Rare FCNC processes](#page-73-0)**
-
- 5 [Looking for BSM Physics](#page-84-0)
	- [Specific new physics models](#page-87-0)
	- [Model-independent BSM searches](#page-92-0)

KORK ERKER ADAM ADA

1 [Role of flavor physics in building up the SM](#page-2-0)

- [The CKM paradigm and its precision tests](#page-24-0)
- 3 [Some results that have been in the limelight](#page-65-0)

イロト イ押 トイヨ トイヨ トーヨー

 2990

- [Rare FCNC processes](#page-73-0)
- 5 [Looking for BSM Physics](#page-84-0) • [Specific new physics models](#page-87-0) • [Model-independent BSM searches](#page-92-0)

• Sensitive to minimal SUSY model parameters:

$$
\mathit{B}(B_q\to\mu\mu)\propto |V_{tb}^*V_{tq}|\frac{m_b^2m_\ell^2\tan^6\,\beta}{m_A^4}
$$

イロト イ押 トイヨ トイヨ トーヨー

 299

• Severely restricts large tan β

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Multiple things models with *Z* ′ and leptoquarks can do

• Enhance $K \to \pi \nu \bar{\nu}$ decay rates

Buras 2014

- Enhance Γ12, and hence ∆Γ, in *B^d* -*B*¯ *^d* and *Bs*-*B*¯ *^s* systems
- Enhance $B(B_s \to \tau \tau)$ by orders of magnitude

AD, Kundu, Nandi, 2007

• Account for the dimuon anomaly

AD, A. Kundu, S, Nandi, 2010

• Change the ratio of B_d and B_s lifetimes

AD, Ghosh, Kundu, Patra, 2011; AD, Ghosh, 2012

Vector-like lepton models

Four minimal models and Cabibbo Angle Anomaly:

 299

1 [Role of flavor physics in building up the SM](#page-2-0)

- [The CKM paradigm and its precision tests](#page-24-0)
- 3 [Some results that have been in the limelight](#page-65-0)
- [Rare FCNC processes](#page-73-0)
- 5 [Looking for BSM Physics](#page-84-0) • [Specific new physics models](#page-87-0)
	- [Model-independent BSM searches](#page-92-0)

KEL KALEY KEY E NAG

- Direct searches: Produce the heavy particle "on shell" and detect them through "peaks"
- o Indirect searches: "Off-shell" / Virtual heavy particles contribute to processes (if in loops, give quantum corrections)

イロト イ押 トイヨ トイヨト

 $2Q$

Effective field theories

- What happens inside the loop is not completely known
- Then what exactly is known from measurements?
- Bottom-up approach: Consider "effective" operators

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

 2990

- Model-independent, can handle multiple models.
- Strictly speaking, if an operator / WC is not forbidden by a symmetry, it must be allowed.
- But it is often convenient to study the effect of each WC separately
- Operators may be required to obey certain gauge symmetries
- Low-energy 0perators must originate in a high scale theory with such a gauge symmetry
- Low-scale WCs must be correlated, depending on the model
- Can we distinguish among high-scale theories by looking at low-energy Wilson coefficients ?

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

- Model-independent, can handle multiple models.
- Strictly speaking, if an operator / WC is not forbidden by a symmetry, it must be allowed.
- But it is often convenient to study the effect of each WC separately
- Operators may be required to obey certain gauge symmetries
- Low-energy 0perators must originate in a high scale theory with such a gauge symmetry
- Low-scale WCs must be correlated, depending on the model
- Can we distinguish among high-scale theories by looking at low-energy Wilson coefficients ?

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

- Model-independent, can handle multiple models.
- Strictly speaking, if an operator / WC is not forbidden by a symmetry, it must be allowed.
- But it is often convenient to study the effect of each WC separately
- Operators may be required to obey certain gauge symmetries
- Low-energy 0perators must originate in a high scale theory with such a gauge symmetry
- Low-scale WCs must be correlated, depending on the model
- Can we distinguish among high-scale theories by looking at low-energy Wilson coefficients ?

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q @

- Model-independent, can handle multiple models.
- Strictly speaking, if an operator / WC is not forbidden by a symmetry, it must be allowed.
- But it is often convenient to study the effect of each WC separately
- Operators may be required to obey certain gauge symmetries
- Low-energy 0perators must originate in a high scale theory with such a gauge symmetry
- Low-scale WCs must be correlated, depending on the model
- **Can we distinguish among high-scale theories by looking** at low-energy Wilson coefficients ?

Next two talks by Rukmani Mohanta and Suchismita Sahoo

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

- 1 [Role of flavor physics in building up the SM](#page-2-0)
- [The CKM paradigm and its precision tests](#page-24-0)
- 3 [Some results that have been in the limelight](#page-65-0)

KEL KALEY KEY E NAG

- [Rare FCNC processes](#page-73-0)
- **[Looking for BSM Physics](#page-84-0)** • [Specific new physics models](#page-87-0) • [Model-independent BSM searches](#page-92-0)

- Flavor physics, through loop processes, can access BSM physics at high energy scales, inaccessible for direct particle production. (Indirect searches for new physics)
- **•** Precision measurements, including those related to CKM
- Increasing precision on theoretical calculations is also important: lattice calculations for non-perturbative contributions, low-energy effective theories like HQET, SCET, ChPT
- Looking for predictions of well-motivated models can
- However, since what lies beyond SM is uncertain, model-independent searches using EFT techniques will play a big role in flavor physics in future.

- Flavor physics, through loop processes, can access BSM physics at high energy scales, inaccessible for direct particle production. (Indirect searches for new physics)
- **•** Precision measurements, including those related to CKM elements and rare decays, crucial in looking for NP
- Increasing precision on theoretical calculations is also important: lattice calculations for non-perturbative contributions, low-energy effective theories like HQET, SCET, ChPT
- Looking for predictions of well-motivated models can
- However, since what lies beyond SM is uncertain, model-independent searches using EFT techniques will play a big role in flavor physics in future.

- Flavor physics, through loop processes, can access BSM physics at high energy scales, inaccessible for direct particle production. (Indirect searches for new physics)
- **•** Precision measurements, including those related to CKM elements and rare decays, crucial in looking for NP
- Increasing precision on theoretical calculations is also important: lattice calculations for non-perturbative contributions, low-energy effective theories like HQET, SCET, ChPT
- Looking for predictions of well-motivated models can
- However, since what lies beyond SM is uncertain, model-independent searches using EFT techniques will play a big role in flavor physics in future.

- Flavor physics, through loop processes, can access BSM physics at high energy scales, inaccessible for direct particle production. (Indirect searches for new physics)
- **•** Precision measurements, including those related to CKM elements and rare decays, crucial in looking for NP
- Increasing precision on theoretical calculations is also important: lattice calculations for non-perturbative contributions, low-energy effective theories like HQET, SCET, ChPT
- Looking for predictions of well-motivated models can constrain their parameters in complementary ways
- However, since what lies beyond SM is uncertain, model-independent searches using EFT techniques will play a big role in flavor physics in future.

- Flavor physics, through loop processes, can access BSM physics at high energy scales, inaccessible for direct particle production. (Indirect searches for new physics)
- **•** Precision measurements, including those related to CKM elements and rare decays, crucial in looking for NP
- Increasing precision on theoretical calculations is also important: lattice calculations for non-perturbative contributions, low-energy effective theories like HQET, SCET, ChPT
- Looking for predictions of well-motivated models can constrain their parameters in complementary ways
- **However, since what lies beyond SM is uncertain,** model-independent searches using EFT techniques will play a big role in flavor physics in future.