Flavor physics: A Theoretical Introduction

Amol Dighe Department of Theoretical Physics, TIFR

Belle-2 Analysis Workshop (BAW 2024) IIT Hyderabad, 19 - 23 Oct 2024

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

- Role of flavor physics in building up the SM
- 2 The CKM paradigm and its precision tests
- Some results that have been in the limelight
- 4 Rare FCNC processes
- 5 Looking for BSM Physics
 - Specific new physics models
 - Model-independent BSM searches

(日) (日) (日) (日) (日) (日) (日)

Outline

Role of flavor physics in building up the SM

- 2 The CKM paradigm and its precision tests
- Some results that have been in the limelight
- 4 Rare FCNC processes
- Looking for BSM Physics
 Specific new physics models
 Model-independent BSM searches

• $\tau - \theta$ puzzle \Rightarrow Parity violation

Cabibbo angle ⇒
 weak coupling universality ⊕ quark mixing

- GIM mechanism \Rightarrow no FCNC at tree level, charm
- CKM paradigm \Rightarrow (at least) three quark families
- Large $B-\overline{B}$ mixing \Rightarrow heavy top quark (box)
- Rate of radiative B decay \Rightarrow top quark mass (penguin

- $\tau \theta$ puzzle \Rightarrow Parity violation
- Cabibbo angle ⇒
 weak coupling universality ⊕ quark mixing
- GIM mechanism \Rightarrow no FCNC at tree level, charm
- CKM paradigm \Rightarrow (at least) three quark families
- Large $B-\overline{B}$ mixing \Rightarrow heavy top quark (box)
- Rate of radiative B decay \Rightarrow top quark mass (penguin)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- $\tau \theta$ puzzle \Rightarrow Parity violation
- Cabibbo angle ⇒
 weak coupling universality ⊕ quark mixing
- GIM mechanism \Rightarrow no FCNC at tree level, charm
- CKM paradigm \Rightarrow (at least) three quark families
- Large $B-\overline{B}$ mixing \Rightarrow heavy top quark
- Rate of radiative B decay \Rightarrow top quark mass (penguin)

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

- $\tau \theta$ puzzle \Rightarrow Parity violation
- Cabibbo angle ⇒
 weak coupling universality ⊕ quark mixing
- GIM mechanism \Rightarrow no FCNC at tree level, charm
- CKM paradigm \Rightarrow (at least) three quark families
- Large $B \overline{B}$ mixing \Rightarrow heavy top quark
- Rate of radiative B decay \Rightarrow top quark mass (penguin)

(box)

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

- $\tau \theta$ puzzle \Rightarrow Parity violation
- Cabibbo angle ⇒
 weak coupling universality ⊕ quark mixing
- GIM mechanism \Rightarrow no FCNC at tree level, charm
- CKM paradigm \Rightarrow (at least) three quark families
- Large $B-\overline{B}$ mixing \Rightarrow heavy top quark (box)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• Rate of radiative *B* decay \Rightarrow top quark mass

- $\tau \theta$ puzzle \Rightarrow Parity violation
- Cabibbo angle ⇒
 weak coupling universality ⊕ quark mixing
- GIM mechanism ⇒ no FCNC at tree level, charm
- CKM paradigm \Rightarrow (at least) three quark families
- Large $B-\overline{B}$ mixing \Rightarrow heavy top quark (box)
- Rate of radiative B decay \Rightarrow top quark mass (penguin)

Discovery of parity violation: 1956-57

- $\tau \theta$ puzzle: Particles with the same mass and lifetime decay to $\pi\pi$ and $\pi\pi\pi$
- Theoretical possibility that mirror world does not behave the same as the real world T.D.Lee and C.N.Yang, Phys. Rev. 104, 254 (1956)
- Experiments: 1957
 - Wu (⁶⁰Co)
 - Friedman-Telegdi, Garwin-Lederman-Weinrich $(\pi^+ \rightarrow \mu^+ \rightarrow e^+)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Nobel prize 1957: Lee-Yang

Discovery of parity violation: 1956-57

- $\tau \theta$ puzzle: Particles with the same mass and lifetime decay to $\pi\pi$ and $\pi\pi\pi$
- Theoretical possibility that mirror world does not behave the same as the real world T.D.Lee and C.N.Yang, Phys. Rev. 104, 254 (1956)
- Experiments: 1957
 - Wu (⁶⁰Co)
 - Friedman-Telegdi, Garwin-Lederman-Weinrich $(\pi^+ \rightarrow \mu^+ \rightarrow e^+)$

(日) (日) (日) (日) (日) (日) (日)

• Nobel prize 1957: Lee-Yang

Discovery of parity violation: 1956-57

- $\tau \theta$ puzzle: Particles with the same mass and lifetime decay to $\pi\pi$ and $\pi\pi\pi$
- Theoretical possibility that mirror world does not behave the same as the real world T.D.Lee and C.N.Yang, Phys. Rev. 104, 254 (1956)
- Experiments: 1957
 - Wu (⁶⁰Co)
 - Friedman-Telegdi, Garwin-Lederman-Weinrich $(\pi^+ \rightarrow \mu^+ \rightarrow e^+)$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Nobel prize 1957: Lee–Yang

Universality of weak interactions: Cabibbo angle

Interrelated coupling constants:

- (i) muon decay: $g_{e\mu}$ $\mu^- \rightarrow \nu_\mu e^- \bar{\nu}_e$
- (ii) neutron decay : g_{ud} $n \rightarrow pe^- \bar{\nu}_e \ (d \rightarrow ue^- \bar{\nu}_e)$
- (ii) kaon decay: g_{us} $K^- \rightarrow \pi^0 e^- \bar{\nu}_e (s \rightarrow u e^- \bar{\nu}_e)$ $\boxed{|g_{eu}|^2 = |g_{ud}|^2 + |g_{us}|^2}$

Universality:

- There is only one coupling constant, $g = g_{e\mu}$
- *u* quark couples to only one combination of *d* and *s*: $d' \equiv \cos \theta_c \cdot d + \sin \theta_c \cdot s$

Cabibbo angle θ_c: the first quark mixing angle
 N. Cabibbo, "Unitary Symmetry and Leptonic Decays,"
 Phys. Rev. Lett. 10, 531 (1963)

Universality of weak interactions: Cabibbo angle

Interrelated coupling constants:

- (i) muon decay: $g_{e\mu}$ $\mu^- \rightarrow \nu_{\mu} e^- \bar{\nu}_e$
- (ii) neutron decay : g_{ud} $n \rightarrow pe^- \bar{\nu}_e \ (d \rightarrow ue^- \bar{\nu}_e)$
- (ii) kaon decay: g_{us} $K^- \rightarrow \pi^0 e^- \bar{\nu}_e \ (s \rightarrow u e^- \bar{\nu}_e)$ $\boxed{|g_{e\mu}|^2 = |g_{ud}|^2 + |g_{us}|^2}$

Universality:

- There is only one coupling constant, $g = g_{e\mu}$
- *u* quark couples to only one combination of *d* and *s*: $d' \equiv \cos \theta_c \cdot d + \sin \theta_c \cdot s$

Cabibbo angle θ_c: the first quark mixing angle
 N. Cabibbo, "Unitary Symmetry and Leptonic Decays,"
 Phys. Rev. Lett. 10, 531 (1963)

Suppression of flavor-changing neutral currents

- Cabibbo angle unable to explain why $\Gamma(K_L \to \mu^+ \mu^-) << \Gamma(K^+ \to \mu^+ \nu_\mu)$
- Possible explanation via another "c" quark: charge +2/3, couples to

 $s' \equiv -\sin heta_c \cdot d + \cos heta_c \cdot s$

(日) (日) (日) (日) (日) (日) (日)

- The s → u → d and s → c → d contribution cancel, leading to the suppression of FCNC s → d
- GIM mechanism: existence of the "charmed" quark.

S. L. Glashow, J. Iliopoulos and L. Maiani, "Weak Interactions with Lepton-Hadron Symmetry," Phys. Rev. D **2**, 1285 (1970)

Suppression of flavor-changing neutral currents

- Cabibbo angle unable to explain why $\Gamma(K_{I} \rightarrow \mu^{+}\mu^{-}) << \Gamma(K^{+} \rightarrow \mu^{+}\nu_{\mu})$
- Possible explanation via another "c" quark: charge +2/3, couples to

 $s' \equiv -\sin \theta_c \cdot d + \cos \theta_c \cdot s$

(日) (日) (日) (日) (日) (日) (日)

 The s → u → d and s → c → d contribution cancel, leading to the suppression of FCNC s → d

GIM mechanism: existence of the "charmed" quark.
 S. L. Glashow, J. Iliopoulos and L. Maiani,
 "Weak Interactions with Lepton-Hadron Symmetry,"
 Phys. Rev. D 2, 1285 (1970)

Suppression of flavor-changing neutral currents

• Cabibbo angle unable to explain why

 $\Gamma(K_L o \mu^+ \mu^-) << \Gamma(K^+ o \mu^+
u_\mu)$

 Possible explanation via another "c" quark: charge +2/3, couples to

 $s' \equiv -\sin \theta_c \cdot d + \cos \theta_c \cdot s$

- The s → u → d and s → c → d contribution cancel, leading to the suppression of FCNC s → d
- GIM mechanism: existence of the "charmed" quark.

S. L. Glashow, J. Iliopoulos and L. Maiani, "Weak Interactions with Lepton-Hadron Symmetry," Phys. Rev. D **2**, 1285 (1970)

Can Charge \oplus Parity may be conserved ?

Parity: left landed \leftrightarrow right handed

- Neutrinos violate parity: they are only left-handed
- But antineutrinos are right-handed !
- Does that mean C and P violations cancel each other to give CP conservation ?

Charge-parity violated slightly

"Day and Night", M.C.Escher (Modifications by Tobias Hurth)

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Testing CP violation in K decay

$K^0 \equiv d\bar{s} \qquad \overline{K^0} \equiv s\bar{d}$

• CP eigenstates:

 $\begin{array}{ll} {\cal K}_1 \equiv ({\cal K}^0 + \overline{{\cal K}})/\sqrt{2} & (\mbox{CP even}) \\ {\cal K}_2 \equiv ({\cal K}^0 - \overline{{\cal K}})/\sqrt{2} & (\mbox{CP odd}) \end{array}$

• CP even decay channel: $\pi\pi$

• CP odd decay channel: $\pi\pi\pi$

• CP conservation \Rightarrow

 $K_1 \rightarrow \pi\pi$ short-lived, K_{Short} $K_2 \rightarrow \pi\pi\pi$ long-lived, K_{Long}

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Original $K^0 = (K_{\text{Short}} + K_{\text{Long}})/\sqrt{2}$

Testing CP violation in K decay

$$K^0 \equiv d\bar{s} \qquad \overline{K^0} \equiv s\bar{a}$$

• CP eigenstates:

$$egin{array}{ll} \mathcal{K}_1 \equiv (\mathcal{K}^0 + \overline{\mathcal{K}})/\sqrt{2} & (ext{CP even}) \ \mathcal{K}_2 \equiv (\mathcal{K}^0 - \overline{\mathcal{K}})/\sqrt{2} & (ext{CP odd}) \end{array}$$

- CP even decay channel: $\pi\pi$
- CP odd decay channel: $\pi\pi\pi$
- CP conservation ⇒

 $K_1 \rightarrow \pi\pi$ short-lived, K_{Short} $K_2 \rightarrow \pi\pi\pi$ long-lived, K_{Long}

(日) (日) (日) (日) (日) (日) (日)

• Original $K^0 = (K_{\text{Short}} + K_{\text{Long}})/\sqrt{2}$

Testing CP violation in K decay

$$K^0 \equiv d\bar{s} \qquad \overline{K^0} \equiv s\bar{a}$$

• CP eigenstates:

$$egin{array}{ll} \mathcal{K}_1 \equiv (\mathcal{K}^0 + \overline{\mathcal{K}})/\sqrt{2} & (ext{CP even}) \ \mathcal{K}_2 \equiv (\mathcal{K}^0 - \overline{\mathcal{K}})/\sqrt{2} & (ext{CP odd}) \end{array}$$

- CP even decay channel: $\pi\pi$
- CP odd decay channel: $\pi\pi\pi$
- CP conservation ⇒

 $K_1 \rightarrow \pi\pi$ short-lived, K_{Short} $K_2 \rightarrow \pi\pi\pi$ long-lived, K_{Long}

(日) (日) (日) (日) (日) (日) (日)

• Original $K^0 = (K_{\text{Short}} + K_{\text{Long}})/\sqrt{2}$

Discovery of CP violation: 1964

(日)

Questions raised by the discovery of CP violation

- Is it small or large ? Is CP an approximate symmetry ?
- Is the symmetry breaking spontaneous ?
- Where does it come from ? Are there extra interactions ?

(ロ) (同) (三) (三) (三) (○) (○)

- 2 The CKM paradigm and its precision tests
- Some results that have been in the limelight
- 4 Rare FCNC processes
- Looking for BSM Physics
 Specific new physics models
 Model-independent BSM searches

Nobel Prize 2008

Makato Kobayashi

Toshihide Maskawa

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

... for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature

The Kobayashi-Maskawa paradigm

Flavor basis vs. mass basis:

$$U' \equiv \begin{pmatrix} u \\ c \\ t \end{pmatrix}, D' \equiv \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

• Charged current in the basis of flavor eigenstates:

 $\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} \overline{U'_L} \gamma^{\mu} D'_L W^+_{\mu} + h.c.$

• Charged current in the basis of mass eigenstates:

 $\mathcal{L}_{CC} = rac{g}{\sqrt{2}} \overline{U_L} \gamma^{\mu} (V_{UL}^{\dagger} V_{DL}) D_L W_{\mu}^{+} + H.c.$

 V_{UL} , V_{DL} : unitary matrices that change the basis

Cabibbo-Kobayashi-Maskawa (CKM) matrix

Coupling between U_L and D_L : $(g/\sqrt{2})V_{CKM}$

 $V_{CKM} \equiv V_{UL}^{\dagger} V_{DL}$

The Kobayashi-Maskawa paradigm

Flavor basis vs. mass basis:

$$U' \equiv \begin{pmatrix} u \\ c \\ t \end{pmatrix}$$
, $D' \equiv \begin{pmatrix} d \\ s \\ b \end{pmatrix}$

• Charged current in the basis of flavor eigenstates:

 $\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} \overline{U'_L} \gamma^{\mu} D'_L W^+_{\mu} + h.c.$

Charged current in the basis of mass eigenstates:

 $\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} \overline{U_L} \gamma^{\mu} (V_{UL}^{\dagger} V_{DL}) D_L W_{\mu}^{+} + H.c.$

 V_{UL} , V_{DL} : unitary matrices that change the basis

Cabibbo-Kobayashi-Maskawa (CKM) matri>

Coupling between U_L and D_L : $(g/\sqrt{2})V_{CKM}$

 $V_{CKM} \equiv V_{UL}^{\dagger} V_{DL}$

The Kobayashi-Maskawa paradigm

Flavor basis vs. mass basis:

$$U' \equiv \begin{pmatrix} u \\ c \\ t \end{pmatrix}$$
, $D' \equiv \begin{pmatrix} d \\ s \\ b \end{pmatrix}$

• Charged current in the basis of flavor eigenstates:

 $\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} \overline{U'_L} \gamma^{\mu} D'_L W^+_{\mu} + h.c.$

Charged current in the basis of mass eigenstates:

 $\mathcal{L}_{CC} = \frac{g}{\sqrt{2}} \overline{U_L} \gamma^{\mu} (V_{UL}^{\dagger} V_{DL}) D_L W_{\mu}^{+} + H.c.$

 V_{UL} , V_{DL} : unitary matrices that change the basis

Cabibbo-Kobayashi-Maskawa (CKM) matrix

Coupling between U_L and D_L : $(g/\sqrt{2})V_{CKM}$

 $V_{CKM} \equiv V_{UL}^{\dagger} V_{DL}$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$= \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

- $\lambda \approx 0.2$: Cabibbo angle
- η : the imaginary component of V_{CKM}
- η/ρ large \Rightarrow CP violation is large, not approximate
- All CP violation in terms of a single number: Jarlskog invariant $J \equiv s_1 s_2 s_3 c_1^2 c_2 c_3 s_{\delta} = A^2 \lambda^6 \eta$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$= \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

• $\lambda \approx 0.2$: Cabibbo angle

- η : the imaginary component of V_{CKM}
- η/ρ large \Rightarrow CP violation is large, not approximate
- All CP violation in terms of a single number: Jarlskog invariant $J \equiv s_1 s_2 s_3 c_1^2 c_2 c_3 s_{\delta} = A^2 \lambda^6 \eta$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$= \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

- $\lambda \approx 0.2$: Cabibbo angle
- η : the imaginary component of V_{CKM}
- η/ρ large \Rightarrow CP violation is large, not approximate
- All CP violation in terms of a single number: Jarlskog invariant $J \equiv s_1 s_2 s_3 c_1^2 c_2 c_3 s_{\delta} = A^2 \lambda^6 \eta$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$= \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

(日) (日) (日) (日) (日) (日) (日)

- $\lambda \approx 0.2$: Cabibbo angle
- η : the imaginary component of V_{CKM}
- η/ρ large \Rightarrow CP violation is large, not approximate
- All CP violation in terms of a single number: Jarlskog invariant $J \equiv s_1 s_2 s_3 c_1^2 c_2 c_3 s_{\delta} = A^2 \lambda^6 \eta$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
$$= \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

(日) (日) (日) (日) (日) (日) (日)

- $\lambda \approx 0.2$: Cabibbo angle
- η : the imaginary component of V_{CKM}
- η/ρ large \Rightarrow CP violation is large, not approximate
- All CP violation in terms of a single number: Jarlskog invariant $J \equiv s_1 s_2 s_3 c_1^2 c_2 c_3 s_{\delta} = A^2 \lambda^6 \eta$

Unitarity relations and triangles

Unitarity relation $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

$$\alpha \equiv \operatorname{Arg}\left(-\frac{V_{td} V_{tb}^*}{V_{ud} V_{ub}^*}\right) \ , \quad \beta \equiv \operatorname{Arg}\left(-\frac{V_{cd} V_{cb}^*}{V_{td} V_{tb}^*}\right) \ , \quad \gamma \equiv \operatorname{Arg}\left(-\frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*}\right) \ .$$

α, β, γ rephase invariant, so well-defined
α + β + γ = 180°

More unitarity triangles

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- All triangles have the same area, J/2
- $\chi \equiv \beta_{s} \equiv \phi_{s} \equiv \operatorname{Arg}\left(-\frac{V_{cs}V_{cb}}{V_{ts}V_{tb}^{*}}\right) \sim \lambda^{2}$, • $\chi' \equiv \beta_{K} \equiv \operatorname{Arg}\left(-\frac{V_{ud}V_{us}}{V_{cd}V_{cs}^{*}}\right) \sim \lambda^{4}$,

• Only one phase controls CPV, only one Jarlskog invariant

- SM predictions are severely restricted !
- A triangle can be constructed in multiple ways
- Measure sides, angles and check consistency

• Only one phase controls CPV, only one Jarlskog invariant

- SM predictions are severely restricted !
- A triangle can be constructed in multiple ways
- Measure sides, angles and check consistency

• Only one phase controls CPV, only one Jarlskog invariant

- SM predictions are severely restricted !
- A triangle can be constructed in multiple ways
- Measure sides, angles and check consistency

• Only one phase controls CPV, only one Jarlskog invariant

(ロ) (同) (三) (三) (三) (○) (○)

- SM predictions are severely restricted !
- A triangle can be constructed in multiple ways
- Measure sides, angles and check consistency

Measurements for determination of CKM elements

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Semileptonic decays

 $|V_{ub}|$ and $|V_{cb}|$:

$$egin{array}{rl} \Gamma(b o c \ell
u) &pprox & rac{G_F^2}{192 \pi^2} |V_{cb}|^2 m_b^3 (m_b - m_c)^2 \ \Gamma(b o u \ell
u) &pprox & rac{G_F^2}{192 \pi^2} |V_{ub}|^2 m_b^5 \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Semileptonic constraints in the UT plane

• Semileptonic decays $b \rightarrow c \ell \nu, \ b \rightarrow u \ell \nu$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Measurement of angle γ

CPV in decay to charmed mesons:

$$\begin{array}{ll} \text{CPV} & \propto & A_1 A_2 \sin(\theta_2 - \theta_1) \sin(\delta_2 - \delta_1) \\ & \propto & \sin(\delta_2 - \delta_1) \sin\left[\text{Arg}\left(\frac{V_{ub}^* V_{cs}}{V_{cb}^* V_{us}} \right) \right] \\ & \propto & \sin\gamma \end{array}$$

Constraints on γ in the UT plane

- Semileptonic decays $b \rightarrow c\ell\nu, \ b \rightarrow u\ell\nu$
- "Charmed" decays $B \rightarrow DK$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Neutral meson mixing and oscillations

 $B_q - \overline{B_q}$ mixing: parametrization

• Oscillation and decay of $a|B_q
angle+b|\overline{B}_q
angle$:

$$i\frac{d}{dt} \begin{pmatrix} a \\ b \end{pmatrix} = \left(\mathbf{M} - \frac{i}{2}\Gamma\right) \begin{pmatrix} a \\ b \end{pmatrix}$$
$$\mathbf{M} \equiv \left(\begin{array}{cc} M_{11} & M_{12} \\ M_{21} & M_{22} \end{array}\right) \quad , \quad \Gamma \equiv \left(\begin{array}{cc} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22} \end{array}\right)$$

 $\mathcal{CP}|B_q
angle=e^{iarphi}|ar{B}_q
angle,\ \mathcal{CP}|ar{B}_q
angle=e^{-iarphi}|B_q
angle$

(日) (日) (日) (日) (日) (日) (日)

• CPT invariance : $M_{11} = M_{22}$, $\Gamma_{11} = \Gamma_{22}$

• Hermiticity : $M_{21} = M_{12}^*$, $\Gamma_{21} = \Gamma_{12}^*$

Mass difference and lifetime difference

• Mass eigenstates: $|B_{L,H}\rangle = p|B_q\rangle \pm q|\overline{B}_q\rangle$ $(|q|^2 + |p|^2 = 1)$ • Mass difference Lifetime difference $\Delta m = M_H - M_L$ $\Delta \Gamma = \Gamma_L - \Gamma_H$ $(\rightarrow \Delta m > 0, \Delta \Gamma > 0 \text{ in SM})$

• Eigenvalue equations:

$$(\Delta m)^2 - \frac{1}{4} (\Delta \Gamma)^2 = (4|M_{12}|^2 - |\Gamma_{12}|^2)$$

$$\Delta m \Delta \Gamma = -4 \operatorname{Re}(M_{12}^* \Gamma_{12}).$$

$$\Delta m = 2|M_{12}| + O(m_b^4/m_t^4)$$

$$\Delta \Gamma = -\frac{2\text{Re}(M_{12}^*\Gamma_{12})}{|M_{12}|} + O(m_b^4/m_t^4).$$

Mass difference and lifetime difference

- Mass eigenstates: $|B_{L,H}\rangle = p|B_q\rangle \pm q|\bar{B}_q\rangle$
- Mass difference Lifetime difference $\Delta m = M_H - M_L \qquad \Delta \Gamma = \Gamma_L - \Gamma_H \\ (\rightarrow \Delta m > 0, \Delta \Gamma > 0 \text{ in SM})$
- Eigenvalue equations:

$$(\Delta m)^2 - \frac{1}{4} (\Delta \Gamma)^2 = (4|M_{12}|^2 - |\Gamma_{12}|^2)$$

$$\Delta m \Delta \Gamma = -4 \operatorname{Re}(M_{12}^* \Gamma_{12}).$$

 $(|q|^2 + |p|^2 = 1)$

$$\Delta m = 2|M_{12}| + O(m_b^4/m_t^4)$$

$$\Delta \Gamma = -\frac{2\text{Re}(M_{12}^*\Gamma_{12})}{|M_{12}|} + O(m_b^4/m_t^4).$$

Mass difference and lifetime difference

- Mass eigenstates: $|B_{L,H}\rangle = p|B_q\rangle \pm q|\bar{B}_q\rangle$ ($|q|^2 + |p|^2 = 1$) • Mass difference
- Mass difference Lifetime difference $\Delta m = M_H - M_L \qquad \Delta \Gamma = \Gamma_L - \Gamma_H \\ (\rightarrow \Delta m > 0, \Delta \Gamma > 0 \text{ in SM})$
- Eigenvalue equations:

$$(\Delta m)^2 - \frac{1}{4} (\Delta \Gamma)^2 = (4|M_{12}|^2 - |\Gamma_{12}|^2)$$

$$\Delta m \Delta \Gamma = -4 \operatorname{Re}(M_{12}^* \Gamma_{12}).$$

$$\Delta m = 2|M_{12}| + O(m_b^4/m_t^4)$$

$$\Delta \Gamma = -\frac{2\text{Re}(M_{12}^*\Gamma_{12})}{|M_{12}|} + O(m_b^4/m_t^4).$$

Time evolution of a tagged B_q or \overline{B}_q decay

$$A_f \equiv \langle f | B_q \rangle, \ \overline{A}_f \equiv \langle f | \overline{B}_q \rangle, \ \lambda_f \equiv \frac{q}{\rho} \frac{A_f}{A_f}$$

 $(\lambda_f \text{ independent of the unphysical phase } \varphi)$

$$\begin{split} \Gamma(B_q(t) \to f) &= \mathcal{N}_t |A_t|^2 \, \frac{1 + |\lambda_t|^2}{2} \, e^{-\Gamma t} \times \\ \left[\cosh \frac{\Delta \Gamma_q \, t}{2} + \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}} \cos(\Delta m \, t) \right. &+ \mathcal{A}_{\Delta \Gamma} \sinh \frac{\Delta \Gamma_q \, t}{2} + \mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}} \sin(\Delta m \, t) \right], \end{split}$$

$$\begin{split} & \Gamma(\overline{B}_q(t) \to f) = \mathcal{N}_f \left| \bar{A}_f \right|^2 \frac{1 + \left| \lambda_f \right|^2}{2} e^{-\Gamma t} \times \\ & \left[\cosh \frac{\Delta \Gamma_q t}{2} - \mathcal{A}_{\mathrm{CP}}^{\mathrm{dir}} \cos(\Delta m t) + \mathcal{A}_{\Delta \Gamma} \sinh \frac{\Delta \Gamma_q t}{2} - \mathcal{A}_{\mathrm{CP}}^{\mathrm{mix}} \sin(\Delta m t) \right]. \end{split}$$

$$\mathcal{A}_{CP}^{dir} = \frac{1 - |\lambda_f|^2}{1 + |\lambda_f|^2}, \qquad \mathcal{A}_{CP}^{mix} = -\frac{2 \operatorname{Im} \lambda_f}{1 + |\lambda_f|^2} \quad \mathcal{A}_{\Delta\Gamma} = -\frac{2 \operatorname{Re} \lambda_f}{1 + |\lambda_f|^2},$$

Constraints in the UT plane from ϵ in $K - \bar{K}$ system

- Semileptonic decays
 - $b \rightarrow c \ell \nu, \ b \rightarrow u \ell \nu$
- "Charmed" decays $B \rightarrow DK$

・ コット (雪) (小田) (コット 日)

CP violation in K mesons

B_d - \overline{B}_d mixing constraints in the UT plane

$$\Delta M_d = 2|M_d^{12}| \approx (V_{tb}V_{td}^*)^2 \frac{G_F^2}{6\pi^2} M_{B_d} B_{B_d} f_{B_d}^2 M_W^2 S_0(x_t)$$

- Semileptonic decays $b \rightarrow c\ell\nu, \ b \rightarrow u\ell\nu$
- "Charmed" decays $B \rightarrow DK$

- CP violation in K mesons
- ΔM in $B_d \overline{B_d}$ system

B_s - \overline{B}_s mixing constraints in the UT plane

$$\Delta M_{s} = 2|M_{s}^{12}| \approx (V_{tb}V_{ts}^{*})^{2} \frac{G_{F}^{2}}{6\pi^{2}} M_{B_{s}} B_{B_{s}} f_{B_{s}}^{2} M_{W}^{2} S_{0}(x_{t})$$

- Semileptonic decays $b \rightarrow c\ell\nu, \ b \rightarrow u\ell\nu$
 - "Charmed" decays $B \rightarrow DK$

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

- CP violation in K mesons
- ΔM in $B_d \overline{B_d}$ system
- ΔM in $B_s \overline{B}_s$ system

α measurement from decays to π and K

|▲□▶▲圖▶▲≣▶▲≣▶ = 三 のへで

α constraints in the UT plane

- Semileptonic decays $b \rightarrow c \ell \nu, \ b \rightarrow u \ell \nu$
- "Charmed" decays $B \rightarrow DK$

・ロト ・聞ト ・ヨト ・ヨト 三日

- CP violation in K mesons
- ΔM in $B_d \overline{B_d}$ system
- ΔM in $B_s \overline{B}_s$ system
- Decays to π and K

β measurement from CP asymmetry in $B_d \rightarrow J/\psi K_S$

 $\frac{q}{p}\frac{\bar{A}}{A}=e^{2i\beta}$

$$\mathcal{A}_{J/\psi K_{\mathcal{S}}} \equiv \frac{\frac{d\Gamma}{dt}(\bar{B}_{d}(t) \to J/\psi K_{\mathcal{S}}) - \frac{d\Gamma}{dt}(B_{d}(t) \to J/\psi K_{\mathcal{S}})}{\frac{d\Gamma}{dt}(\bar{B}_{d}(t) \to J/\psi K_{\mathcal{S}}) + \frac{d\Gamma}{dt}(B_{d}(t) \to J/\psi K_{\mathcal{S}})} \approx \sin 2\beta \sin(\Delta m t) .$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

β constraints in the UT plane

- Semileptonic decays $b \rightarrow c \ell \nu, \ b \rightarrow u \ell \nu$
- "Charmed" decays $B \rightarrow DK$
- CP violation in K mesons
- ΔM in $B_d \overline{B_d}$ system
- ΔM in $B_s \overline{B}_s$ system
- Decays to π and K
- CP asymmetry in $B \rightarrow J/\psi K_S$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Semileptonic decays $b \rightarrow c \ell \nu, \ b \rightarrow u \ell \nu$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

- Semileptonic decays $b \rightarrow c\ell\nu, \ b \rightarrow u\ell\nu$
- "Charmed" decays $B \rightarrow DK$

・ コット (雪) (小田) (コット 日)

- Semileptonic decays
 - $b \rightarrow c \ell \nu, \ b \rightarrow u \ell \nu$
- "Charmed" decays $B \rightarrow DK$

・ コット (雪) (小田) (コット 日)

CP violation in K mesons

- Semileptonic decays $b \rightarrow c \ell \nu, \ b \rightarrow u \ell \nu$
- "Charmed" decays $B \rightarrow DK$

・ロト ・聞ト ・ヨト ・ヨト 三日

- CP violation in K mesons
- ΔM in $B_d \overline{B_d}$ system

- Semileptonic decays $b \rightarrow c\ell\nu, \ b \rightarrow u\ell\nu$
- "Charmed" decays $B \rightarrow DK$

・ロト ・四ト ・ヨト ・ヨト

- CP violation in K mesons
- ΔM in $B_d \overline{B_d}$ system
- ΔM in $B_s \overline{B}_s$ system

- Semileptonic decays $b \rightarrow c \ell \nu, \ b \rightarrow u \ell \nu$
- "Charmed" decays $B \rightarrow DK$

・ロト ・四ト ・ヨト ・ヨト

- CP violation in K mesons
- ΔM in $B_d \overline{B_d}$ system
- ΔM in $B_s \overline{B}_s$ system
- Decays to π and K

- Semileptonic decays $b \rightarrow c \ell \nu, \ b \rightarrow u \ell \nu$
- "Charmed" decays $B \rightarrow DK$
- CP violation in K mesons
- ΔM in $B_d \overline{B_d}$ system
- ΔM in $B_s \overline{B}_s$ system
- Decays to π and K
- CP asymmetry in $B \rightarrow J/\psi K_S$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

<ロ> <四> <回> <回> <三> <三> <三> <三</p>

- 1 Role of flavor physics in building up the SM
- 2 The CKM paradigm and its precision tests
- Some results that have been in the limelight

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 4 Rare FCNC processes
- Looking for BSM Physics
 Specific new physics models
 Model-independent BSM searches
- 6 Concluding remarks

$|V_{us}|$: Cabibbo Angle Anomaly (CAA)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$\phi^{J/\psi\phi}_s$: Angular analysis of $B_s o J/\psi\phi$

 $\phi_{\mathcal{S}} = -2\beta_{\mathcal{S}}^{J/\psi\phi}$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

β_s^{sl} : Like-sign dimuon CP asymmetry

▲□▶▲圖▶▲≣▶▲≣▶ ■ の�?

$D-\bar{D}$ mixing

 $x \equiv \Delta m / \Gamma$

 $y \equiv \Delta \Gamma / (2\Gamma)$

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

τ vs electrons/muons

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Affect $b \rightarrow c \tau \nu$, indicate lepton-universality violation ?

- For semileptonic B decays b → uℓν and b → cℓν, inclusive decay rates are systematically larger than the exclusive ones.
- Lepton non-universality at play in $b \rightarrow c \ell \nu$?
- Lepton non-universality is severely constrained in the first two generations, not so much for the third one. Models with H^+/Z' are natural candidates.
- A single hint may not be sufficient, but overall trends may point the way..

- For semileptonic B decays b → uℓν and b → cℓν, inclusive decay rates are systematically larger than the exclusive ones.
- Lepton non-universality at play in $b \rightarrow c \ell \nu$?
- Lepton non-universality is severely constrained in the first two generations, not so much for the third one. Models with H^+/Z' are natural candidates.
- A single hint may not be sufficient, but overall trends may point the way..

- 1 Role of flavor physics in building up the SM
- 2 The CKM paradigm and its precision tests
- 3 Some results that have been in the limelight

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Are FCNC processes
- Looking for BSM Physics
 Specific new physics models
 Model-independent BSM searches
- 6 Concluding remarks

Flavour changing neutral current processes

- Suppressed in the SM due to the loop factor, CKM hierarchy, chiral structure and GIM mechanism.
- Boxes and penguins

CKM hierarchy predicts specific pattern of effects in the SM

$$\underbrace{V_{ts}^* V_{td}}_{K \text{ system}} \sim 5 \cdot 10^{-4} \ll \underbrace{V_{tb}^* V_{td}}_{B_d \text{ system}} \sim 10^{-2} < \underbrace{V_{tb}^* V_{ts}}_{B_s \text{ system}} \sim 4 \cdot 10^{-2}$$

 \succ K decays in general most sensitive to BSM physics

(Slide from M. Blanke)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Exp-hard but Th-clean decays $K \rightarrow \pi \nu \bar{\nu}$:

NA62

• Models can change the relative BRs of $K_L \rightarrow \pi^0 \nu \bar{\nu}$ and $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ to a large extent

Branching ratios of $B_s \rightarrow \mu^+ \mu^-$ and $B_d \rightarrow \mu^+ \mu^-$

Angular distributions

Angular distribution in $B \rightarrow K^* \mu^+ \mu^-$: $\frac{1}{\mathrm{d}\Gamma/dq^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_{\ell}\,\mathrm{d}\cos\theta_{K}\,\mathrm{d}\phi\,\mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3}{4}(1-F_\mathrm{L})\sin^2\theta_{K} + F_\mathrm{L}\cos^2\theta_{K} + \frac{1}{4}(1-F_\mathrm{L})\sin^2\theta_{K}\cos2\theta_{\ell}\right]$ $-F_{\rm L}\cos^2\theta_K\cos 2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos 2\phi$ $+ S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi$ $+ S_6 \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi$ + $S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi$,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

The P_5' anomaly in $B \to K^* \mu \mu$

• $P'_5 = \frac{S_5}{\sqrt{F_L(1-F_L)}}$, largely free from formfactor uncertainties

• Local discrepancy of 3.7σ in P_5' .

Muons vs electrons:

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ ○ の Q @

• Flavor physics exploration is not linear. There are intricate networks and intertwined patterns

- BSM Physics may be searched using deviations from SM predictions. Needs good understanding of SM predictions
- Identification of theoretically clean and experimentally feasible decay modes / observables necessary
- Indirect hints for BSM physics possible, access to particles that have masses in excess of energies at colliders

(日) (日) (日) (日) (日) (日) (日)

- Flavor physics exploration is not linear. There are intricate networks and intertwined patterns
- BSM Physics may be searched using deviations from SM predictions. Needs good understanding of SM predictions
- Identification of theoretically clean and experimentally feasible decay modes / observables necessary
- Indirect hints for BSM physics possible, access to particles that have masses in excess of energies at colliders

- Flavor physics exploration is not linear. There are intricate networks and intertwined patterns
- BSM Physics may be searched using deviations from SM predictions. Needs good understanding of SM predictions
- Identification of theoretically clean and experimentally feasible decay modes / observables necessary
- Indirect hints for BSM physics possible, access to particles that have masses in excess of energies at colliders

- Flavor physics exploration is not linear. There are intricate networks and intertwined patterns
- BSM Physics may be searched using deviations from SM predictions. Needs good understanding of SM predictions
- Identification of theoretically clean and experimentally feasible decay modes / observables necessary
- Indirect hints for BSM physics possible, access to particles that have masses in excess of energies at colliders

- 1 Role of flavor physics in building up the SM
- 2 The CKM paradigm and its precision tests
- Some results that have been in the limelight
- 4 Rare FCNC processes
- **Looking for BSM Physics**Specific new physics models
 Model-independent BSM searches

- Models motivated by broad open questions
- Models motivated by observed anomalies
- Classes of models consistent with current data
- Model-independent parameterizations of BSM physics

(ロ) (同) (三) (三) (三) (○) (○)

Quantifying and constraining BSM physics

- Role of flavor physics in building up the SM
- 2 The CKM paradigm and its precision tests
- Some results that have been in the limelight
- 4 Rare FCNC processes
- 5 Looking for BSM Physics
 - Specific new physics models
 - Model-independent BSM searches

(日) (日) (日) (日) (日) (日) (日)

- 1 Role of flavor physics in building up the SM
- 2 The CKM paradigm and its precision tests
- Some results that have been in the limelight
- Are FCNC processes
- Looking for BSM Physics
 Specific new physics models
 Model-independent BSM searches

Sensitive to minimal SUSY model parameters:

$${m B}({m B}_q o \mu \mu) \propto |m V_{tb}^*m V_{tq}| rac{m_b^2 m_\ell^2 an^6 eta}{m_A^4}$$

・ コット (雪) (小田) (コット 日)

• Severely restricts large $\tan \beta$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Multiple things models with Z' and leptoquarks can do

• Enhance $K \rightarrow \pi \nu \bar{\nu}$ decay rates

Buras 2014

- Enhance Γ_{12} , and hence $\Delta\Gamma$, in B_d - \overline{B}_d and B_s - \overline{B}_s systems
- Enhance $B(B_s \rightarrow \tau \tau)$ by orders of magnitude

AD, Kundu, Nandi, 2007

Account for the dimuon anomaly

AD, A. Kundu, S, Nandi, 2010

• Change the ratio of B_d and B_s lifetimes

AD, Ghosh, Kundu, Patra, 2011; AD, Ghosh, 2012

Vector-like lepton models

Four minimal models and Cabibbo Angle Anomaly:

- 1 Role of flavor physics in building up the SM
- 2 The CKM paradigm and its precision tests
- Some results that have been in the limelight
- Are FCNC processes
- Looking for BSM Physics
 Specific new physics models
 - Model-independent BSM searches

- Direct searches: Produce the heavy particle "on shell" and detect them through "peaks"
- Indirect searches: "Off-shell" / Virtual heavy particles contribute to processes (if in loops, give quantum corrections)

イロト イポト イヨト イヨト

Effective field theories

- What happens inside the loop is not completely known
- Then what exactly is known from measurements ?
- Bottom-up approach: Consider "effective" operators

・ コット (雪) (小田) (コット 日)

- Model-independent, can handle multiple models.
- Strictly speaking, if an operator / WC is not forbidden by a symmetry, it must be allowed.
- But it is often convenient to study the effect of each WC separately
- Operators may be required to obey certain gauge symmetries
- Low-energy Operators must originate in a high scale theory with such a gauge symmetry
- Low-scale WCs must be correlated, depending on the model
- Can we distinguish among high-scale theories by looking at low-energy Wilson coefficients ?

Next two talks by Rukmani Mohanta and Suchismita Sahoo

- Model-independent, can handle multiple models.
- Strictly speaking, if an operator / WC is not forbidden by a symmetry, it must be allowed.
- But it is often convenient to study the effect of each WC separately
- Operators may be required to obey certain gauge symmetries
- Low-energy Operators must originate in a high scale theory with such a gauge symmetry
- Low-scale WCs must be correlated, depending on the model
- Can we distinguish among high-scale theories by looking at low-energy Wilson coefficients ?

Next two talks by Rukmani Mohanta and Suchismita Sahoo

- Model-independent, can handle multiple models.
- Strictly speaking, if an operator / WC is not forbidden by a symmetry, it must be allowed.
- But it is often convenient to study the effect of each WC separately
- Operators may be required to obey certain gauge symmetries
- Low-energy Operators must originate in a high scale theory with such a gauge symmetry
- Low-scale WCs must be correlated, depending on the model
- Can we distinguish among high-scale theories by looking at low-energy Wilson coefficients ?

Next two talks by Rukmani Mohanta and Suchismita Sahoo

- Model-independent, can handle multiple models.
- Strictly speaking, if an operator / WC is not forbidden by a symmetry, it must be allowed.
- But it is often convenient to study the effect of each WC separately
- Operators may be required to obey certain gauge symmetries
- Low-energy Operators must originate in a high scale theory with such a gauge symmetry
- Low-scale WCs must be correlated, depending on the model
- Can we distinguish among high-scale theories by looking at low-energy Wilson coefficients ?

Next two talks by Rukmani Mohanta and Suchismita Sahoo

- 1 Role of flavor physics in building up the SM
- 2 The CKM paradigm and its precision tests
- Some results that have been in the limelight
- 4 Rare FCNC processes
- Looking for BSM Physics
 Specific new physics models
 Model-independent BSM searches

- Flavor physics, through loop processes, can access BSM physics at high energy scales, inaccessible for direct particle production. (Indirect searches for new physics)
- Precision measurements, including those related to CKM elements and rare decays, crucial in looking for NP
- Increasing precision on theoretical calculations is also important: lattice calculations for non-perturbative contributions, low-energy effective theories like HQET, SCET, ChPT
- Looking for predictions of well-motivated models can constrain their parameters in complementary ways
- However, since what lies beyond SM is uncertain, model-independent searches using EFT techniques will play a big role in flavor physics in future.

- Flavor physics, through loop processes, can access BSM physics at high energy scales, inaccessible for direct particle production. (Indirect searches for new physics)
- Precision measurements, including those related to CKM elements and rare decays, crucial in looking for NP
- Increasing precision on theoretical calculations is also important: lattice calculations for non-perturbative contributions, low-energy effective theories like HQET, SCET, ChPT
- Looking for predictions of well-motivated models can constrain their parameters in complementary ways
- However, since what lies beyond SM is uncertain, model-independent searches using EFT techniques will play a big role in flavor physics in future.

- Flavor physics, through loop processes, can access BSM physics at high energy scales, inaccessible for direct particle production. (Indirect searches for new physics)
- Precision measurements, including those related to CKM elements and rare decays, crucial in looking for NP
- Increasing precision on theoretical calculations is also important: lattice calculations for non-perturbative contributions, low-energy effective theories like HQET, SCET, ChPT
- Looking for predictions of well-motivated models can constrain their parameters in complementary ways
- However, since what lies beyond SM is uncertain, model-independent searches using EFT techniques will play a big role in flavor physics in future.

- Flavor physics, through loop processes, can access BSM physics at high energy scales, inaccessible for direct particle production. (Indirect searches for new physics)
- Precision measurements, including those related to CKM elements and rare decays, crucial in looking for NP
- Increasing precision on theoretical calculations is also important: lattice calculations for non-perturbative contributions, low-energy effective theories like HQET, SCET, ChPT
- Looking for predictions of well-motivated models can constrain their parameters in complementary ways
- However, since what lies beyond SM is uncertain, model-independent searches using EFT techniques will play a big role in flavor physics in future.

- Flavor physics, through loop processes, can access BSM physics at high energy scales, inaccessible for direct particle production. (Indirect searches for new physics)
- Precision measurements, including those related to CKM elements and rare decays, crucial in looking for NP
- Increasing precision on theoretical calculations is also important: lattice calculations for non-perturbative contributions, low-energy effective theories like HQET, SCET, ChPT
- Looking for predictions of well-motivated models can constrain their parameters in complementary ways
- However, since what lies beyond SM is uncertain, model-independent searches using EFT techniques will play a big role in flavor physics in future.