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The CDF-Il Anomaly

¢ What is the CDF-Il Anomaly?

¢ Measurement of W boson mass by CDF-II Collaboration
using their full data set

¢ Data corresponds to 8.8 fb~! of integrated luminosity
collected in pp collisions at a 1.96 TeV energy in Fermilab

Tevatron collider.
¢ A sample of ~4 million W boson candidates was used

¢ LeptonicW — [v;l = e, decay channels were used

¢ The result [CDF Collaboration ‘22]

My = 80,433.5+ 6.4t + 6955t = 80,433.5+9.4 MeV /c?
¢ Most precise measurement of W boson mass
¢ Also 7-sigma away from SM prediction !!
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How you measure W mass?

¢ |In hadron colliders you produce W bosons predominantly
through pp — W channel

¢ The leptonic decays W — (v ;[ = e, provide the cleanest
decay channels

¢ The problem is that neutrinos escape undetected

¢ One has to measure the W boson properties, here mass,
solely from charged leptons observables

¢ Use the transverse momentum (pT) information of the
charged lepton
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How you measure W mass?
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How you measure W mass?
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How you measure W mass?

¢ Apart from charged lepton pT one can also construct
another quantity namely the transverse mass mT
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How you measure W mass?

¢ Apart from charged lepton pT one can also construct
another quantity namely the transverse mass mT

m%(ﬂ', V) = (lPeTl T |PVT|)2 - (PcT 5 g PvT)2
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How you measure W mass?
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The CDF-Il W mass measurement
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The CDF-Il Anomaly
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The CDF-Il Anomaly

¢ So is the CDF-ll measurement a conclusive proof of
New Physics beyond SM?

¢ Hurray, Nobel Prize!?
¢ Actually there are two anomalies:

¢ The CDF-ll measurement deviates from SM
expectation by 7-sigma

¢ [t also is in disagreement with other experiments,
in particular with ATLAS

¢ In this talk | will discuss classes of explanations which
can lead to significant deviations from SM
expectations of the W boson mass

¢ | will also discuss their connections to other
shortcomings of the SM



W boson Mass in SM

¢ In SM the W, Z bosons get their mass after SSB via Higgs
mechanism

¢ The mass of W, Z are proportional to the Higgs vev and
the gauge couplings

¢ They are also tied together by the rho-parameter (on-
shell renomalization scheme)

9
_ myy
P = m2 cos? 6
4 W

inSM : p =1
¢ So iIf you know mass of one gauge boson then you can

compute the SM expectation for the other

¢ Typically Z mass can be easily and precisely measured
¢ Z mass used as input for W mass expectation >



SM Global Fit

¢ You actually do a global fit
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The Oblique S, T, U Parameters

¢ New physics effects can change the SM relations

¢ Model independent parametrization: The Oblique S, T, U
parameters
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The Oblique S, T, U Parameters
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New Physics for CDF Anomaly

¢ New physics effects that can explain CDF-Il anomaly
fall into some general categories
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New Physics for CDF Anomaly

¢ New physics effects that can explain CDF-Il anomaly
fall into some general categories

¢ Triplet scalars changing W-mass at tree level
¢ Doublet scalars changing W-mass at one loop level

¢ A new U(l) gauge symmetry and the 2’ boson
changing Z-boson mass at tree level
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Triplet Scalars

¢ Presence of triplet scalars can change W, Z mass at tree
level

40



Triplet Scalars

¢ Presence of triplet scalars can change W, Z mass at tree
level

¢ Measured Z mass same as SM value

41



Triplet Scalars

¢ Presence of triplet scalars can change W, Z mass at tree
level

¢ Measured Z mass same as SM value

¢ Desirable to have triplet scalar with no Hypercharge

42



Triplet Scalars

¢ Presence of triplet scalars can change W, Z mass at tree
level

¢ Measured Z mass same as SM value

¢ Desirable to have triplet scalar with no Hypercharge
\/92 +gf2
v

My = g\/ v + 403 and My = o
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Triplet Scalars

¢ Presence of triplet scalars can change W, Z mass at tree
level

¢ Measured Z mass same as SM value

¢ Desirable to have triplet scalar with no Hypercharge
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Triplet Scalars
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Triplet Scalars
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Triplet Scalars

¢ Can such a scalar be connected to new physics?
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Triplet Scalars

¢ Can such a scalar be connected to new physics?

¢ Indeed models for neutrino and dark matter already
require such scalars Popov, RS '22; RS et.al, ‘22

¢ Example: Singlet-Triplet Scotogenic model [ma ‘09, valle et.al.
‘09]
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Triplet Scalars
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Triplet Scalars
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Triplet Scalars: W mass

¢ Including loop corrections the W mass: Tree level correction
+ loop corrections parametrized in terms of S, T, U
Popoyv, RS '22; RS et.al. ‘22

o [/ V2 + 4o -
My = MEM [\/ 20 T g 1,55 1.240)]
Vo A(ciy — siy)
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Triplet Scalars: W mass

C

Including loop corrections the W mass: Tree level correction

+ loop corrections parametrized in terms of S, T, U
Popoyv, RS '22; RS et.al. ‘22
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Triplet Scalars: W mass

¢ Global fits for S, T, U including CDF-Il results:

S=006+010, T=01140.12 and U = 0144009  Luetal 22
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Triplet Scalars: W mass

¢ Global fits for S, T, U including CDF-Il results:

S=0.06£0.10, T=0.11+£0.12 and U = 0.14 +0.09 Lu et.al. ‘22
¢ Compressed spectrum for the scalars in the model RS et.al. ©22
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Triplet Scalars: Dark Matter

¢ Doublet scalar can be good dark matter candidate Rs et.al. ‘22
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Triplet Scalars: Dark Matter

¢ Doublet scalar can be good dark matter candidate Rs et.al. ‘22
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Doublet Scalars: Loop Corrections

¢ Doublet scalars do not change W mass at tree level
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¢ Can explain CDF-Il results through loop corrections
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Doublet Scalars: Loop Corrections

¢ Doublet scalars do not change W mass at tree level

¢ Can explain CDF-Il results through loop corrections
RS et.al. '22,'22, ‘22
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Doublet Scalars: W mass

¢ Doublet scalars lead to loop corrections RS. et. al. ‘22, *22, ‘22
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Doublet Scalars: W mass

¢ Doublet scalars lead to loop corrections RS. et. al. ‘22, *22, ‘22
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Doublet Scalar: Scotogenic Model

¢ Scotogenic model: A simple model which explain both
neutrino mass and dark matter E. Ma ‘06

¢ Dark matter generates neutrino mass at one loop
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Doublet Scalar: Scotogenic Model

¢ Scotogenic model: A simple model which explain both
neutrino mass and dark matter E. Ma ‘06
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Doublet Scalar: W mass

¢ Doublet scalars lead to loop corrections RS. et. al. ‘22, *22, ‘22
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Doublet Scalar: W mass

¢ Doublet scalars lead to loop corrections RS. et. al. ‘22, *22, ‘22
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Doublet Scalar Dark Matter

¢ Doublet scalars can simultaneously be dark matter and
satisfy the CDF-ll measurement RS. et. al. ‘22, ‘22, ‘22
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Fermionic Dark Matter

¢ Doublet scalars provide loop correction to W mass while the
dark fermion is dark matter RS. et. al. ‘22, ‘22, ‘22
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Z Boson Mass Maodification

¢ Instead of modifying W bhoson mass, new physics can
mOdify Z boson mass Mandal, Prajapati, RS. ‘22
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Z Boson Mass Maodification

¢ Instead of modifying W bhoson mass, new physics can
modify Z boson mass Mandal, Prajapati, RS. ‘22

¢ Experimentally measured value of Z mass is not
it’s SM value

¢ SM Z boson value is higher than experimental value

¢ Z boson mass is used as an input for SM prediction
of W mass

¢ Assumed SM expectation of W mass is wrong
¢ CDF-Il is observing the correct SM W mass

¢ No new physics correction to W mass needed

¢ Presence of a Z’ originating from say a new U(1)
gauge symmetry can change the Z mass at tree Ie7\81el



Gauged B-L Symmetry

¢ New U(l) gauge symmetry: Should be anomaly free
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Gauged B-L Symmetry

¢ New U(l) gauge symmetry: Should be anomaly free

¢ B-L gauge symmetry with chiral (-4,-4,+5) charges for
right handed neutrinos E. Ma, RS. ‘14
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Gauged B-L Symmetry

¢ New U(l) gauge symmetry: Should be anomaly free

¢ B-L gauge symmetry with chiral (-4,-4,+5) charges for

right handed neutrinos

Fields |( SU(3)o ® SU(2). © U(1)y @ U(1)p_1. )
Ly (1,2,—1/2,—1)
Qr (3,2,1/6,1/3)
ER (1,1,—1,-1)
UR (3,1,2/3,1/3)
dp (3,1,—1/3,1/3)
v (1,1,0,5)
vy (1,1,0, —4)

D (1,2,1/2,0)
© (1,2,1/2,—3)
o (1,1,0,3)

Xd (1,1,0,1/2)

E. Ma, RS. ‘14
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Gauged B-L Symmetry: Type-Il
Dirac Seesaw

¢ Chiral charges of right handed neutrinos: Forbids tree level
Yukawa coupling between left and right handed neutrinos
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Dirac Seesaw

¢ Chiral charges of right handed neutrinos: Forbids tree level
Yukawa coupling between left and right handed neutrinos

¢ Neutrino masses can be generated through mass
mechanisms RS. et.al. ‘16, ‘17, ‘18, ‘19
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Gauged B-L Symmetry: Type-Il
Dirac Seesaw

¢ Chiral charges of right handed neutrinos: Forbids tree level
Yukawa coupling between left and right handed neutrinos

¢ Neutrino masses can be generated through mass
mechanisms RS. et.al. ‘16, ‘17, ‘18, ‘19

¢ B— L — Z3 Breaking with the residual Z3 symmetry
ensuring neutrinos remain Dirac particles
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Gauged B-L Symmetry: Type-Il
Dirac Seesaw

¢ Chiral charges of right handed neutrinos: Forbids tree level
Yukawa coupling between left and right handed neutrinos

¢ Neutrino masses can be generated through mass
mechanisms RS. et.al. ‘16, ‘17, ‘18, ‘19

¢ B— L — Z3 Breaking with the residual Z3 symmetry
ensuring neutrinos remain Dirac particles

¢ Type-ll Dirac Seesaw (D) (o)

()

e




Gauged B-L Symmetry: Z mass

¢ Due to presence of new Z’ the neutral gauge boson mass
matrix becomes

2 TJTE g ;
My, = 7| 99

12

| —6u*gg,
¢ This leads to

A#
Z’J’ p—
AL

—gg'
92

Gu? G0z

cos t,,

— 6u’q’ g;r_
6u? GG
36b%g>

sin d,,

—cosa’ cosf,, cosa’cosb,

—sina’sinf,,

sin o cosf,,

¢ Changing the mass of Z as

My =0, M2 = % (4= VBZ+C?) and M, = -

where, A" = 36b%g* + (¢* + ¢*), B’ = 36b%¢>

2

. Where u =

Mandal, Prajapati, RS ‘22

v

0
: f
— sin «

cos o

2

(%)

T.I’Ti:':]

. and b* = u® +

11‘

2

T

v2

(A’ +VB? + C‘f?) :

— (92 + g’z) and (' = 129;]:1_1.21!92 + g2



Gauged B-L Symmetry: Z mass

¢ The modified Z mass in turn feeds into a erroneous
SM expectation for W mass Mandal, Prajapati, RS ‘22
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Gauged B-L Symmetry: Z mass

¢ The modified Z mass in turn feeds into a erroneous
SM expectation for W mass Mandal, Prajapati, RS ‘22

¢ Of course we also computed the loop corrections and S,
T, U parameters etc before comparing with CDF-Il results
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Gauged B-L Symmetry: Z mass

¢ The modified Z mass in turn feeds into a erroneous
SM expectation for W mass Mandal, Prajapati, RS ‘22
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Gauged B-L Symmetry: Z mass

¢ The modified Z mass in turn feeds into a erroneous
SM expectation for W mass

L~
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Mandal, Prajapati, RS ‘22
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Conclusions

The CDF-Il W mass measurement disagrees with both
¢ Other experimental measurements
¢ Current SM expectation of W mass

In my opinion it is too early to say if this is conclusive
proof of new physics

Still, if this is new physics it can be accommodated in
several ways. | discussed few such options

¢ Triplet scalars modifying W mass at tree level
¢ Doublet scalars leading to loop corrections
¢ Modification in Z mass leading to W mass anomaly

Updated ATLAS results and CMS measurements will
hopefully clarify the situation
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Thank You
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