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Motivations

b → sµ+µ−
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Figure 2 – Measurement of the less form-factor dependent observable P 0
5 (left) by LHCb using Run 1 and 2016

data in black. The SM predictions 12,13 are displayed in orange. The right plot shows the results of the Wilson
Coe�cient shifts �Re(C9) and �Re(C10) derived from the measured angular observables. Both plots show the
measurement to be in tension with the SM prediction.

The estimation of hadronic form factor uncertainties and the e↵ect of cc-loop contributions
present a significant challenge for theory predictions of the angular observables and are an
active field of study. In contrast to the q2-unbinned angular analysis 9,10,11, the measurement
of binned angular observables is largely model-independent. These proceedings discuss the
currently ongoing e↵ort to update the binned angular analysis of B0 ! K⇤0µ+µ� adding the
LHCb data samples from 2017 and 2018. This increases the integrated luminosity to a total of
8.4 fb�1.

2 Five-dimensional angular fit to B0! K⇤0µ+µ�

The decay B0 ! K⇤0µ+µ� can be fully described by the three decay angles ✓`, ✓K , �, the
invariant mass of the K⇡ system, mK⇡, and the squared invariant mass of the µ+µ� system,
q2. This analysis aims to measure the full set of angular observables and the branching fraction
in bins of q2. The normalized di↵erential decay rate used to fit the data is given by

1
d(�+�)/dq2

�
d~⌦ dq2 dmK⇡

= 9
64⇡

✓P
i2P(Si ± Ai)fi(✓l, ✓K , �)|BWP(mK⇡)|2

+
P

i2S(Si ± Ai)fi(✓l, ✓K , �)|LS(mK⇡)|2

+
P

i2S/P(Si ± Ai)fi(✓l, ✓K , �)gi(LS(mK⇡)BW?
P(mK⇡))

◆
.

(1)

The mK⇡ dependence of the decay rate is included directly in the angular fit PDF. The precise
description of the mK⇡ shape is essential to disentangle spin-1 (P-wave) and spin-0 (S-wave)
contributions to the K⇡ system. The P-wave resonance (K⇤0) peaks in the mK⇡ distribution
and is parameterized using a relativistic Breit-Wigner function (BWP). The P-wave part of the
di↵erential decay rate is described by the first term in Eq. 1, while the second term represents
the S-wave part. The third term arises from the interference between P- and S-wave. S-wave
contributions from K⇤0(1430) and (800) decays exhibit a broad shape in the mK⇡ spectrum
and are described by the LASS model 14 (LS). The function gi in the third term returns either
the Re or Im part of its argument depending on the index i. The five-dimensional angular
fit PDF depends on the three decay angles, mK⇡, and the invariant mass of the B0 candidate
mK⇡µµ. mK⇡µµ specifically is used to distinguish signal candidates, which peak around the
B0 mass, from the remaining combinatorial background. This type of background arises from
randomly combined tracks in the detector and is distributed exponentially in mK⇡µµ. The
background shape in mK⇡ and the decay angles is modeled using polynomial functions. A
five-dimensional maximum likelihood fit is performed in each q2 bin separately to extract the

Figure 1: Figure from L Carus 2405.10882

Also the B → K (∗)µ+µ−, Bs → φµ+µ− lower than SM predictions
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Motivations

Λb(5620), udb, spin 1/2

Λ(1115): uds spin 1/2

Λ∗(1520): uds spin 3/2
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New avenue to test b → s`+`− FCNC (LHCb, FCC-ee)

Unique features:

• In Λb → Λ(→ Nπ)`` the Λ→ Nπ decay is weak s → d transition – additional

observable.

• Unpolarized Λb decay 10 observables. Polarized Λb decay 34 observables

• Compared to B → K∗ ff, the LQCD ff of Λb → Λ expected to be precise due to Λ

stability under strong interaction Detmold/Meinel Phys. Rev. D 93 (2016) no. 7,

074501

• In Λb → Λ∗(→ NK̄)``, the Λ∗ → NK̄ is strong, but Λ∗ is spin 3/2
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Λb → Λ(→ Nπ)µ+µ−

• B(Λb → Λµ+µ−) = (1.73± 0.42± 0.55)× 10−6,

signal yield 24±5, evidence q2 above ψ(2S)

CDF Collaboration Phys. Rev. Lett. 107, 201802 (2011)

• B(Λb → Λµ+µ−) = (0.96± 0.16± 0.13 + 0.21)× 10−6, yield 78±12, 1fb−1,

LHCb Collaboration Phys. Lett. B 725, 25 (2013)

• LHCb Collaboration JHEP 06, 115 (2015) , 3fb−1, angular observables in

15 < q2 < 20GeV2

A(A`FB) = −0.05± 0.09± 0.03 , Ah
FB = −0.29± 0.07± 0.03

• LHCb Collaboration JHEP 09, 146(2018) . Angular analysis 15 < q2 < 20GeV2

A`FB = −0.39± 0.04± 0.01 , Ah
FB = −0.30± 0.05± 0.02 ,

A`hFB = +0.25± 0.04± 0.01 ,
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Unpolarized Λb → Λ(→ Nπ)`+`− Decay kinematics

The decay proceeds in two steps

Λb(p, sp)→ Λ(k, sk )`+(q1)`−(q2) followed by Λ(k, sk )→ N(k1, sN)π(k2)

ℓ−

ℓ+

N

sp,k,N : projections of baryonic spins on to the z-axis in their respective rest frames.

Independent kinematic variables are

1. dilepton invariant mass squared q2

2. θ`: made by `− w.r.to +z direction

3. θΛ: made by N w.r.to +z direction

4. φ: angle between `+`− and Nπ decay planes (Nπ = {p+π−, nπ0})
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Effective Hamiltonian

SM basis: Gutsche et.al., Phys. Rev. D 87, 074031 (2013), Böer et.al., JHEP 01 (2015) 155

SM+SM′+NP, and lepton mass effects

Heff = −4GF√
2
VtbV

∗
ts
αe

4π

(∑
i

CiOi +
∑
j

C′jO′j
)
, i = 7, 9, 10,V ,A, S,P, j = V ,A,S ,P

The operators O(′) read

O7 =
mb

e

[
s̄σµνPRb

]
Fµν , O9 =

[
s̄γµPLb

][
`γµ`

]
, O10 =

[
s̄γµPLb

][
`γµγ5`

]
,

O(′)
V =

[
s̄γµPL(R)b

][
`γµ`

]
, O(′)

A =
[
s̄γµPL(R)b

][
`γµγ5`

]
,

O(′)
S =

[
s̄PR(L)b

][
``
]
, O(′)

P =
[
s̄PR(L)b

][
`γ5`

]
.

Ceff
7,9, C10 are the dominant Wilson coefficients in SM (C(′)

V ,A,S,P = 0)

DD Eur.Phys.J. C78, 230 (1802.09404)

DD JHEP 07 (2020) 002

OT = s̄σµνb ¯̀σµν` ,OT5 = s̄σµνb ¯̀σµνγ5`

Han Yan, 1911.11568,

DD Eur.Phys.J. C78, 230 (1802.09404)
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Λ → Nπ decay

The parity violating decay proceeds through the effective Hamiltonian L Okun 1985

Heff
∆S=1 =

4GF√
2
V ∗udVus

[
d̄γµPLu

][
ūγµPLs

]
. (1)

The decay amplitudes can be written as

M2(sk , sN) = 〈p(k1, sN)π−(k2)
∣∣[d̄γµPLu][ūγµPLs]

∣∣Λ(k, sk )〉 ,
= ū(k1, sN)(ω + ξγ5)u(k, sk ) . (2)

The hadronic parameters ξ, ω can be extracted from the decay width and polarization

measurements

In the full angular distribution the only relevant quantity is the parity violating

parameter

αΛ =
−2Re(ξω)√

r−
r+
|ξ|2 +

√
r+
r−
|ω|2

, r± = (mΛb
±mN)2 −m2

π . (3)

Böer/Feldmann/Dyk, JHEP01 (2015) 155 (1410.2115)

parity violating parameter (Nπ = pπ) is αΛ = 0.642± 0.013 PDG, Chin. Phys. C 40,

no.10, 100001 (2016).
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Hadronic matrix elements

Hadronic matrix elements for vector and axial vector currents

K2c = �↵⇤�`
2

Re

✓
|AR

?1
|2 + |AR

k1
|2 � {R $ L}

◆
, (C.17)

K0
2c = ↵⇤�`Re

✓
AS?A⇤R

k0
+ ASkA

⇤R
?0

+ {R $ L}
◆

, (C.18)

K00
2c = 0 , (C.19)

K3sc =
↵⇤p

2
Im

✓
AR

?1
A⇤R

?0
� AR

k1
A⇤R

k0
+ {R $ L}

◆
, (C.20)

K0
3sc = 0 , (C.21)

K00
3sc = 2

p
2↵⇤Im

✓
AR

k1
A⇤R

k0
� AR

?1
A⇤R

?0
+ {R $ L}

◆
, (C.22)

K3s =
↵⇤�`p

2
Im

✓
AR

?1
A⇤R

k0
� AR

k1
A⇤R

?0
� {R $ L}

◆
, (C.23)

K0
3s =

↵⇤�`p
2

Im

✓
AR

k1
A⇤

Sk � AR
?1

A⇤
S? + {R $ L}

◆
, (C.24)

K00
3s = 0 , (C.25)

K4sc =
↵⇤p

2
Re

✓
AR

?1
A⇤R

k0
� AR

k1
A⇤R

?0
+ {R $ L}

◆
, (C.26)

K0
4sc = 0 , (C.27)

K00
4sc = 2

p
2↵⇤Re

✓
AR

k1
A⇤R

?0
� AR

?1
A⇤R

k0
+ {R $ L}

◆
, (C.28)

K4s =
↵⇤�`p

2
Re

✓
AR

?1
A⇤R

?0
� AR

k1
A⇤R

k0
� {R $ L}

◆
, (C.29)

K0
4s =

↵⇤�`p
2

Re

✓
AR

k1
A⇤

S? � AR
?1

A⇤
Sk + AS?A⇤R

k1
� ASkA

⇤R
?1

+ {R $ L

◆
, (C.30)

K00
4s = 0 . (C.31)

For our SM results, we agree4 with [5]

D ⇤b ! ⇤ hadronic matrix elements

A convenient choice for the parametrization of the ⇤b ! ⇤ hadronic matrix elements is the

so called helicty basis [7] in terms of which the matrix elements for the vector current is

h⇤(k, sk)|s̄�µb|⇤(p, sp)i =ū(k, sk)

"
fV

t (q2)(m⇤b
� m⇤)

qµ

q2

+fV
0 (q2)

m⇤b
+ m⇤

s+
{pµ + kµ � qµ

q2
(m2

⇤b
� m2

⇤)}

+fV
? (q2){�µ � 2m⇤

s+
pµ � 2m⇤b

s+
kµ}
#
u(p, sp) , (D.1)

4The normalization of our time-like transversity amplitudes di↵er from Ref.[5] by a factor of
p

2.

– 20 –

and the axial-vector current is

h⇤(k, sk)|s̄�µ�5b|⇤(p, sp)i = � ū(k, sk)�5

"
fA

t (q2)(m⇤b
+ m⇤)

qµ

q2

+fA
0 (q2)

m⇤b
� m⇤

s�
{pµ + kµ � qµ

q2
(m2

⇤b
� m2

⇤)}

+fA
? (q2){�µ +

2m⇤

s�
pµ � 2m⇤b

s�
kµ}
#
u(p, sp) . (D.2)

The matrix elements for the scalar and the pseudo-scalar currents are

h⇤(k, sk)|s̄b|⇤(p, sp)i =fV
t (q2)

m⇤b
� m⇤

mb
ū(k, sk)u(p, sp) , (D.3)

h⇤(k, sk)|s̄�5b|⇤(p, sp)i =fA
t (q2)

m⇤b
+ m⇤

mb
ū(k, sk)�5u(p, sp) , (D.4)

where we have neglected the mass of the strange quark. For the dipole operators we get

h⇤|s̄iq⌫�µ⌫b|⇤bi = �ū(k, sk)

"
fT
0 (q2)

q2

s+

 
pµ + kµ � qµ

q2
(m2

⇤b
� m2

⇤)

!

+ fT
?(m⇤b

+ m⇤)

 
�µ � 2m⇤

s+
pµ � 2m⇤b

s+
kµ

!#
u(p, sp) , (D.5)

and

h⇤|s̄iq⌫�µ⌫�5b|⇤bi = �ū(k, sk)�5

"
fT5
0

q2

s�

 
pµ + kµ � qµ

q2
(m2

⇤b
� m2

⇤)

!

+ fT5
? (m⇤b

� m⇤)

 
�µ +

2m⇤

s�
pµ � 2m⇤b

s�
kµ

!#
u(p, sp) . (D.6)

E Numerical inputs

In the following table we collect the numerical values of the inputs used in the paper.

inputs values inputs values

↵e(mb) 1/127.925(16) [41] |VtbV
⇤
ts| 0.0401 ± 0.0010 [42]

mc(MS) 1.28 GeV [41] m⇤b
5.619 GeV [41]

µb 4.8 GeV [37] m⇤ 1.115 GeV [41]

mb(MS) 4.2 GeV [37] ⌧⇤b
(1.470 ± 0.010) ⇥ 10�12s [41]

mb(pole) 4.8 GeV [37] mB0 5.279 GeV [16]

↵s(mb) 0.214 [37] mK 0.494 GeV [16]

– 21 –

7



Hadronic matrix elements

Hadronic matrix elements for tensor and pseudo-tensor currents and (pseudo-)scalar

currents

and the axial-vector current is
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t (q2)(m⇤b
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qµ

q2
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0 (q2)

m⇤b
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{pµ + kµ � qµ

q2
(m2

⇤b
� m2

⇤)}
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⇤b
� m2
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u(p, sp) , (D.5)
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and the axial-vector current is
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+ m⇤)
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Ten q2 dependent form-factors: f Vt,0,⊥, f At,0,⊥, f T0,⊥, f T5
0,⊥

Lattice QCD calculations of form-factors are valid at large q2 , Detmold/Meinel, Phys.

Rev. D 93 (2016) 074501, Detmold/Lin/Meinel/Wingate, Phys. Rev. D 87, no. 7, 074502 (2013),

Non-local contributions of the QCD penguin operators in Λb → Λ calculated recently

Feldmann/Gubernari 2312.14146 8



Helicity Amplitudes

The matrix elements are

The decay can be completely described in terms of four independent kinematic variables

which we choose as the dilepton invariant mass squared q2, the angle ✓` which is defined

as the angle made by `� with the +z-direction in the dilepton rest frame, the angle ✓⇤
which is made by N with respect to the +z-direction in the N⇡ rest frame, and the angle

� between the `+`� and N⇡ decay planes.

4 Decay amplitudes

The four body decay proceeds in two steps, the decay ⇤b ! ⇤`+`� followed by ⇤ ! N⇡.

Corresponding to the Hamiltonian (2.1) the amplitudes for ⇤b ! ⇤`+`� can be written as

[18]

M�1,�2(sp, sk) = �GFp
2
VtbV

⇤
ts

↵e

4⇡

X

i=L,R

X

�

⌘�H
i,sp,sk

VA,� L�1,�2

i,� + H
i,sp,sk

SP L�1,�2
i

�
. (4.1)

Here we have separated the left (L) and right (R) handed chiralities of the lepton currents.

The ⇤b ! ⇤ hadronic helicity amplitudes H i,sp,sk are defined as the projections of the

⇤b ! ⇤ hadronic matrix elements on the direction of polarization of the virtual gauge boson

that decays into dilepton pair. The polarization states of the gauge boson are denoted by

� = t, ±1, 0, the helicities of the leptons are denoted by �1,2 and ⌘t = 1, ⌘±1,0 = �1. H i,sp,sk

were explicitly derived in Ref. [18] to which we refer but the expressions are also collected in

Appendix B for completeness. The leptonic helicity amplitudes L�1,�2 for massive leptons

are worked out in Sec. 4.2.

4.1 Transversity amplitudes

In this section we introduce the transversity amplitudes which are defined as linear combi-

nations (see Appendix B) of the helicity amplitudes1. As shown in Eq. (4.1), the amplitudes

corresponding to the VA and SP operators can be separated. For VA operators we obtain

ten transversity amplitudes

A
L,(R)
?1

= �
p

2N

✓
fV
?
p

2s�CL,(R)
VA+ +

2mb

q2
fT
?(m⇤b

+ m⇤)
p

2s�Ce↵
7

◆
, (4.2)

A
L,(R)
k1

=
p

2N

✓
fA
?
p

2s+CL,(R)
VA� +

2mb

q2
fT5
? (m⇤b

� m⇤)
p

2s+Ce↵
7

◆
, (4.3)

A
L,(R)
?0

=
p

2N

✓
fV
0 (m⇤b

+ m⇤)

r
s�
q2

CL,(R)
VA+ +

2mb

q2
fT
0

p
q2s�Ce↵

7

◆
, (4.4)

A
L,(R)
k0

= �
p

2N

✓
fA
0 (m⇤b

� m⇤)

r
s+

q2
CL,(R)

VA� +
2mb

q2
fT5
0

p
q2s+Ce↵

7

◆
, (4.5)

A?t = �2
p

2NfV
t (m⇤b

� m⇤)

r
s+

q2
(C10 + CA + C0

A) , (4.6)

Akt = 2
p

2NfA
t (m⇤b

+ m⇤)

r
s�
q2

(C10 + CA � C0
A) . (4.7)

1In our definition of the transversity amplitudes, the ?1 and ?0 (k1 and k0) components depend on

vector (axial-vector) current. In this regard our SM amplitudes are identical to that in Ref. [4]. A di↵erent

definition is used in Ref. [5, 20] where ?1 and ?0 (k1 and k0) depend on the axial-vector (vector) current.
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where ηt = 1 and η±1,0 = −1

HVA,λ - hadronic helicity amplitudes, εµ virtual gauge-boson polarization
The hadronic helicity amplitudes are the projections of ⇤b ! ⇤ matrix elements on the

direction of the polarization of virtual gauge boson. For VA, SP and T operators these are

H
L(R),sp,sk

VA,� = ✏̄⇤µ(�)
⌦
⇤(k, sk)

��
⇣

(Ce↵
9 ⌥ C10) + (CV ⌥ CA)

⌘
s̄�µ(1 � �5)b

+ (C 0
V ⌥ C 0

A)s̄�µ(1 + �5)b �
2mb

q2
Ce↵

7 s̄iq⌫�
µ⌫(1 + �5)b

���⇤b(p, sp)
↵
, (4.6)

H
L(R),sp,sk

SP =
⌦
⇤(k, sk)

��

(C 0

S ⌥ C 0
P )s̄(1 � �5)b

+ (CS ⌥ CP )s̄(1 + �5)b

���⇤b(p, sp)
↵
, (4.7)

H
L(R),sp,sk

T,��0 = i✏̄⇤µ(�)✏̄⇤⌫(�
0)
⌦
⇤(k, sk)

��s̄�µ⌫b
��⇤b(p, sp)

↵
(CT ⌥ CT5) . (4.8)

Here ✏̄µ(�(0)) denote the polarization vectors of the virtual gauge boson. Our choice for the
polarization vectors are summarized in Appendix B. Similarly, the leptonic helicity amplitudes
are

L�1,�2

L(R) = h¯̀(�1)`(�2)|¯̀(1 ⌥ �5)`|0i , (4.9)

L�1,�2

L(R),� = ✏̄µ(�)h¯̀(�1)`(�2)|¯̀�µ(1 ⌥ �5)`|0i , (4.10)

L�1,�2

L(R),��0 = �i✏̄µ(�)✏̄⌫(�0)h¯̀(�1)`(�2)|¯̀�µ⌫(1 ⌥ �5)`|0i . (4.11)

The tensor amplitudes are anti-symmetric under the exchange of � and �0, i.e., L�1,�2

L(R),�0� =

�L�1,�2

L(R),��0 .

4.2 Hadronic Helicity amplitudes

The ⇤b ! ⇤ hadronic matrix elements for di↵erent operators are defined in terms of ten
helicity form factors fV

t,0,?, fA
t,0,?, fT

0,?, fT5
0,? [38] and spinor matrix elements. The definitions are

summarized in Appendix C and the spinor matrix elements for di↵erent combinations of spin
orientations are worked out in Appendix D. Using these results we write down the expressions
of the helicity amplitudes defined in Eqs. (4.6)-(4.8) for di↵erent operators. For VA operators

4

Li,λ - leptonic helicity amplitudes

The hadronic helicity amplitudes are the projections of ⇤b ! ⇤ matrix elements on the
direction of the polarization of virtual gauge boson. For VA, SP and T operators these are

H
L(R),sp,sk

VA,� = ✏̄⇤µ(�)
⌦
⇤(k, sk)

��
⇣

(Ce↵
9 ⌥ C10) + (CV ⌥ CA)

⌘
s̄�µ(1 � �5)b

+ (C 0
V ⌥ C 0

A)s̄�µ(1 + �5)b �
2mb

q2
Ce↵

7 s̄iq⌫�
µ⌫(1 + �5)b

���⇤b(p, sp)
↵
, (4.6)

H
L(R),sp,sk

SP =
⌦
⇤(k, sk)

��

(C 0

S ⌥ C 0
P )s̄(1 � �5)b

+ (CS ⌥ CP )s̄(1 + �5)b

���⇤b(p, sp)
↵
, (4.7)

H
L(R),sp,sk

T,��0 = i✏̄⇤µ(�)✏̄⇤⌫(�
0)
⌦
⇤(k, sk)

��s̄�µ⌫b
��⇤b(p, sp)

↵
(CT ⌥ CT5) . (4.8)

Here ✏̄µ(�(0)) denote the polarization vectors of the virtual gauge boson. Our choice for the
polarization vectors are summarized in Appendix B. Similarly, the leptonic helicity amplitudes
are

L�1,�2

L(R) = h¯̀(�1)`(�2)|¯̀(1 ⌥ �5)`|0i , (4.9)

L�1,�2

L(R),� = ✏̄µ(�)h¯̀(�1)`(�2)|¯̀�µ(1 ⌥ �5)`|0i , (4.10)

L�1,�2

L(R),��0 = �i✏̄µ(�)✏̄⌫(�0)h¯̀(�1)`(�2)|¯̀�µ⌫(1 ⌥ �5)`|0i . (4.11)

The tensor amplitudes are anti-symmetric under the exchange of � and �0, i.e., L�1,�2

L(R),�0� =

�L�1,�2

L(R),��0 .

4.2 Hadronic Helicity amplitudes

The ⇤b ! ⇤ hadronic matrix elements for di↵erent operators are defined in terms of ten
helicity form factors fV

t,0,?, fA
t,0,?, fT

0,?, fT5
0,? [38] and spinor matrix elements. The definitions are

summarized in Appendix C and the spinor matrix elements for di↵erent combinations of spin
orientations are worked out in Appendix D. Using these results we write down the expressions
of the helicity amplitudes defined in Eqs. (4.6)-(4.8) for di↵erent operators. For VA operators

4

9



Transversity Amplitudes

Transversity amplitudes for VA currents

The decay can be completely described in terms of four independent kinematic variables

which we choose as the dilepton invariant mass squared q2, the angle ✓` which is defined

as the angle made by `� with the +z-direction in the dilepton rest frame, the angle ✓⇤
which is made by N with respect to the +z-direction in the N⇡ rest frame, and the angle

� between the `+`� and N⇡ decay planes.

4 Decay amplitudes

The four body decay proceeds in two steps, the decay ⇤b ! ⇤`+`� followed by ⇤ ! N⇡.

Corresponding to the Hamiltonian (2.1) the amplitudes for ⇤b ! ⇤`+`� can be written as

[18]

M�1,�2(sp, sk) = �GFp
2
VtbV

⇤
ts

↵e

4⇡

X

i=L,R

X

�

⌘�H
i,sp,sk

VA,� L�1,�2

i,� + H
i,sp,sk

SP L�1,�2
i

�
. (4.1)

Here we have separated the left (L) and right (R) handed chiralities of the lepton currents.

The ⇤b ! ⇤ hadronic helicity amplitudes H i,sp,sk are defined as the projections of the

⇤b ! ⇤ hadronic matrix elements on the direction of polarization of the virtual gauge boson

that decays into dilepton pair. The polarization states of the gauge boson are denoted by

� = t, ±1, 0, the helicities of the leptons are denoted by �1,2 and ⌘t = 1, ⌘±1,0 = �1. H i,sp,sk

were explicitly derived in Ref. [18] to which we refer but the expressions are also collected in

Appendix B for completeness. The leptonic helicity amplitudes L�1,�2 for massive leptons

are worked out in Sec. 4.2.

4.1 Transversity amplitudes

In this section we introduce the transversity amplitudes which are defined as linear combi-

nations (see Appendix B) of the helicity amplitudes1. As shown in Eq. (4.1), the amplitudes

corresponding to the VA and SP operators can be separated. For VA operators we obtain

ten transversity amplitudes

A
L,(R)
?1

= �
p

2N

✓
fV
?
p

2s�CL,(R)
VA+ +

2mb

q2
fT
?(m⇤b

+ m⇤)
p

2s�Ce↵
7

◆
, (4.2)

A
L,(R)
k1

=
p

2N

✓
fA
?
p

2s+CL,(R)
VA� +

2mb

q2
fT5
? (m⇤b

� m⇤)
p

2s+Ce↵
7

◆
, (4.3)

A
L,(R)
?0

=
p

2N

✓
fV
0 (m⇤b

+ m⇤)

r
s�
q2

CL,(R)
VA+ +

2mb

q2
fT
0

p
q2s�Ce↵

7

◆
, (4.4)

A
L,(R)
k0

= �
p

2N

✓
fA
0 (m⇤b

� m⇤)

r
s+

q2
CL,(R)

VA� +
2mb

q2
fT5
0

p
q2s+Ce↵

7

◆
, (4.5)

A?t = �2
p

2NfV
t (m⇤b

� m⇤)

r
s+

q2
(C10 + CA + C0

A) , (4.6)

Akt = 2
p

2NfA
t (m⇤b

+ m⇤)

r
s�
q2

(C10 + CA � C0
A) . (4.7)

1In our definition of the transversity amplitudes, the ?1 and ?0 (k1 and k0) components depend on

vector (axial-vector) current. In this regard our SM amplitudes are identical to that in Ref. [4]. A di↵erent

definition is used in Ref. [5, 20] where ?1 and ?0 (k1 and k0) depend on the axial-vector (vector) current.
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the Wilson coefficients combinations
The Wilson coe�cients Ce↵

9 , C10, C(0)
V,A appear in the VA amplitudes in the following

combinations

CL(R)
VA,+ = (Ce↵

9 ⌥ C10) + (CV ⌥ CA) + (C0
V ⌥ C0

A) , (4.8)

CL(R)
VA,� = (Ce↵

9 ⌥ C10) + (CV ⌥ CA) � (C0
V ⌥ C0

A) , (4.9)

and we have defined s± as

s± = (m⇤b
± m⇤)2 � q2 . (4.10)

The q2 dependent normalization constant N is given by

N(q2) = GF VtbV
⇤
ts↵e

vuut
⌧⇤b

q2
q
�(m2

⇤b
, m2

⇤, q2)

3.211m3
⇤b
⇡5

�` , �` =

s
1 � 4m2

`

q2
. (4.11)

The current conservation ensures that the timelike amplitudes A?t,kt depend only on the

axial-vector couplings. It also ensures that the timelike amplitudes do not contribute if the

leptons are massless.

Corresponding to the SP operators we obtain four transversity amplitudes

AS? = 2
p

2NfV
t

m⇤b
� m⇤

mb

p
s+(CS + C0

S) , (4.12)

ASk = �2
p

2NfA
t

m⇤b
+ m⇤

mb

p
s�(CS � C0

S) , (4.13)

AP? = �2
p

2NfV
t

m⇤b
� m⇤

mb

p
s+(CP + C0

P ) , (4.14)

APk = 2
p

2NfA
t

m⇤b
+ m⇤

mb

p
s�(CP � C0

P ) . (4.15)

Note that these amplitudes are proportional to either the scalar (CS , C0
S) or the pseudo-

scalar couplings (CP , C0
P ) only.

4.2 Leptonic helicity amplitudes

The leptonic helicity amplitudes L�1,�2 are define as

L�1,�2

L(R) = h¯̀(�1)`(�2)|¯̀(1 ⌥ �5)`|0i , (4.16)

L�1,�2

L(R),� = ✏̄µ(�)h¯̀(�1)`(�2)|¯̀�µ(1 ⌥ �5)`|0i , (4.17)

where ✏̄µ(�) are the polarization vectors of the virtual gauge boson. In Ref. [18] we derived

the expressions of L�1,�2

L(R) and L�1,�2

L(R),� in the limit of m` = 0. When m` 6= 0, following

the steps in Ref. [18] we obtain the following non-zero expressions of the leptonic helicity

– 5 –
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Angular distribution

The four-fold distribution looks

d4B
dq2d cos θ`d cos θΛdφ

=
3

8π
K(q2, cos θ`, cos θΛ, φ) , (4)

with

K(q2, cos θ`, cos θΛ, φ) = (K1ss sin2 θ` + K1cc cos2 θ` + K1c cos θ`)

+ (K2ss sin2 θ` + K2cc cos2 θ` + K2c cos θ`) cos θΛ

+ (K3sc sin θ` cos θ` + K3s sin θ`) sin θΛ sinφ

+ (K4sc sin θ` cos θ` + K3s sin θ`) sin θΛ cosφ . (5)

The angular coefficients can be written as

K{··· } = K{··· } +
m`√
q2
K′{··· } +

m2
`

q2
K′′{··· } , (6)

{· · · } = 1ss, 1cc, 1c, 2ss, 2cc, 2c, 3sc, 3s, 4sc, 4s

DD, JHEP07 (2018) 063 (1804.08527)
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Angular coefficients in SM+SM′+SP

The expressions of K(′,′′) can helps us construct useful observables
where {· · · } correspond to the su�xes 1ss, 1cc, 1c, 2ss, 2cc, 2c, 3sc, 3s, 4sc, 4s. In terms of

the transversity amplitudes the expressions of K, K0K00 read as

K1ss =
1

4

✓
2|AR

k0
|2 + |AR

k1
|2 + 2|AR

?0
|2 + |AR

?1
|2 + {R $ L}

◆

+
1

4

✓
|AS?|2 + |AP?|2 + {?$ k}

◆
, (C.2)

K0
1ss = Re

✓
AktA

⇤
Pk + A?tA

⇤
P?

◆
, (C.3)

K00
1ss = �

✓
|AR

k0
|2 + |AR

?0
|2 + {R $ L}

◆
+

✓
|A?t|2 � |AS?| + {?$ k}

◆

+ 2Re

✓
AR

?0
A⇤L

?0
+ AR

?1
A⇤L

?1
+ {?$ k}

◆
, (C.4)

K1cc =
1

2

✓
|AR

k1
|2 + |AR

?1
|2 + {R $ L}

◆
+

1

4

✓
|AP?|2 + |AS?|2 + {?$ k}

◆
, (C.5)

K0
1cc = Re

✓
AktA

⇤
Pk + A?tA

⇤
P?

◆
, (C.6)

K00
1cc =

✓
|AR

k0
|2 � |AR

k1
|2 + |AR

?0
|2 � |AR

?1
|2 + {R $ L}

◆
+

✓
|A?t|2 � |AS?|2 + {?$ k}

◆

+ 2Re

✓
AR

?0
A⇤L

?0
+ AR

?1
A⇤L

?1
+ {?$ k}

◆
, (C.7)

K1c = ��`
✓

AR
?1

A⇤R
k1

� {R $ L}
◆

, (C.8)

K0
1c = �`Re

✓
AS?A⇤R

?0
+ AS?A⇤L

?0
+ {?$ k}

◆
, (C.9)

K00
1c = 0 , (C.10)

K2ss =
↵⇤

2
Re

✓
2AR

?0
A⇤R

k0
+ AR

?1
A⇤R

k1
+ {R $ L}

◆
+
↵⇤

2
Re

✓
AP?A⇤

Pk + AS?A⇤
Sk

◆
, (C.11)

K0
2ss = ↵⇤Re

✓
A?tA

⇤
Pk + AktA

⇤
P?

◆
, (C.12)

K00
2ss = �2↵⇤Re

✓
AR

?0
A⇤R

k0
+ AL

?0
A⇤L

k0
� AR

?0
A⇤L

k0
� AR

k0
A⇤L

?0
� AR

?1
A⇤L

k1
� AR

k1
A⇤L

?1

� A?tA
⇤
kt + AS?A⇤

Sk

◆
, (C.13)

K2cc = ↵⇤Re

✓
AR

?1
A⇤R

k1
+ AL

?1
A⇤L

k1

◆
+
↵⇤

2
Re

✓
AP?A⇤

Pk + AS?A⇤
Sk

◆
, (C.14)

K0
2cc = ↵⇤Re

✓
A?tA

⇤
Pk + AktA

⇤
P?

◆
, (C.15)

K00
2cc = �2↵⇤Re

✓
AR

?1
A⇤R

k1
� AR

?0
A⇤R

k0
+ AL

?1
A⇤L

k1
� AL

?0
A⇤L

k0
� AR

?0
A⇤L

k0
� AR

k0
A⇤L

?0

� AR
?1

A⇤L
k1

� AR
k1

A⇤L
?1

� A?tA
⇤
kt + AS?A⇤

Sk

◆
, (C.16)
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K1ss ,K1cc ,K1c are independent of parity-violating parameter αΛ

K2ss ,K2cc ,K2c ,K3sc ,K3s ,K4sc ,K4s proportional to αΛ

Few interesting observations are

• In the m` = 0 limit the interference between VA-SP vanish.

• There is no SP contribution to K3sc and K4sc . These angular coefficients are

therefore not sensitive to C(′)
S,P couplings.

• There is no pseudo-scalar contribution (AP‖,P⊥) to K1c , K2c , K3s and K4s .

Therefore, these angular coefficients are not sensitive to C(′)
P .

DD, JHEP07 (2018) 063 (1804.08527) 12



Observables

Observables can be constructed by weighted average over θ`, θΛ and φ

X (q2) =

∫
d4B

dq2d cos θ`d cos θΛdφ
ωX (q2, cos θ` cos θΛ, φ)d cos θ`d cos θΛdφ . (7)

The observables that we will consider are

dB
dq2

= 2K1ss + K1cc . (8)

FL =
2K1ss − K1cc

2K1ss + K1cc
, AΛ

FB =
1

2

2K2ss + K2cc

2K1ss + K1cc
. (9)

A`FB =
3

2

K1c

2K1ss + K1cc
, A`ΛFB =

3

4

K2c

2K1ss + K1cc
, (10)

R
`/e
Λb

=

∫ q2
max

q2
min

dq2dB(Λb → Λ(→ pπ)`+`−)/dq2

∫ q2
max

q2
min

dq2dB(Λb → Λ(→ pπ)e+e−)/dq2

, ` = µ, τ (11)

Böer/Feldmann/Dyk, JHEP01 (2015) 155 (1410.2115)
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Λb → Λµ+µ− in SM
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FIG. 8. ⇤b ! ⇤ µ+µ� di↵erential branching fraction calculated in the Standard Model, compared to experimental data from
LHCb [28] (black points; error bars are shown both including and excluding the uncertainty from the normalization mode
⇤b ! J/ ⇤ [85]).

hdB/dq2i hFLi hA`
FBi hA⇤

FBi hA`⇤
FBi hK̂2ssi hK̂2cci hK̂4si hK̂4sci

[0.1, 2] 0.25(23) 0.517(81) 0.095(15) �0.310(18) �0.0302(51) �0.233(19) �0.154(26) �0.009(22) 0.022(22)

[2, 4] 0.18(12) 0.856(27) 0.057(31) �0.306(24) �0.0169(99) �0.284(23) �0.0444(87) 0.031(36) 0.013(31)

[4, 6] 0.23(11) 0.813(42) �0.062(39) �0.311(17) 0.021(13) �0.282(15) �0.059(13) 0.038(44) 0.001(31)

[6, 8] 0.307(94) 0.730(48) �0.163(40) �0.316(11) 0.053(13) �0.273(10) �0.086(15) 0.030(39) �0.007(27)

[1.1, 6] 0.20(12) 0.820(32) 0.012(31) �0.309(21) �0.0027(99) �0.280(20) �0.056(10) 0.030(35) 0.009(30)

[15, 16] 0.796(75) 0.455(20) �0.374(14) �0.3069(83) 0.1286(55) �0.2253(69) �0.1633(69) �0.060(13) �0.0211(80)

[16, 18] 0.827(76) 0.418(15) �0.372(13) �0.2891(90) 0.1377(46) �0.2080(69) �0.1621(66) �0.090(10) �0.0209(60)

[18, 20] 0.665(68) 0.3714(79) �0.309(15) �0.227(10) 0.1492(37) �0.1598(71) �0.1344(70) �0.1457(74) �0.0172(40)

[15, 20] 0.756(70) 0.410(13) �0.350(13) �0.2710(92) 0.1398(43) �0.1947(68) �0.1526(65) �0.1031(97) �0.0196(55)

TABLE VII. Standard-Model predictions for the binned ⇤b ! ⇤µ+µ� di↵erential branching fraction (in units of 10�7 GeV�2)
and for the binned ⇤b ! ⇤(! p+⇡�)µ+µ� angular observables (with unpolarized ⇤b). The first column specifies the bin ranges
[q2

min, q2
max] in units of GeV2.

The uncertainties given for the Standard-Model predictions are the total uncertainties, which include the statistical
and systematic uncertainties from the form factors (propagated to the observables using the procedure explained in
Sec. IV), the perturbative uncertainties, an estimate of quark-hadron duality violations (discussed further below),

and the parametric uncertainties from Eqs. (64), (69), and (70). For all observables considered here (but not for K̂3s

and K̂3sc), the uncertainties associated with the subleading contributions from the OPE (at high q2) are negligible
compared to the other uncertainties. The central values of the observables were computed at the renormalization
scale µ = 4.2 GeV; to estimate the perturbative uncertainties, we varied the renormalization scale from µ = 2.1 GeV
to µ = 8.4 GeV. When doing this scale variation, we also included the renormalization-group running of the tensor
form factors from the nominal scale µ0 = 4.2 GeV to the scale µ, by multiplying these form factors with

✓
↵s(µ)

↵s(µ0)

◆��(0)
T /(2�0)

(72)

(as in Ref. [8]), where �
(0)
T = 2 CF = 8/3 is the anomalous dimension of the tensor current [98], and �0 = (11 Nc �

2 Nf )/3 = 23/3 is the leading-order QCD beta function [99] for 5 active flavors. Even though we did not perform
a one-loop calculation of the residual lattice-to-continuum matching factors for the tensor currents, our estimates of
the renormalization uncertainties in the tensor form factors as discussed in Sec. IV are specific for µ = 4.2 GeV, and
doing the RG running avoids a double-counting of these uncertainties. Note that the contributions of the tensor form
factors to the observables are proportional to 1/q2 (because of the photon propagator connecting O7 to the lepton
current), and are suppressed relative to those from the vector and axial vector form factors at high q2. At low q2,
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Λb → Λτ+τ− in SM
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[18,20] 0.83 ± 0.05 0.346 ± 0.010 �0.173 ± 0.010 �0.227 ± 0.009

[15,20] 2.16 ± 0.13 0.351 ± 0.009 �0.171 ± 0.014 �0.268 ± 0.008

Table 1. The total integrated branching ratio and the values of the observables in di↵erent q2 bins

(in GeV2). The errors correspond to the uncertainties discussed in text.
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Table 2. The values of the observables in di↵erent q2 bins (in GeV2). The errors correspond to

the uncertainties discussed in text.

The q2-integrated values of R
⌧/e
⇤b

for two di↵erent low recoil bins are given below
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R
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(7.5)

We now discuss the observables in the presence of the NP couplings. The VA and

the SP couplings will be considered separately. Due to nonavailability of any data on

b ! s⌧+⌧� transition, currently the new physics couplings are very poorly constrained.

For VA couplings, following [35] we consider the following three scenarios

CV = �3

CV = �C0
V = �2 (7.6)

CV = �C0
V = �CA = �C0

A = �2 .

These ranges of couplings are consistent with the existing direct bounds on B ! K+⌧+⌧�

[36] and Bs ! ⌧+⌧� [21], and the bounds on B ! K⇤⌫⌫̄ due to heavy NP respecting SM

SU(2)L gauge invariance [23].
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Polarized Λb → Λ`+`− decay

• Λb is longitudinally polarized at e+e−

• Λb is transverse polarized at LHCb

• at LHCb O(10%) polarization possible,

• With polarized Λb: 34 observables in SM, 36 observables in SM+SP

n̂ = p̂
{lab}
beam × p̂lab

Λ , cos θ = n̂.p̂
{Λb}
Λ . To describe Λ→ pπ and di-lepton system

introduce {ẑb, ŷb, x̂b} and {ẑ`, ŷ`, x̂`}: such that ẑb = p̂
{Λb}
Λ and ẑb = p̂

{Λ`}
`` and

ŷb,` = n̂ × ẑb,`, x̂b,` = n̂ × ŷb,`

17



Polarized Λb → Λ`+`− angular distribution

Operator basis: O7,9,10, O′9,10, OS,P , OS′,P′ + massive leptons

Transversity Amplitudes: A
L(R)
⊥1 , A

L(R)
||1 , A

L(R)
⊥0 , A

L(R)
||0 , A⊥t , A||t , A

L(R)
⊥S , A

L(R)
||S

Figure 1: Definition of the angular basis for decay of polarized ⇤b ! ⇤(! p⇡)`+`�

of ⇤b ! ⇤(! p⇡)`+`� for the SM + SM0 + SP set of operators is

d6B
dq2 d~⌦(✓`, �`, ✓b, �b, ✓)

=
3

32⇡2

⇣ �
K1 sin2 ✓` + K2 cos2 ✓` + K3 cos ✓`

�
+

�
K4 sin2 ✓` + K5 cos2 ✓` + K6 cos ✓`

�
cos ✓b+

(K7 sin ✓` cos ✓` + K8 sin ✓`) sin ✓b cos (�b + �`) +

(K9 sin ✓` cos ✓` + K10 sin ✓`) sin ✓b sin (�b + �`) +

�
K11 sin2 ✓` + K12 cos2 ✓` + K13 cos ✓`

�
cos ✓+

�
K14 sin2 ✓` + K15 cos2 ✓` + K16 cos ✓`

�
cos ✓b cos ✓+

(K17 sin ✓` cos ✓` + K18 sin ✓`) sin ✓b cos (�b + �`) cos ✓+

(K19 sin ✓` cos ✓` + K20 sin ✓`) sin ✓b sin (�b + �`) cos ✓+

(K21 cos ✓` sin ✓` + K22 sin ✓`) sin�` sin ✓+

(K23 cos ✓` sin ✓` + K24 sin ✓`) cos�` sin ✓+

(K25 cos ✓` sin ✓` + K26 sin ✓`) sin�` cos ✓b sin ✓+

5

(K27 cos ✓` sin ✓` + K28 sin ✓`) cos�` cos ✓b sin ✓+

�
K29 cos2 ✓` + K30 sin2 ✓` + K35 cos ✓`

�
sin ✓b sin�b sin ✓+

�
K31 cos2 ✓` + K32 sin2 ✓` + K36 cos ✓`

�
sin ✓b cos�b sin ✓+

�
K33 sin2 ✓`

�
sin ✓b cos (2�` + �b) sin ✓+

�
K34 sin2 ✓`

�
sin ✓b sin (2�` + �b) sin ✓

⌘
. (3.1)

We identify the angular observables with those given [22] as: K1ss = K1, K1cc = K2,

K1c = K3, K2ss = K4, K2cc = K5, K2c = K6, K4sc = K7, K4s = K8, K3sc = K9, and

K3s = K10. We obtain two new angular coe�cients K35 and K36 that are absent in the

SM+SM0 set of operators [9]. These observables depend on the interference of scalar and

(axial-)vector amplitudes only and are helicity suppressed by m`/
p

q2. Since we have

retained the masses of the final state leptons, we write each of the Ki’s as

K{··· } = K{··· } +
m`p
q2

K0
{··· } +

m2
`

q2
K00

{··· } . (3.2)

In Appendix C we express the observables in terms of transversity amplitudes. The

massless part Ki of the observables Ki have been previously calculated in the SM operator

basis in [9] and we agree with the results. Our expressions of Ki given in Appendix C

extend the SM results by scalar amplitudes and are therefore new. The expressions of

K0
i and K00

i appear due to retaining the leptons masses and have not been calculated

previously in the literature. If the final states leptons are of two lightest flavors, then

K0,00 can be neglect for large recoil analysis. But the expressions are useful for di-tau final

states. The K0,00 are also useful for accurate prediction of observables that are sensitive to

lepton flavor universality violation.

Integrations (3.1) over the angles give di↵erential decay distribution

dB
dq2

= 2K1 + K2 . (3.3)

This is used to define normalized observables as

Mi =
Ki

dB/dq2
, (3.4)

The Mi’s can be extracted from (3.1) by convolution with di↵erent weight functions [9]

Mi =
3

32⇡2

Z  
36X

j=0

Mjfj(~⌦)

!
gi(~⌦)d~⌦ (3.5)

6

Relation with unpolarized angular coefficients: K1ss = K1, K1cc = K2, K1c = K3,

K2ss = K4, K2cc = K5, K2c = K6, K4sc = K7, K4s = K8, K3sc = K9

New coefficients in SM+SM′ basis: K35 and K36

DD/Sain Phys.Rev.D 104 (2021) 1, 013002
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Polarized Λb → Λµ+µ− observables

Differential branching ratio:
dB
dq2

= 2K1 + K2 ,

Define

Mi =
Ki

2K1 + K2
, Mi =

3

32π2

∫ ( 36∑
j=0

Mj fj (Ω̄)

)
gi (Ω̄)dΩ̄ ,

HQET: leading order in 1/mb expansion + O(αs) correction

f V⊥ = f V0 = f T⊥ = f T0 = ξ1 − ξ2 , f A⊥ = f A0 = f T5
⊥ = f T5

0 = ξ1 + ξ2 ,

CL(R)
+ =

(
(C9 + C9′ )∓ (C10 + C10′ ) +

2κmbmΛb

q2
C7

)
, (12)

CL(R)
− =

(
(C9 − C9′ )∓ (C10 − C10′ ) +

2κmbmΛb

q2
C7

)
. (13)

For V-A current independent WCs combinations: ρ±1 , ρ2, ρ
±
3 , ρ4

In SM: ρ+
1 = ρ−1 = ρ1 = 2Re(ρ4), ρ+

3 = ρ−3 = ρ3, Im(ρ2) = 0, Im(ρ4) = 0

With SP operators additional combinations: ρ±S , ρS1

DD/Sain Phys.Rev.D 104 (2021) 1, 013002
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Polarized Λb → Λµ+µ− observables

In SM+SM′+SP: angular coefficient ratios independent of long-distance physics
In the SM+SM0+SP set of operators, several ratios of short-distance coe�cients can

be determined without any hadronic e↵ects up to ⇤QCD/mb corrections

P⇤b
K8 + ↵⇤K24

K27 � K17

= �⇢
�
3

⇢�1
,

P⇤b
K8 � ↵⇤K24

K27 + K17

=
⇢+

3

⇢+
1

, (5.39)

K16

K34

= �2Re(⇢2)

Im(⇢2)
,

K25

K22

= �↵⇤Im(⇢2)

Im(⇢4)
,

K23

K10

= �P⇤b
Re(⇢4)

↵⇤Im(⇢4)
. (5.40)

In the SM+SM0 the ratio of K3 and K5 is proportional to Re(⇢2)/Re(⇢4) but is modified

as following in the presence of SP operators

K3

K5

= � 16m2
bf

A
?fV

? Re(⇢2)

16↵⇤m2
bf

A
?fV

? Re(⇢4) + ↵⇤(m2
⇤b

� m2
⇤)fA

t fV
t Re(⇢S1)

. (5.41)

If the SP operators are absent, then this ratio is equal to Re(⇢2)/↵⇤Re(⇢4). On the other

hand, in SM+SM0, the ratios K5/K7 and K5/K23 are independent of any short distance

physics but are modified in the presence of SP operators as

K5

K7

=

p
q2


32fA

?fV
? Re(⇢4) + (m2

⇤b
� m2

⇤)fA
t fV

t Re(⇢S1)

�

16m2
bRe(⇢4)


(m⇤b

+ m⇤)fA
?fV

0 � (m⇤b
� m⇤)fA

0 fV
?

� , (5.42)

K5

K23

=

p
q2


32fA

?fV
? Re(⇢4) + (m2

⇤b
� m2

⇤)fA
t fV

t Re(⇢S1)

�

16m2
bP⇤b

Re(⇢4)


(m⇤b

+ m⇤b
)fA

?fV
0 + (m⇤b

� m⇤)fA
0 fV

?

� . (5.43)

These two relations could be regarded as null test of SM+SM0.

We find a ratios involving K18, K28, and K3 that are independent of any short distance

physics in the SM+SM0+SP set of operators

K18 + K28

K3

= �P⇤b
↵⇤

m⇤b
+ m⇤p
q2

fV
0

fV
?

, (5.44)

K18 � K28

K3

= P⇤b
↵⇤

m⇤b
� m⇤p
q2

fA
0

fA
?

. (5.45)

The ratios can be used to extract fA
0 /fA

? and fV
0 /fV

? .

The angular observable K29 vanishes in the SM+SM0 in the limit of zero lepton mass.

If SP operators are present then it is proportional to the imaginary part of ⇢S1 as given

in equation (5.26). The real part of ⇢S1 can be extracted from the combination

P⇤b
(K4 � K5) � ↵⇤K11 = P⇤b

↵⇤fA
t fV

t

(m2
⇤b

� m2
⇤)

m2
b

p
s+s�Re(⇢S1) , (5.46)
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in equation (5.26). The real part of ⇢S1 can be extracted from the combination

P⇤b
(K4 � K5) � ↵⇤K11 = P⇤b

↵⇤fA
t fV

t

(m2
⇤b

� m2
⇤)

m2
b

p
s+s�Re(⇢S1) , (5.46)
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In the SM+SM0+SP set of operators, several ratios of short-distance coe�cients can

be determined without any hadronic e↵ects up to ⇤QCD/mb corrections
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In the SM+SM0 the ratio of K3 and K5 is proportional to Re(⇢2)/Re(⇢4) but is modified

as following in the presence of SP operators
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If the SP operators are absent, then this ratio is equal to Re(⇢2)/↵⇤Re(⇢4). On the other

hand, in SM+SM0, the ratios K5/K7 and K5/K23 are independent of any short distance

physics but are modified in the presence of SP operators as
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These two relations could be regarded as null test of SM+SM0.

We find a ratios involving K18, K28, and K3 that are independent of any short distance

physics in the SM+SM0+SP set of operators
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The angular observable K29 vanishes in the SM+SM0 in the limit of zero lepton mass.

If SP operators are present then it is proportional to the imaginary part of ⇢S1 as given

in equation (5.26). The real part of ⇢S1 can be extracted from the combination
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Probe for scalar NP

In the SM+SM0+SP set of operators, several ratios of short-distance coe�cients can
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These two relations could be regarded as null test of SM+SM0.

We find a ratios involving K18, K28, and K3 that are independent of any short distance
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The ratios can be used to extract fA
0 /fA

? and fV
0 /fV

? .

The angular observable K29 vanishes in the SM+SM0 in the limit of zero lepton mass.

If SP operators are present then it is proportional to the imaginary part of ⇢S1 as given

in equation (5.26). The real part of ⇢S1 can be extracted from the combination
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Polarized Λb → Λµ+µ− observables

Table 2: Predictions from EOS for the angular observables of the ⇤b ! ⇤µ+µ� decay
with P⇤b

= 1 in the range 1 < q2 < 6 GeV2/c4. The SM calculation is described
in the text. The observables M31 and M34 vanish due to the small size of the muon
mass. Observables that depend on the imaginary part of the product of two transversity
amplitudes also tend to be vanishingly small, due to the small strong phase di↵erence
between pairs of amplitudes in the SM.

Obs. Value 68% interval Obs. Value 68% interval

M1 0.459 [0.453, 0.465] M6 0.000 [�0.005, 0.006]
M2 0.081 [0.071, 0.094] M7 �0.025 [�0.034,�0.014]
M3 �0.005 [�0.014,�0.001] M8 �0.003 [�0.016, 0.012]
M4 �0.280 [�0.290,�0.262] M9 0.002 [0.001, 0.002]
M5 �0.045 [�0.053,�0.037] M10 0.002 [0.001, 0.002]

M11 �0.366 [�0.383,�0.338] M23 �0.147 [�0.162,�0.133]
M12 0.071 [0.058, 0.081] M24 0.132 [0.120, 0.150]
M13 0.001 [�0.010, 0.007] M25 �0.001 [�0.001,�0.000]
M14 0.243 [0.230, 0.254] M26 0.004 [0.003, 0.005]
M15 �0.052 [�0.060,�0.045] M27 0.089 [0.081, 0.099]
M16 0.003 [0.001, 0.009] M28 �0.089 [�0.100,�0.080]
M17 0.004 [�0.012, 0.018] M29 0.000 [0.000, 0.000]
M18 0.029 [0.018, 0.037] M30 0.000 [0.000, 0.000]
M19 �0.001 [�0.002,�0.001] M31 0.000 [0.000, 0.000]
M20 �0.003 [�0.003, 0.002] M32 0.075 [0.035, 0.118]
M21 0.002 [0.001, 0.003] M33 0.007 [0.001, 0.012]
M22 �0.005 [�0.006,�0.003] M34 0.000 [�0.000, 0.000]
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Table 3: Predictions from EOS for the angular observables of the ⇤b ! ⇤µ+µ� decay
with P⇤b

= 1 in the range 15 < q2 < 20 GeV2/c4. The SM calculation is described
in the text. The observables M31 and M34 vanish due to the small size of the muon
mass. Observables that depend on the imaginary part of the product of two transversity
amplitudes also tend to be vanishingly small, due to the small strong phase di↵erence
between pairs of amplitudes in the SM.

Obs. Value 68% interval Obs. Value 68% interval

M1 0.351 [0.349, 0.353] M6 0.187 [0.183, 0.192]
M2 0.298 [0.294, 0.301] M7 �0.022 [�0.025,�0.019]
M3 �0.236 [�0.240,�0.230] M8 �0.100 [�0.105,�0.095]
M4 �0.195 [�0.200,�0.190] M9 0.000 [0.000, 0.001]
M5 �0.154 [�0.159,�0.149] M10 �0.001 [�0.001,�0.000]

M11 �0.064 [�0.069,�0.058] M23 �0.299 [�0.303,�0.295]
M12 0.240 [0.235, 0.245] M24 0.337 [0.335, 0.338]
M13 �0.292 [�0.295,�0.288] M25 �0.001 [�0.001,�0.000]
M14 0.034 [0.031, 0.038] M26 0.001 [0.000, 0.001]
M15 �0.191 [�0.196,�0.186] M27 0.221 [0.216, 0.226]
M16 0.151 [0.146, 0.156] M28 �0.187 [�0.191,�0.183]
M17 0.102 [0.096, 0.107] M29 0.000 [0.000, 0.000]
M18 0.021 [0.018, 0.024] M30 �0.001 [�0.001,�0.000]
M19 0.000 [0.000, 0.000] M31 0.000 [0.000, 0.000]
M20 �0.001 [�0.001,�0.001] M32 �0.046 [�0.050,�0.043]
M21 0.000 [0.000, 0.001] M33 �0.053 [�0.056,�0.050]
M22 �0.002 [�0.002,�0.001] M34 0.000 [0.000, 0.000]
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Figure 2: Polarized Λb → Λµ+µ− observables with PΛb
= 1 in 1 < q2 < 6GeV2 (left) and

PΛb
= 1 in 15 < q2 < 20GeV2 (right) from Blake/Creps JHEP 11 (2017) 138

LHCb measurement on the 34 observables LHCb JHEP 09, 146(2018).
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The Λb → Λ∗(1520)`+`− decay

Dominant contribution to semi-leptonic Λb decay comes from Λ∗(1520) (JP = 3
2

−
)

Close by Λ(1405) and Λ(1600) differentiated by their spin-parity (both 1/2)

2.2 Decay kinematics

We assign the following momenta and spin variables to the di↵erent particles in the decay

process

⇤b(p, s⇤b
) ! ⇤⇤(k, s⇤⇤)`+(q1)`

�(q2) ,

⇤⇤(k, s⇤⇤) ! N(k1, sN )K̄(k2) ,
(2.3)

i.e., p, k, k1, k2, q1 and q2 are the momenta of ⇤b, ⇤
⇤, N , K̄, and the positively and neg-

atively charged leptons, respectively, and s⇤b,⇤⇤,N are the projections of the baryon spins

on to the z-axis in their respective rest frames. For future convenience, we define the

momentum for the dilepton pair

qµ = qµ
1 + qµ

2 . (2.4)

The momentum conservation gives kµ = kµ
1 + kµ

2 , pµ = kµ + qµ. The angle ✓` is defined as

the one made by the lepton `� with respect to the +z axis in the `+`� rest frame, ✓⇤⇤ is

the angle made by the nucleon with the +z axis in the NK̄ rest frame, and � is the angle

between the decay planes of the dilepton pair and the hadron pair. We have spelled out

the kinematics in appendix A.

2.3 The ⇤b ! ⇤⇤`+`� decay

Assuming factorization between the hadronic and the leptonic parts, the matrix element

of the four-body decay ⇤b ! ⇤⇤(! NK̄)`+`� can be written as

M(s⇤b
, sN , �1, �2) =

X

s⇤⇤

M�1,�2

⇤b
(s⇤b

, s⇤?)M⇤⇤(s⇤⇤ , sN ) , (2.5)

where M⇤⇤(s⇤⇤ , sN ) correspond to the matrix element for ⇤⇤ ! NK̄ which is discussed in

the next section. The amplitudes for the first stage of the decay can be written as

M�1,�2

⇤b
(s⇤b

, s⇤?) = �4GFp
2

VtbV
⇤
ts

↵e

4⇡

X

L(R)

1

4

X

�

⌘�H
L(R)
VA,�(s⇤b

, s⇤⇤)L�1,�2

L(R),�

+ H
L(R)
SP (s⇤b

, s⇤⇤)L�1,�2

L(R)

�
, (2.6)

where the hadronic and the leptonic helicity amplitudes are defined as the projection of

the full hadronic and leptonic amplitudes on to the polarization direction of virtual gauge

boson that decays to the dilepton pair, and ⌘t = 1, ⌘±1,0 = �1. Denoting the polarizations

of the virtual gauge boson as ✏̄µ(�) for di↵erent polarization states � = 0, ±1, t, the leptonic

helicity amplitudes are written as

L�1,�2

L(R) = h¯̀(�1)`(�2)|¯̀(1 ⌥ �5)`|0i , (2.7)

L�1,�2

L(R),� = ✏̄µ(�)h¯̀(�1)`(�2)|¯̀�µ(1 ⌥ �5)`|0i . (2.8)

Our choice of the gauge boson polarizations and the expressions of L�1,�2

L(R) , L�1,�2

L(R),� are

detailed in the appendix B and C, respectively.
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Λb → Λ∗ HMA in terms of fourteen form factors: f Vt,0,⊥,g , f At,0,⊥,g , f T0,⊥,g , f T5
0,⊥,g

Meinel/Rendon Phys. Rev. D 103, no.7, 074505 (2021), Phys. Rev. D 105, no.5, 054511 (2022)

The hadronic helicity amplitudes are similarly defined as

H
L(R)
VA,�(s⇤b

, s⇤⇤) = ✏̄⇤µ(�)
⌦
⇤(k, s⇤⇤)

��
⇣

C9 ⌥ C10

⌘
s̄�µ(1 � �5)b + (C90 ⌥ C100)s̄�

µ(1 + �5)b

� 2mb

q2

✓
C7s̄iq⌫�

µ⌫(1 + �5)b + C70 s̄iq⌫�
µ⌫(1 � �5)b

◆���⇤b(p, s⇤b
)
↵
, (2.9)

H
L(R)
SP (s⇤b

, s⇤⇤) =
⌦
⇤(k, s⇤⇤)

��

(CS0 ⌥ CP 0)s̄(1 � �5)b + (CS ⌥ CP )s̄(1 + �5)b

���⇤b(p, s⇤b
)
↵
.

(2.10)

In order to calculate the amplitudes, we need to know the form factor parametrizations of

the ⇤b ! ⇤⇤ hadronic matrix elements. We follow the helicity parametrizations [17] (see

appendix D) where the h⇤⇤|s̄�µb|⇤bi (h⇤⇤|s̄�µ�5b|⇤bi) transition is parametrized in terms

of four q2-dependent form factors fV
t , fV

0 , fV
? , fV

g (fA
t , fA

0 , fA
? , fA

g ). The matrix elements

of the scalar and the pseudo-scalar currents h⇤⇤|s̄b|⇤bi, h⇤⇤|s̄�5b|⇤bi are obtained from

the vector and axial vector matrix elements by the application of equation of motion and

depend on fV
t and fA

t , respectively. The transition h⇤⇤|s̄i�µ⌫q⌫b|⇤bi (h⇤⇤|s̄i�µ⌫�5q⌫b|⇤bi)
is parametrized in terms of three form factors fT

0 , fT
? , fT

g (fT5
0 , fT5

? , fT5
g ). Overall, fourteen

q2 dependent form factors contribute to this decay.

With the parametrizations of ⇤ ! ⇤⇤ transitions at our disposal, we now calculate the

hadronic amplitudes. In the literatures, instead of the helicity amplitudes, the so-called

transversity amplitudes are often used. The transversity amplitudes are linear combinations

of the helicity amplitudes, see appendix E. For the (axial-)vectors currents they read

B
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p

2N

 
fV

g
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VA+ +

2mb
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◆
, (2.11)
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2mb
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◆
, (2.12)
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✓
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7)

◆
, (2.13)

A
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2N

✓
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2mb
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7)

◆
, (2.14)
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2mb

q2
fT5
? (m⇤b
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◆
, (2.16)

A
L(R)
?t

= ⌥
p

2NfV
t

(m⇤b
� m⇤⇤)p
q2
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p

s�p
6m⇤⇤

(C10 + C100) , (2.17)

A
L(R)
kt

= ±
p

2NfA
t

(m⇤b
+ m⇤⇤)p
q2

s�
p

s+p
6m⇤⇤

(C10 � C100) , (2.18)

where �(a, b, c) = a2 + b2 + c2 � 2(ab + bc + ca), and

s± = (m⇤b
± m⇤⇤)2 � q2 . (2.19)
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The Λ∗ → NK̄ decay

The Λ∗(→ NK̄) decay effective Hamiltonian Nath/Etemadi/Kimel Phys. Rev. D 3,

2153-2161 (1971)

The Wilson coe�cients CL(R)
VA± are defined as follows

CL(R)
VA+ =

�
C9 ⌥ C10

�
+
�
C90 ⌥ C100

�
,

CL(R)
VA� =

�
C9 ⌥ C10

�
�
�
C90 ⌥ C100

�
.

(2.20)

For the (pseudo-)scalar currents the amplitudes read

A
L(R)
S? =

p
2NfV

t

m⇤b
� m⇤⇤

mb � ms

s+
p

s�p
6m⇤⇤

CL(R)
SP+ , (2.21)

A
L(R)
Sk = �

p
2NfA

t

m⇤b
+ m⇤⇤

mb + ms

s�
p

s+p
6m⇤⇤

CL(R)
SP� , (2.22)

where the scalar Wilson coe�cients are defined as

CL(R)
SP+ = (CS + CS0) ⌥ (CP + CP 0) ,

CL(R)
SP� = (CS � CS0) ⌥ (CP � CP 0) .

(2.23)

The overall normalization factor that has been customarily absorbed in the transversity

amplitude is given by

N = GF VtbV
⇤
ts↵e

vuut
⌧⇤b

q2
q
�(m2

⇤b
, m2

⇤⇤ , q2)

3 · 211m3
⇤b
⇡5

�`B⇤⇤ , �` =

s
1 � 4m2

`

q2
, (2.24)

where B⇤⇤ ⌘ B⇤⇤(⇤⇤ ! NK̄) is the branching ratio and ⌧⇤b
is the ⇤b lifetime.

2.4 The ⇤⇤ ! NK̄ decay

The e↵ective Lagrangian describing the strong decay ⇤⇤ ! NK̄ is assumed to be 1 [34]

L1 = gm⇤⇤ ̄µ(gµ⌫ + a�µ�⌫)�5 @⌫�+ h.c., (2.25)

where g is a coupling constant,  is a spin-1/2 field describing the ⇤b, and � is scalar

field corresponding to the K̄ meson. The ⇤⇤ is a spin 3/2 particle and is described by a

Rarita-Schwinger field  µ [36]. In addition to the vector index, there is an implicit spinor

index in the Rarita-Schwinger field. The parameter a is only relevant for loop calculations.

The Hamiltonian (2.25) yields the following matrix element for ⇤⇤ ! NK̄ transition

M⇤⇤
(s⇤⇤ , sN ) = gm⇤⇤kµ

2 ūsN�5U
s⇤⇤
µ , (2.26)

where U
s⇤⇤
µ is the Rarita-Schwinger spinor describing the ⇤⇤ and usN is the Dirac spinor for

the N . In the rest frame of the ⇤⇤ the solutions of Rarita-Schwinger and Dirac spinors are

given in appendix F. As can be understood from (2.5), the matrix elements M⇤⇤ contribute

to ⇤b ! ⇤⇤(! NK̄)`+`� decay through the following interference terms

�2(s
a
⇤⇤ , sb

⇤⇤) =

p
r+r�

16m⇤⇤⇡3

X

sN

M⇤⇤(sa
⇤⇤ , sN )[M⇤⇤(sb

⇤⇤ , sN )]⇤ , (2.27)

1A di↵erent choice for the Lagrangian is given in [35] which leads to same result.
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The Wilson coe�cients CL(R)
VA± are defined as follows

CL(R)
VA+ =

�
C9 ⌥ C10

�
+
�
C90 ⌥ C100

�
,

CL(R)
VA� =

�
C9 ⌥ C10

�
�
�
C90 ⌥ C100

�
.

(2.20)

For the (pseudo-)scalar currents the amplitudes read

A
L(R)
S? =

p
2NfV

t

m⇤b
� m⇤⇤

mb � ms

s+
p

s�p
6m⇤⇤

CL(R)
SP+ , (2.21)

A
L(R)
Sk = �

p
2NfA

t

m⇤b
+ m⇤⇤

mb + ms

s�
p

s+p
6m⇤⇤

CL(R)
SP� , (2.22)

where the scalar Wilson coe�cients are defined as

CL(R)
SP+ = (CS + CS0) ⌥ (CP + CP 0) ,

CL(R)
SP� = (CS � CS0) ⌥ (CP � CP 0) .

(2.23)

The overall normalization factor that has been customarily absorbed in the transversity

amplitude is given by

N = GF VtbV
⇤
ts↵e

vuut
⌧⇤b

q2
q
�(m2

⇤b
, m2

⇤⇤ , q2)

3 · 211m3
⇤b
⇡5

�`B⇤⇤ , �` =

s
1 � 4m2

`

q2
, (2.24)

where B⇤⇤ ⌘ B⇤⇤(⇤⇤ ! NK̄) is the branching ratio and ⌧⇤b
is the ⇤b lifetime.

2.4 The ⇤⇤ ! NK̄ decay

The e↵ective Lagrangian describing the strong decay ⇤⇤ ! NK̄ is assumed to be 1 [34]

L1 = gm⇤⇤ ̄µ(gµ⌫ + a�µ�⌫)�5 @⌫�+ h.c., (2.25)

where g is a coupling constant,  is a spin-1/2 field describing the ⇤b, and � is scalar

field corresponding to the K̄ meson. The ⇤⇤ is a spin 3/2 particle and is described by a

Rarita-Schwinger field  µ [36]. In addition to the vector index, there is an implicit spinor

index in the Rarita-Schwinger field. The parameter a is only relevant for loop calculations.

The Hamiltonian (2.25) yields the following matrix element for ⇤⇤ ! NK̄ transition

M⇤⇤
(s⇤⇤ , sN ) = gm⇤⇤kµ

2 ūsN�5U
s⇤⇤
µ , (2.26)

where U
s⇤⇤
µ is the Rarita-Schwinger spinor describing the ⇤⇤ and usN is the Dirac spinor for

the N . In the rest frame of the ⇤⇤ the solutions of Rarita-Schwinger and Dirac spinors are

given in appendix F. As can be understood from (2.5), the matrix elements M⇤⇤ contribute

to ⇤b ! ⇤⇤(! NK̄)`+`� decay through the following interference terms

�2(s
a
⇤⇤ , sb

⇤⇤) =

p
r+r�

16m⇤⇤⇡3

X

sN

M⇤⇤(sa
⇤⇤ , sN )[M⇤⇤(sb

⇤⇤ , sN )]⇤ , (2.27)

1A di↵erent choice for the Lagrangian is given in [35] which leads to same result.
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Rarita-Schwinger spinor in Λb RF

solutions for ⇤b for different values for s⇤b

u⇤b
(+1/2) =

0
BBB@

p
2m⇤b

0

0

0

1
CCCA , u⇤b

(�1/2) =

0
BBB@

0p
2m⇤b

0

0

1
CCCA . (A.6)

Following Ref. [57] as discussed in Sec. 2, we have the solutions for different values for
s⇤⇤

u⇤⇤(�3/2) =
1

2
p

m⇤b

0
BBB@

0 0 0 0

0
p

s+ 0 �p
s�

0 �i
p

s+ 0 i
p

s�
0 0 0 0

1
CCCA ,

u⇤⇤(�1/2) =

p
s�s+

4
p

3m
3/2
⇤b

m⇤⇤

0
BBBB@

0 2
p

s+ 0 �2
p

s�
2m⇤⇤m⇤bp

s�
0

2m⇤⇤m⇤bp
s+

0

�2im⇤⇤m⇤bp
s�

0 �2im⇤⇤m⇤bp
s+

0

0 s�+s+p
s�

0 � s�+s+p
s+

1
CCCCA

,

u⇤⇤(+1/2) =

p
s�s+

4
p

3m
3/2
⇤b

m⇤⇤

0
BBBB@

2
p

s+ 0 2
p

s� 0

0 �2m⇤⇤m⇤bp
s�

0
2m⇤⇤m⇤bp

s+

0 �2im⇤⇤m⇤bp
s�

0
2im⇤⇤m⇤bp

s+
s�+s+p

s�
0 s�+s+p

s+
0

1
CCCCA

,

u⇤⇤(+3/2) =
1

2
p

m⇤b

0
BBB@

0 0 0 0

�p
s+ 0 �p

s� 0

�i
p

s+ 0 �i
p

s� 0

0 0 0 0

1
CCCA ,

(A.7)

where the matrix notation corresponds to the vector and the spinor indices of the solutions
u↵⇤⇤,a.

A.3 Free solutions in the ⇤⇤ rest frame

We have the following solutions for ⇤⇤ for different values for s⇤⇤

u⇤⇤(�3/2) =
p

m⇤⇤

0
BBB@

0 0 0 0

0 1 0 0

0 �i 0 0

0 0 0 0

1
CCCA , u⇤⇤(�1/2) =

r
m⇤⇤

3

0
BBB@

0 0 0 0

1 0 0 0

�i 0 0 0

0 2 0 0

1
CCCA ,

u⇤⇤(+1/2) =

r
m⇤⇤

3

0
BBB@

0 0 0 0

0 �1 0 0

0 �i 0 0

2 0 0 0

1
CCCA , u⇤⇤(+3/2) =

p
m⇤⇤

0
BBB@

0 0 0 0

�1 0 0 0

�i 0 0 0

0 0 0 0

1
CCCA .

(A.8)
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Λb → Λ∗(→ NK̄ )`+`− decay: angular distributions

where

r± = (m⇤⇤ ± mN )2 � m2
K̄ . (2.28)

Using the solutions of Rarita-Schwinger and Dirac fields given in appendix F we obtain

�2(s
a
⇤⇤ , sb

⇤⇤) =
�(⇤⇤ ! NK̄)

4
⇥

0
BBBBBBB@

6 sin2(✓⇤⇤) 2
p

3e�i� sin(2✓⇤⇤) �2
p

3e�2i� sin2(✓⇤⇤) 0

2
p

3ei� sin(2✓⇤⇤) 3 cos(2✓⇤⇤) + 5 0 �2
p

3e�2i� sin2(✓⇤⇤)

�2
p

3e2i� sin2(✓⇤⇤) 0 3 cos(2✓⇤⇤) + 5 �2
p

3e�i� sin(2✓⇤⇤)

0 �2
p

3e2i� sin2(✓⇤⇤) �2
p

3ei� sin(2✓⇤⇤) 6 sin2(✓⇤⇤)

1
CCCCCCCA

, (2.29)

where the ⇤⇤ ! NK̄ decay width is defined as

�(⇤⇤ ! NK̄) =
1

4

X

s⇤⇤

�2(s⇤⇤ , s⇤⇤) . (2.30)

3 Angular distributions

The results of the previous sections yield the following four-fold angular distribution for

⇤b ! ⇤⇤(! NK̄)`+`� decay

d4B
dq2dcos ✓`dcos ✓⇤⇤d�

=
3

8⇡

✓
K1ccos ✓` + K1cccos2 ✓` + K1sssin

2 ✓`

◆
cos2 ✓⇤⇤

+

✓
K2ccos ✓` + K2cccos2 ✓` + K2sssin

2 ✓`

◆
sin2 ✓⇤⇤

+

✓
K3sssin

2 ✓`

◆
sin2 ✓⇤⇤ cos�+

✓
K4sssin

2 ✓`

◆
sin2 ✓⇤⇤ sin� cos�

+

✓
K5ssin ✓` + K5scsin ✓`cos ✓`

◆
sin ✓⇤⇤cos ✓⇤⇤ cos�

+

✓
K6ssin ✓` + K6scsin ✓`cos ✓`

◆
sin ✓⇤⇤cos ✓⇤⇤ sin�

�
. (3.1)

The K{··· }, where {· · · } = 1c, · · · 6sc, are called the angular coe�cients that can be written

in terms of the transversity amplitudes. As the masses of the final states has been kept, we

show the mass corrections of the order O(m`/
p

q2) and O(m2
`/q2) and write the angular

coe�cients as

K{··· } = K{··· } +
m`p
q2

K0
{··· } +

m2
`

q2
K00

{··· } . (3.2)

The detailed expressions of K{··· }, K0
{··· } and K00

{··· } in terms of the transversity amplitudes

are given in the appendix G. The terms K0 and K00 are important if the final state leptons

are heavy, for example ⌧ leptons.
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In the mb →∞ limit and to leading order 1/mb

5.1 Improved Isgur-Wise relations

The starting point is to use the heavy baryon velocity vµ = pµ/m⇤b
to project the b-quark

filed on to its large spinor components hv = /vhv in terms of leading Isgur-Wise form factors

⇠1,2

h⇤⇤(k, s⇤⇤)|s̄�b|⇤b(p = vm⇤b
, s⇤b

)i ! h⇤⇤(k, s⇤⇤)|s̄�hv|⇤b(v, s⇤b
)i

' Ū↵
⇤⇤(k, s⇤⇤)v↵(⇠1 + /v⇠2)�u⇤b

(v, s⇤b
) , (5.1)

where U↵
⇤⇤ is the Rarita-Schwinger spinor describing the ⇤⇤, u⇤b

is a Dirac spinor describing

the ⇤b, and � is a Dirac matrix. The Isgur-Wise form factors are defined as

⇠1,2 ⌘ ⇠1,2(v.k) . (5.2)

In the limit of heavy quark mb ! 1, i.e., neglecting the contributions of the order 1/mb

in the parametrizations of the hadronic matrix elements (D.1)-(D.6) and comparing with

(5.1) we get

fV
? = fV

0 = fA
t = fT

? = fT
0 =

⇠1 � ⇠2
m⇤b

, (5.3)

fA
? = fA

0 = fV
t = fT5

? = fT5
0 =

⇠1 + ⇠2
m⇤b

, (5.4)

fV
g = fA

g = fT
g = fT5

g = 0 . (5.5)

To account for the sub-leading corrections of the order O(↵s), following [32] we use the

matching relations of the QCD currents onto the HQET. For the (axial-)vector currents

the matching relations read

s̄�µb = C
(v)
0 s̄�µhv + C

(v)
1 vµs̄hv +

1

2mb
s̄�µi /D?hv + · · · , (5.6)

s̄�µ�5b = C
(v)
0 s̄�µ�5hv � C

(v)
1 vµs̄�5hv �

1

2mb
s̄�µi /D?�5hv + · · · , (5.7)

and for the (pseudo-)tensor currents the relation is

s̄i�µ⌫q⌫(�5)b = C
(t)
0 s̄i�µ⌫q⌫(�5)hv ± 1

2mb
s̄�µ⌫q⌫i /D?(�5)hv + · · · , (5.8)

where

Dµ = vµ(v.D) + D?µ , D?µ = (gµ⌫ � vµv⌫)D
⌫ .

The renormalization scale µ-dependent matching coe�cients C
(v,t)
0 , C

(v)
1 at next-to-leading

order in ↵s are [32]

C
(v)
0 = 1 � ↵sCF

4⇡

✓
3 ln

✓
µ

mb

◆
+ 4

◆
+ O(↵2

s) , (5.9)

C
(v)
1 =

↵sCF

2⇡
+ O(↵2

s) , (5.10)

C
(t)
0 = 1 � ↵sCF

4⇡

✓
5 ln

✓
µ

mb

◆
+ 4

◆
+ O(↵2

s) . (5.11)
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Λb → Λ∗(→ NK̄ )`+`− decay:

In the mb →∞ limit and to leading order 1/mb + O(αs) correction Grinstein/Pirjol

Phys. Rev. D 70, 114005 (2004)

The matrix elements of these currents can be parametrized in terms of the leading Isgur-

Wise form factors ⇠1,2 as

h⇤⇤(k, s⇤⇤)|s̄�µ(�5)b|⇤b(p = m⇤b
v, s⇤b

)

' C
(v)
0

X

n=1,2

⇠nU↵
⇤⇤(k, s⇤⇤)v↵�n�

µ(�5)u⇤b
(v, s⇤b

)

± C
(v)
1

X

n=1,2

⇠nvµU↵
⇤⇤(k, s⇤⇤)v↵�n(�5)u⇤b

(v, s⇤b
) , (5.12)

h⇤⇤(k, s⇤⇤)|s̄i�µ⌫q⌫(�5)b|⇤b(p = m⇤b
v, s⇤b

)

' C
(t)
0

X

n=1,2

⇠nU↵
⇤⇤(k, s⇤⇤)v↵�ni�µ⌫q⌫(�5)u⇤b

(v, s⇤b
) , (5.13)

where the two independent Dirac structures are

�1 = 1 , �2 = /v . (5.14)

Comparing the parametrizations (5.12) and (5.13) with (D.1)-(D.6) we get the following

expressions for the physical form factors at leading order at 1/mb and including O(↵s)

corrections

fV,A
? = C

(v)
0

(⇠1 ⌥ ⇠2)

m⇤b

, (5.15)

fV,A
0 =

✓
C

(v)
0 +

C
(v)
1 s±

2m⇤b
(m⇤b

± m⇤⇤)

◆
⇠1

m⇤b

⌥
✓

C
(v)
0 � (2C

(v)
0 + C

(v)
1 )s±

2m⇤b
(m⇤b

± m⇤⇤)

◆
⇠2

m⇤b

, (5.16)

f
T (5)
? = C

(t)
0

✓
(⇠1 ⌥ ⇠2)

m⇤b

± s±
m⇤b

(m⇤b
± m⇤⇤)

⇠2
m⇤b

◆
, (5.17)

f
T (5)
0 = C

(t)
0

(⇠1 ⌥ ⇠2)

m⇤b

, (5.18)

fV
t (q2) =

1

m⇤b

⇠1

✓
C

(v)
0 + C

(v)
1

⇣
1 � s�

2m⇤b
(m⇤b

� m⇤?)

⌘◆

+
1

m⇤b

⇠2

✓
C

(v)
0

⇣
1 � s�

m⇤b
(m⇤b

� m⇤?)

⌘
+ C

(v)
1

⇣
1 � s�

2m⇤b
(m⇤b

� m⇤?)

⌘◆
, (5.19)

fA
t (q2) =

1

m⇤b

⇠1

✓
C

(v)
0 + C

(v)
1

⇣
1 � s+

2m⇤b
(m⇤b

+ m⇤?)

⌘◆

� 1

m⇤b

⇠2

✓
C

(v)
0

⇣
1 � s+

m⇤b
(m⇤b

+ m⇤?)

⌘
+ C

(v)
1

⇣
1 � s+

2m⇤b
(m⇤b

+ m⇤?)

⌘◆
.

(5.20)

The form factors fV,A
g remain zero. These expressions will be used to correlate the form

factors and reduce the number of independent form factors in the transversity amplitudes.

5.2 Low-recoil factorization

The improved Isgur-Wise relations (5.15)-(5.20) lead to simplifications of the description of

the decay at low recoil region. In what follows, we consider the (axial-)vector form factors
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Λb → Λ∗(→ NK̄ )µ+µ− decay: SM
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Figure 1. The di↵erential branching ratio, lepton-side forward-backward asymmetry, and the

longitudinal polarization fraction of ⇤b ! ⇤⇤(! NK̄)µ+µ� in the SM at the low-recoil. The blue,

green, and red bands correspond to the uncertainties coming from the form factors, corrections

to the Isgur-Wise relations, and sub-leading corrections to the amplitudes. The figures are for

illustrative purpose only (see text for details).

In Fig. 1 we have shown the SM estimates of the observables dB/dq2, A`
FB and FL.

Our choice for the low-recoil phase space is 14.2  q2  (m⇤b
� m⇤⇤)2. The bands

correspond to di↵erent sources of uncertainties. The blue bands correspond to the form

factor uncertainties, the red bands correspond to the corrections to the improved Isgur-Wise

relations, and the blue bands correspond to the power corrections of the order O(↵s⇤/mb).

Due to the lack of realistic estimate of form factor uncertainties at present, we have ignored

the uncertainties of the various inputs given in table 1. In the low-recoil region the masses

of the muon has negligible e↵ect and hence we put mµ = 0. In Fig. 2 we have shown the

SM estimates of the two ratios K1c/K1cc and K1ss/K1cc.

In figure 3 we have presented the NP sensitivities of the di↵erential branching ratio

of ⇤b ! ⇤⇤(! NK̄)µ+µ� in the low-recoil region. In figure 4 we have shown the NP

sensitivities the ratios K1c/K1cc and K1ss/K1cc at low-recoil. In the NP plots, the lines

correspond to the central values of all the inputs. To avoid clutter, in all the NP plots

we have not shown the errors bands coming from form factors and other sources. With a

future determination of the form factors in lattice QCD [51], our determinations can be
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f JP mf
pole [GeV]

f
( 3
2
�

)

+ , f
( 3
2
�

)

? , f
( 3
2
�

)

?0 , h+, h
( 3
2
�

)

? , h
( 3
2
�

)

?0 1� 5.416

f
( 3
2
�

)

0 0+ 5.711

g
( 3
2
�

)

+ , g
( 3
2
�

)

? , g
( 3
2
�

)

?0 , eh( 3
2
�

)

+ , eh( 3
2
�

)

? , eh( 3
2
�

)

?0 1+ 5.750

g
( 3
2
�

)

0 0� 5.367

TABLE VII. Pole masses used in the parametrizations of the ⇤b ! ⇤⇤(1520) form factors. The 0� and 1� masses are from the
Particle Data Group [39], while the 0+ and 1+ masses are taken from the lattice QCD calculation of Ref. [58].

16.0 16.2 16.4 16.6 16.8

q2 [GeV2]
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�10�9

dB/dq2 [GeV�2]

FIG. 5. The ⇤b ! ⇤⇤(1520)`+`� di↵erential branching fraction in the high-q2 region calculated in the Standard Model. The
blue solid curve is obtained using the improved form factor results with the exact endpoint constraints, while the gray dashed
curve shows the previous results without these constraints from Ref. [13].

The uncertainties near the endpoint are also reduced substantially, as expected. Our previous predictions in Ref. [13]
are mostly consistent with the new results within the (old) uncertainties, with deviations at the 2� level seen in some
angular observables at the endpoint, such as FL and A`

FB as shown in Fig. 6.

Figure 3: Left: using quark model ff, right: using lattice QCD ff.

Mott/Roberts Int. J. Mod. Phys. A 27, 1250016 (2012), Meinel/Rendon 2021 & 2022

In this extended set of operators, the simple observables dB/dq2, A`
FB and FL read

dB
dq2

=
N2

9m2
⇤⇤

s+s�

 
3
h(m⇤b

+ m⇤⇤)2

q2
s�⇢

+
1 |fV

0 |2 +
(m⇤b

� m⇤⇤)2

q2
s+⇢

�
1 |fA

0 |2
i

+ 6
h
s�⇢

+
1 |fV

? |2 + s+⇢
�
1 |fA

? |2
i

+
9

2

h(m⇤b
� m⇤⇤)2

(mb � ms)2
s+⇢

+
S |fV

t |2

+
(m⇤b

+ m⇤⇤)2

(mb + ms)2
s�⇢

�
S |fA

t |2
i!

, (5.50)

dB
dq2

FL =
dB
dq2

� N2s+s�
9m2

⇤⇤

 
6s�⇢

+
1 |fV

? |2 + 6s+⇢
�
1 |fA

? |2 + 3
(m⇤b

� m⇤⇤)2

(mb � ms)2
s+⇢

+
S |fV

t |2

+ 3
(m⇤b

+ m⇤⇤)2

(mb + ms)2
s�⇢

�
S |fA

t |2
!

, (5.51)

dB
dq2

A`
FB =

2N2

m2
⇤⇤

(s+s�)3/2fV
? fA

?Re⇢+
2 . (5.52)

For the ratios of angular coe�cients constructed in the previous section we make the

following observations

• Interestingly, the ratios K1c/K2c, K1cc/K2cc and K1ss/K2ss remain independent of

both short- and long-distance physics in the extended set of operators.

• If only SM0 NP is present, then both K1c/K1cc and K2c/K2cc are sensitive to it.

Irrespective of the presence of SM0 NP, the ratios are sensitive to scalar NP.

• For K1ss/K1cc and K2ss/K2cc the dependence on the new physics follow the same

pattern as in K1c/K1cc and K2c/K2cc.

6 Numerical Analysis

In this section, we perform a numerical analysis of the ⇤b ! ⇤⇤(! NK̄)µ+µ� observables

and study their sensitivity to the SM and NP. Such an analysis require the knowledge of

the form factors. At present, the lattice QCD calculations of the form factors are only

preliminary [40]. Our numerical analysis is based on the non-relativistic quark model pre-

dictions (using the “full quark model wave function (MCN)” model) presented in [41]. We

assume uncorrelated 30% uncertainties on the four contributing form factors fV,A
0 , fV,A

? for

illustrative purpose in the absence of such in Ref. [41]. To account for the uncertainties due

to the neglected terms of the order O(⇤/mb) and of the order O(m⇤⇤/m⇤b
) in the improved

Isgur-Wise relations, we assume 10% corrections to the amplitudes. These corrections are

included by multiplying the amplitudes A?,k0, A?,k1 by uncorrelated real scale factors.

Even if the form factors are precisely known, there are theoretical uncertainties due to

purely hadronic operators O1···6, and penguin operators O8, combined with a virtual photon

emissions. These are non-local e↵ects because the electromagnetic vertex is separated from

the quark flavor transition by a characteristic distance that is quite large. At low-recoil,

– 14 –
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Λb → Λµ+µ− observables: SM
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Crosses indicate LHCb data: Aaij, JHEP 1506, 115 (2015),

R
µ/e
Λb

= 0.9987± 0.0001
∣∣
[1−6] GeV2 , 0.9989± 0.0001

∣∣
[15−(mΛb

−mΛ)2] GeV2 ,

DD, Eur.Phys.J. C78, 230 (1802.09404)
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Λb → Λµ+µ− observables: NP

NP fits for benchmark values. VA couplings constrained by global fits to b → sµ+µ−

data. The SP couplings are constrained through B(Bs → µ+µ−) and

B(B → Xsµ+µ−).
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Λb → Λ(→ Nπ)τ+τ−: SM

No data on b → sτ+τ− mode. NP poorly constrained. Models that explain b → s``

and b → c`ν anomalies predict large b → sτ+τ− rates Alonso et.al., JHEP 1510, 184 (2015), Crivellin

et.al., JHEP 1709, 040 (2017), Capdevila et.al., arXiv:1712.01919, Kamenik et.al., Eur. Phys. J. C 77, no. 10, 701 (2017).
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