

Experimental Status of Semi-Leptonic B-decays

Seema Bahinipati IIT Bhubaneswar

Talk Outline

- Introduction
- Tagging methods
- $|V_{ub}|$ from $B^0 \rightarrow \pi^- I^+ v$ and $B^+ \rightarrow \rho^0 I^+ v$
- Lepton Flavor Violation (LFV): Measurement of R(D*) Measurement of R(X)
- Measurement of BR ($B \rightarrow K v v$ -bar)
- Conclusions

Selected modes using Belle II results shown

Introduction

- Unitarity of CKM matrix imposes constraints to test Standard Model.
 - Belle II provides a unique testbed for SM tests in the

B-sector as it is primarily a B-factory ($e^+ e^- \rightarrow \Psi(4S) \rightarrow BB$ -bar)

$$egin{bmatrix} d' \ s' \ b' \end{bmatrix} = egin{bmatrix} V_{
m ud} & V_{
m us} & V_{
m ub} \ V_{
m cc} & V_{
m cb} \ V_{
m cb} & V_{
m cb} \ V_{
m td} & V_{
m ts} & V_{
m tb} \end{bmatrix} egin{bmatrix} d \ s \ b \end{bmatrix}$$

Tagging Methods

Exclusive vs. Inclusive: depends on reconstruction of B_{sig}

- Exclusive: B_{sig} is reconstructed in a specific decay mode.
- Inclusive: B_{sig} reconstructed as many modes, e.g., $B_{sig} \rightarrow X \ell v$.

$|V_{ub}|$ from $B^0 \rightarrow \pi^- l^+ v$ and $B^+ \rightarrow \rho^0 l^+ v$

- Tension between exclusive (orange band) and inclusive (blue band)
- Precision measurements of the CKM parameters $|V_{\mu\nu}|$ and $|V_{c\mu}|$ can be done using semi-leptonic B decays
- $|V_{\mu b}| : b \rightarrow u$ transitions $(B \rightarrow X_{\mu} | v)$ $|\mathbf{V}_{cb}|$: b \rightarrow c transitions (B \rightarrow X lv)

$|V_{ub}| \ from \ B^0 \longrightarrow \pi^{\text{-}} \ l^+ \ v \ and \ B^+ \longrightarrow \rho^0 \ l^+ \ v \ \ \mbox{arXiv:2407.17403}$

- Belle II, Run 1 data (364 fb⁻¹) untagged
- Background suppression done using BDTs
- Kinematic variables used are ΔE and M_{bc}
- Signal yields are extracted from these 2 kinematic variables in bins of q^2 simultaneously. For $B \rightarrow Xlv$, $q^2 = (p_B - p_X)^2$

$|V_{ub}|$ from $B^0 \rightarrow \pi^- l^+ v$ and $B^+ \rightarrow \rho^0 l^+ v$

• $|V_{ub}|$ is extracted separately from $B^0 \rightarrow \pi^- l^+ v$ and $B^+ \rightarrow \rho^0 l^+ v$ modes using chi^2 fits to the measurement q^2 spectra.

$|V_{ub}|$ from $B^0 \rightarrow \pi^- l^+ v$ and $B^+ \rightarrow \rho^0 l^+ v$

 $\mathcal{B}(B^{0} \to \pi^{-}l^{+}\nu_{l}) = (1.516 \pm 0.042(stat) \pm 0.059(sys)) \times 10^{-4}$ $\mathcal{B}(B^{+} \to \rho^{0}l^{+}\nu_{l}) = (1.625 \pm 0.079(stat) \pm 0.180(sys)) \times 10^{-4}$

Consistent with PDG

$$\begin{split} B^{0} &\to \pi^{-}l^{+}\nu_{l}: \quad |V_{ub}| = (3.93 \pm 0.09(stat) \pm 0.13(sys) \pm 0.19(theo)) \times 10^{-3} \text{ LQCD constraints} \\ |V_{ub}| &= (3.73 \pm 0.07(stat) \pm 0.07(sys) \pm 0.16(theo)) \times 10^{-3} \text{ LQCD+LCSR constraints} \\ B^{+} &\to \rho^{0}l^{+}\nu_{l}: \quad |V_{ub}| = (3.19 \pm 0.12(stat) \pm 0.17(sys) \pm 0.26(theo)) \times 10^{-3} \text{ LCSR constraints} \end{split}$$

$|V_{ub}| \text{ from } B^0 \longrightarrow \pi^- l^+ v \text{ and } B^+ \longrightarrow \rho^0 l^+ v$

- Large uncertainty on the |V_{ub}| values
- Tension with inclusive measurement is reduced.

LFV: Measurement of R(D^{*})

• Test of LFU

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)}\tau\nu)}{\mathcal{B}(B \to D^{(*)}\ell\nu)} \quad (\ell = e \text{ or } \mu)$$

- Semileptonic B decays involving a τ lepton are sensitive to physics beyond the SM (BSM).
- Coupling to all lepton flavors is the same in the SM, but the large value of the τ mass results in a reduced phase space factor, and hence R(D) and R(D*) are expected to be 0.298 +/- 0.004 and 0.254 +/- 0.005, respectively in SM.

LFV: Measurement of R(D*)

arXiv:2401.02840

- Belle II, Run 1 data (189 fb⁻¹)
- Btag decays hadronically
- Reconstruct τ and light lepton decays into the same final state particles to cancel many systematic uncertainties
- Reconstruct the D^* in the following channels: $D^* D^0\pi +$, $D+\pi^0$ and $D^0\pi^0$.
- Rest of the event: no good quality tracks, no π^0 candidates. Sum of all the neutral extra clusters energy is called E_{FCL} .
- Poorly understood $B \rightarrow D^{**} \ell v$ backgrounds is one of the major background

$$R(D^*_{\tau/\ell}) = \frac{B(B \to D^* \tau \nu)}{B(B \to D^* \ell \nu)}$$

LFV: Measurement of $R(D^*)$

2D fit to E_{ECL} and missing mass of the event (M^2_{miss})

$$M_{\rm miss}^2 = (p_{e^+e^-} - p_{B_{\rm tag}} - p_{D^*} - p_{\ell})^2$$

LFV: Measurement of $R(D^*)$

Belle II preliminary result $R(D^*_{\tau/\ell}) = 0.262^{+0.041}_{-0.039}(stat)^{+0.035}_{-0.032}(sys)$

- Consistent with SM and HFLAV
- Update using 364 fb⁻¹ in progress

SM prediction: 0223 +/- 0.005

Phys. Rev. Lett. 132.211804 (2024)

- Belle II, Run 1 data (189 fb⁻¹)
- Hadronic decay of the B_{tag}
- Reconstruct τ and light lepton decays into the same final state particles to cancel many systematic uncertainties.
- $p_e > 0.3 (0.5)$ GeV and $p_\mu > 0.4 (0.7)$ GeV in CMS (lab)
- The remaining particles on the signal side are collectively referred to as *X*
- Main challenge: correct model of backgrounds

- MC corrections are applied
- Final Fit: We extract the signal and normalization yields for the electron and muon modes from a simultaneous maximum-likelihood fit to the binned two-dimensional distributions of p_ℓ and M²_{miss}
 Fit components: Xτν, Xℓν, BB background (fakes and secondaries) and continuum (off resonance data)

First measurement of the tau-to-light-lepton ratio of inclusive semileptonic B-meson branching fractions [complementary probe of LUV to the exclusive D* decays]

 $R(X_{\tau/e}) = 0.232 \pm 0.020(\text{stat}) \pm 0.037(\text{syst}),$ $R(X_{\tau/\mu}) = 0.222 \pm 0.027(\text{stat}) \pm 0.050(\text{syst}),$

 $R(X_{\tau/\ell}) = 0.228 \pm 0.016(\text{stat}) \pm 0.036(\text{syst})$

- Largest systematics: signal and background model
- Consistent with previous measurements from LEP, SM expectation, and constraints from *R* (*D*^{*}).
- SM expectation: $R(X_{\tau/\ell}) \approx 0.223$ [JHEP11(2022)007]

- FCNC process
- SM prediction: Small BF BR (B⁺→K⁺v v-bar) = (0.56 ± 0.04) 10⁻⁵ [PRD 107, 014511 (2023)]
- EW penguin, sensitive to NP
- Mode unique to e⁺ e⁻ colliders

- Hadronic Tag (HT): Conventional method
- Reconstruct tag-side B with hadronic mode
- Lesser background

- Inclusive Tag (IT): Novel technique at Belle
 II— more sensitive than HT
- Reconstruct signal B (pick up K⁺) only exploit the rest of the event (ROE) to suppress backgrounds.

Phys. Rev. D. 109.112006 (2024)

- Belle II, Run 1 data (362 fb⁻¹)
- Analysis used 2 different tagging methods: IT (innovative) and HT (conventional).
- Inclusive tag (IT): uses 2 consecutive classifiers with single kaon (one with the lowest q²), event shape, and rest of the event information-2 BDTs

q²: mass squared of the neutrino pair

Phys. Rev. D. 109.112006 (2024)

- Signal Efficiency Validation done with control channel, $B \rightarrow J/\psi K$ sample, removing J/ψ and correcting K^+ kinematics
- Background Validation: Detailed studies of other B decay modes especially with K₁ in the final states
 - Undetected K_r in ECL can mimic neutrinos
 - K_L efficiency: $e^+e^- \rightarrow \gamma \phi \rightarrow K_L K_S$
 - Corrections for $B^+ \to K^+ K_L K_L$ background from $B^+ \to K^+ K_S K_S$
 - $B \rightarrow X_c (\rightarrow K_L)$ validated using a pion enriched sample

Binned maximum likelihood fit done to extract signal:

- HT fit: uses Classifier output
- IT fit: uses Classifier output and mass squared of neutrino pair

Final observables: q_{rec}^{2} in bins of the second classifier (BDT)

Phys. Rev. D. 109.112006 (2024)

Phys. Rev. D. 109.112006 (2024)

Measurement of BR ($B \rightarrow K v v$ -bar)

				${\mathop{\rm SM}_{_{0.497\pm0.037}}}$	$\operatorname{Aver}_{\mathbf{I}^{1,3\pm0.4}}$	rage			
Inclusive Tag:	$\mathscr{B} =$ 3.5 σ hypot 2.9 σ	$\mathscr{B} = (2.7 \pm 0.5 \pm 0.5) \times 10^{-5}$ 3.5 σ significance wrt bkg only hypothesis 2.9 σ deviation from SM				• - 	$\begin{array}{c} \mbox{Belle II (36)} \\ {}_{2.3 \pm 0.7 } & \mbox{This ana} \\ \mbox{Belle II (36)} \\ {}_{1.1 \pm 1.1 } & \mbox{This ana} \\ \mbox{Belle II (36)} \\ {}_{2.7 \pm 0.7 } & \mbox{This ana} \\ \mbox{Belle II (63)} \\ {}_{1.9 \pm 1.5 } & \mbox{PRL127}, \end{array}$	$\begin{array}{l} 2 \ {\rm fb^{-1},\ combin}\\ {}_{\rm ysis}^{\rm ysis} \\ 2 \ {\rm fb^{-1},\ hadron}\\ {}_{\rm ysis}^{\rm ysis} \\ 2 \ {\rm fb^{-1},\ inclusiv}\\ {}_{\rm ysis}^{\rm fb^{-1},\ inclusiv}\\ {}_{\rm 18102}^{\rm fb^{-1},\ inclusive} \end{array}$	ied) ic) ve) e)
Hadronic Tag:	$\mathscr{B} = (1.1^{+0.9}_{-0.8} {}^{+0.8}_{-0.5}) \times 10^{-5}$ 1.1 σ significance wrt bkg only 0.6 σ deviation from SM			0		•	Belle (711 f 1.0±0.6 PRD96, Belle (711 f 2.9±1.6 PRD87, BaBar (418 0.2±0.8 PRD82, BaBar (429 1.5±1.3 PRD87,	b ⁻¹ , semilepto ⁹⁹¹¹⁰¹ b ⁻¹ , hadronic) ¹¹¹¹⁰³ fb ⁻¹ , semilept ¹¹²⁰⁰² fb ⁻¹ , hadronic ¹¹²⁰⁰⁵ 8	nic) tonic) c) 10
Combinatior		$\mathscr{B} = (2.3 \pm 0.5^{+0.5}_{-0.4}) \times 10^{-5}$ 3.5 σ significance wrt bkg only 2.7 σ deviation from SM		F	irst e	evidence	e for B —	→ K v v-	bar _23

Conclusions

- New Exclusive V_{ub} measurement from untagged $B \rightarrow \pi/\varrho v$: Key to understanding exclusive-inclusive tension and important in testing CKM parameters in the context of SM predictions
- New measurement of R (D*) Important test for SM and probe beyond the SM physics
- Measurement of R (X) Important test for SM and probe beyond the SM physics
- First evidence of $B^+ \rightarrow K^+ v v$ -bar, 2.7 σ above the SM prediction Important test for SM and probe beyond the SM physics

$|V_{ub}|$ from $B^0 \rightarrow \pi^- l^+ v$ and $B^+ \rightarrow \rho^0 l^+ v$

$$\frac{\mathrm{d}\Gamma(B \to \pi \ell \nu_{\ell})}{\mathrm{d}q^{2} \mathrm{d}\cos\theta_{W\ell}} = |V_{ub}|^{2} \frac{G_{F}^{2} |\vec{p}_{\pi}|^{3}}{32\pi^{3}} \sin^{2}\theta_{W\ell} |f_{+}(q^{2})|^{2}$$

$$\frac{\mathrm{d}\Gamma(B \to \rho \ell \nu_{\ell})}{\mathrm{d}q^{2} \mathrm{d}\cos\theta_{W\ell}} = |V_{ub}|^{2} \frac{G_{F}^{2} |\vec{p}_{\rho}|q^{2}}{128\pi^{3}m_{B}^{2}}$$

$$\times \left[\sin^{2}\theta_{W\ell} |H_{0}(q^{2})|^{2} + (1 - \cos\theta_{W\ell})^{2} \frac{|H_{+}(q^{2})|^{2}}{2} + (1 + \cos\theta_{W\ell})^{2} \frac{|H_{-}(q^{2})|^{2}}{2}\right],$$

• MC corrections are applied:

Detailed adjustments to MC (FFs, *B* and *D* BFs)

Detailed corrections based on comparisons of simulation with control regions: low q^2 , low M^2_{miss} , high M_{χ} .

Final Fit: We extract the signal and normalization yields for the electron and muon modes from a simultaneous maximum-likelihood fit to the binned two-dimensional distributions of p_ℓ and M²_{miss}
 Fit components: Xτν, Xℓν, BB background (fakes and secondaries) and continuum (off resonance data)

q²: di-neutrino mass-squared

$$q_{\rm rec}^2 = s/(4c^4) + M_K^2 - \sqrt{s}E_K^*/c^4$$