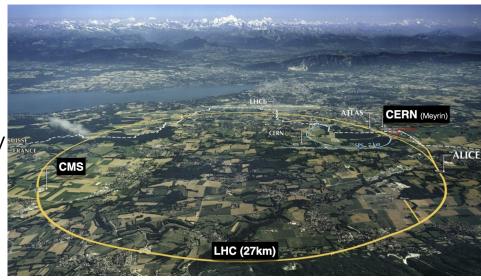
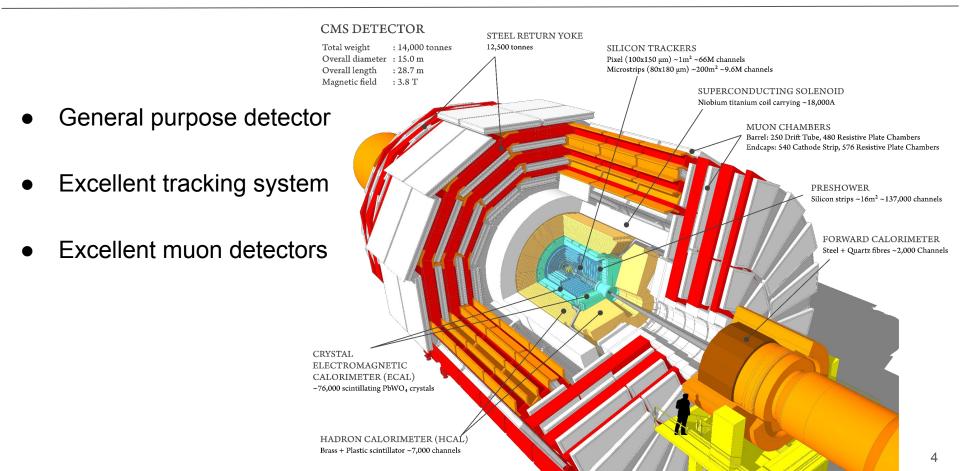

Flavour Physics at CMS

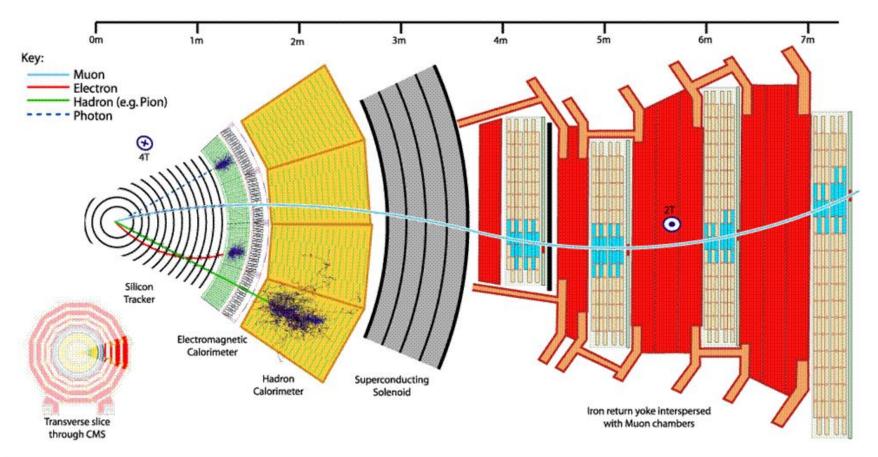
Indian Institute of Technology Hyderabad



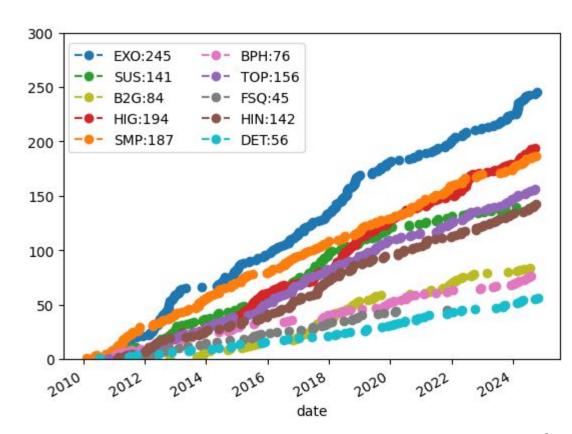
BAW 2024, IIT Hyderabad



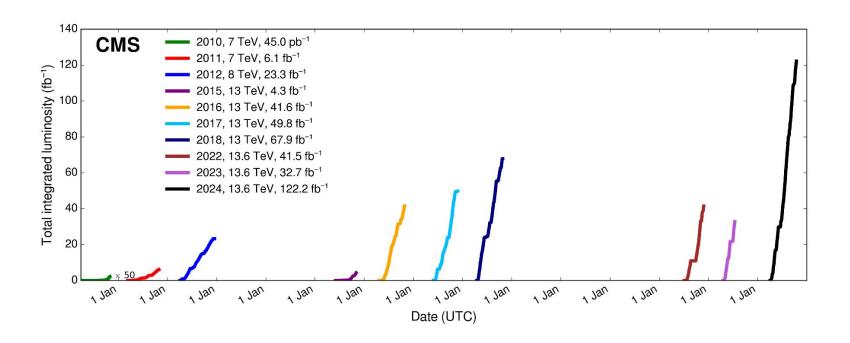
Large Hadron Collider (LHC)


- LHC is the world's largest and most powerful particle accelerator.
- Based at CERN, on the Franco-Swiss border near Geneva
- Designed to collide protons at com energy of 14TeV with instantaneous luminosity of 10³⁴/(cm²·s)
- Currently operating at 13.6 TeV
- 4 major experiments
- Leads the "Energy Frontier"

Compact Muon Solenoid (CMS) Detector



Particle reconstruction at CMS

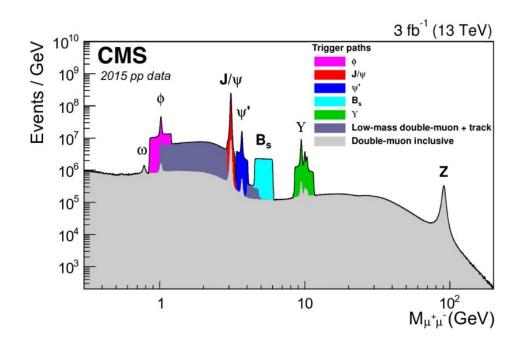

Physics at CMS

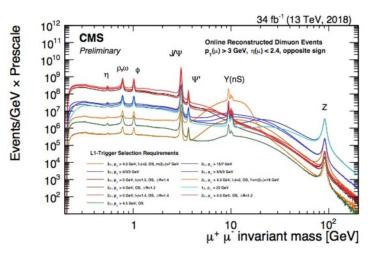
- CMS has a wide ranging physics program
 - Higgs studies
 - Standard Model measurements
 - BSM searches
 - Top quark physics
 - Flavour physics
 - Heavy ion physics
 - o etc.

Luminosity

Integrated Luminosity Recorded by CMS during proton collisons

Luminosity


Comparison with LHCb:


	LHC era			HL-LHC era	
	Run 1 7, 8 TeV (2010-12)	Run 2 13 TeV (2015-18)	Run 3 ~14 TeV	Run 4 ~14 TeV	Run 5+ ~14 TeV
ATLAS, CMS	25 fb	100 fb	300 fb	\rightarrow	3000 fb
LHCb	3 fb	8 fb	23 fb	46 fb	100 fb

Significantly higher luminosity recorded by CMS compared to LHCb

Trigger

- Main challenge for Falvour physics is the triggering
 - And low momenta object reconstruction
- Dimuon triggers are most useful

Rare decays

nature

Explore content > About the journal > Publish with us >

nature > letters > article

Letter Open access Published: 13 May 2015

Observation of the rare $B_s^0 \rightarrow \mu^+ \mu^-$ decay from the combined analysis of CMS and LHCb data

CMS Collaboration & LHCb Collaboration

Nature **522**, 68–72 (2015) Cite this article

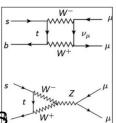
97k Accesses | 333 Citations | 435 Altmetric | Metrics

cds.cern.ch/record/2815334

Rare decays:
$$B^0_{(s)} \rightarrow \mu^+ \mu^-$$

$$B^0_{(s)} \rightarrow \mu^+ \mu^-$$

the physics case


motivations

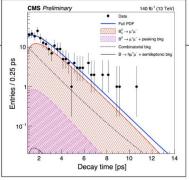
- B⁰_(s)→µ⁺µ⁻ strongly suppressed in the SM (FCNC and helicity)
- connected to b→sl⁺l⁻ transitions via the EFT operators can help understand
 b→s anomalies doi.org/10.1140/epjc/s10052-021-09725-1
- probe SM though lifetime

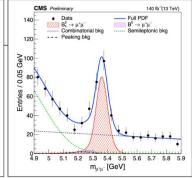
measurements

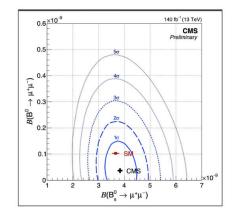
clear final state and

experimental signature at CM\$

result


- pp @ 13 TeV Run2 data (2016-2018) 140 /fb
 - updates the published result on 2016 data (30 /fb)
- 12.5 sigma observation of the B⁰_(s)→µ⁺µ⁻ decay, upper limit on the B(B⁰→µ⁺µ⁻) and life time measurement of B⁰_(s)→µ⁺µ⁻


Rare decays: $B_{(s)}^0 \rightarrow \mu^+ \mu^-$: New results

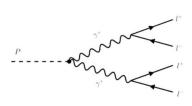

$$B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$$
 results

$$\mathcal{B}(\mathbf{B_s^0}\!\!\to\!\!\mu^+\mu^-) = 3.83^{+0.38}_{-0.36}(stat)^{+0.14}_{-0.13}(syst)^{+0.14}_{-0.13}(fs/fu)$$
 x 10^{-9} (from J/ Ψ K+)
 $\mathcal{B}(\mathbf{B_s^0}\!\!\to\!\!\mu^+\mu^-) = 3.95^{+0.39}_{-0.37}(stat)^{+0.27}_{-0.22}(syst)^{+0.21}_{-0.19}(BF)$ x 10^{-9} (from J/ Ψ Φ)
 $\mathcal{B}(\mathbf{B^0}\!\!\to\!\!\mu^+\mu^-) < 1.5$ x 10^{-10} @ 90% CL
 $\mathcal{B}(\mathbf{B^0}\!\!\to\!\!\mu^+\mu^-) < 1.9$ x 10^{-10} @ 95% CL
 $\tau(\mathbf{B_s^0}) = 1.83^{+0.23}_{-0.20}(stat)^{+0.04}_{-0.04}(syst)$ ps

- All UML fit results are compatible with the SM prediction within 1 sigma
- most precise measurement of B_s⁰→µ⁺µ⁻ branching fraction and lifetime to date

Rare decays

η→4μ


doi.org/10.48550/arXiv.2305.04904

motivation

- η→4µ decay predicted with a very low branching fraction (3.9x10⁻⁹)
 - never observed so far: precision test of the Standard Model (SM)
 - sensible to new physics scenarios doi.org/10.1016/j.physrep.2021.11.001

result

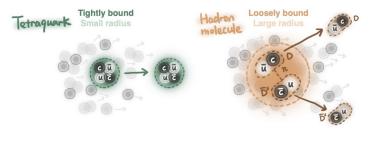
first observation of the rare η→4µ decay

data scouting

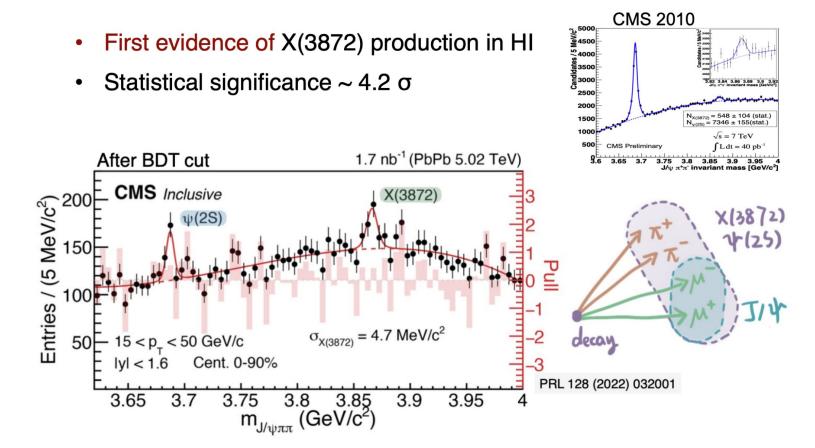
- trigger thresholds limited by the computing power and bandwidth of the experiment
- reduce event size and fasten data acquisition
 - limit the amount of information to muon tracks
 - save HLT reconstruction and skip prompt event processing
 - event size reduced to ~kB (from ~MB)

 \rightarrow can use looser muon thresholds \rightarrow allow for low transverse momentum (pT) rare decays searches

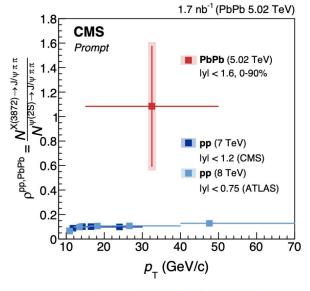
Heavy flavor spectroscopy: Recent results


- X(3872) studies
 - Measurement of X(3872) to $J/\psi \pi^+\pi^-$ (2013)
 - Observation of B_s^0 → $X(3872)\phi$ (2020)
 - Evidence of X(3872) in PbPb collisions (2022)
- Observations of new exotic hadrons
 - Observation of X(4140) in $J/\psi\phi$ from $B^{\pm}\to J/\psi\phi K^{\pm}$ (2014)
 - Observation of new structure in J/ψ $J/\psi \to \mu^+\mu^-\mu^+\mu^-$ (2023)
- Observations of new decay channels (after 2022 only)
 - Observation of $B^0 \rightarrow \psi(2S)K_S^0\pi^+\pi^-$ (2022)
 - Observation of $\Lambda_b^0 o {
 m J}/\psi \, \Xi^- {
 m K}^+$ (2024)
 - Observation of $\Xi_b^- o \psi(2S)\Xi^-$ (2024)

Heavy flavor spectroscopy: X(3872) in HI collisions

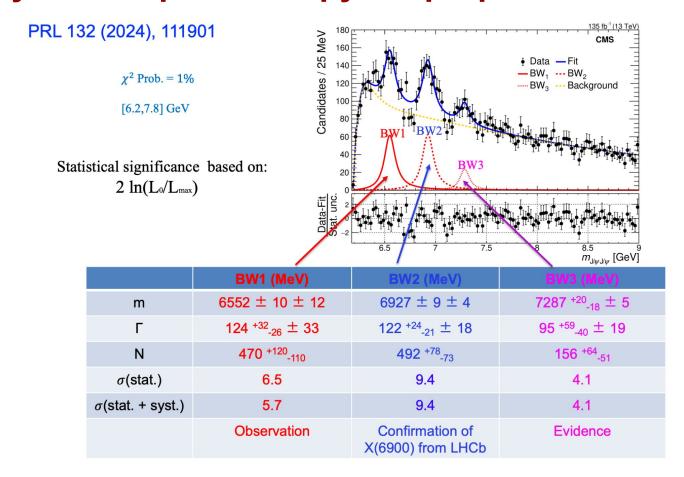

Coalescence with particles in QGP → Enhance X(3872)

Breakup by co-moving particles → Suppress X(3872)

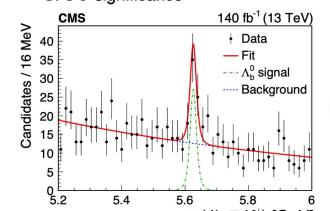


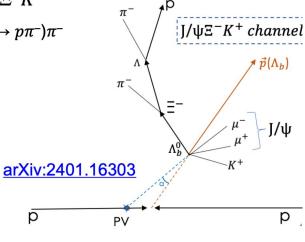
Heavy flavor spectroscopy: X(3872) in HI collisions

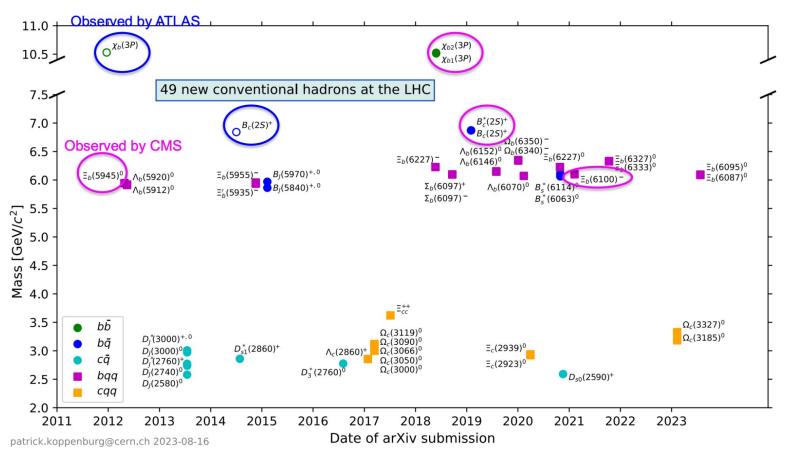
Heavy flavor spectroscopy: X(3872) in HI collisions


X(3872)/ψ(2S) Ratio in PbPb

PRL 128 (2022) 032001


- X(3872) to ψ (2S) ratio $\rho_{PbPb} = 1.08 \pm 0.49$ (stat.) ± 0.52 (syst.)
- Indication of ρ enhancement in PbPb w.r.t to pp
- Better precision needed to draw conclusion


Heavy flavor spectroscopy : J/ψJ/ψ -> 4 muons


Heavy flavor spectroscopy: Observation of new decay channels

- Multi-body decays of b-hadrons may proceed through exotic intermediate resonances
 - E. g. pentaquark $J/\psi p$ structure in $\Lambda_b \to J/\psi p$ K^- observed by LHCb
 - $\Lambda_b \rightarrow J/\psi \, \Xi^- K^+$ final state can unveil yet-unobserved (e. g. doubly-strange) pentaquarks
- First-time observation of $\Lambda_b \to J/\psi \, \Xi^- K^+$ – In final states with $J/\psi \to \mu\mu$, $\Xi^- \to \Lambda(\to p\pi^-)\pi^-$
 - 5.8 σ significance

New conventional hadrons at the LHC

Lepton Flavour Universality studies

Tests of LFU in the Heavy Flavor sector

$$b \rightarrow s\ell\ell$$

$$R(H_s) = \frac{\mathcal{B}(H_b \to H_s \mu \mu)}{\mathcal{B}(H_b \to H_s ee)}$$

- Small BR (loop level)
- Precise theoretical predictions
- Neutrino-less

$$R_K = \frac{BF(B \to \mu \mu K)}{BF(B \to e e K)}$$

SM: 1.00 ± 0.01

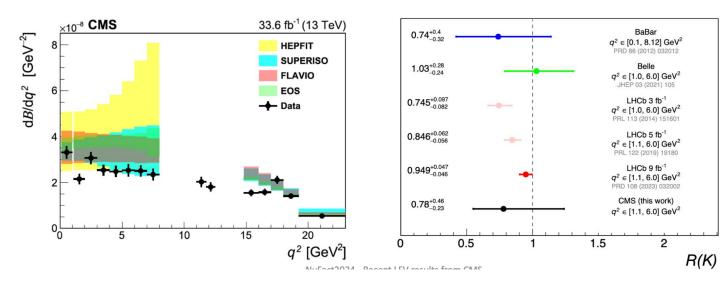
$$b \to c \ell \nu_{\ell}$$

$$R(H_c) = \frac{\mathcal{B}(H_b \to H_c \tau \nu_\tau)}{\mathcal{B}(H_b \to H_c \mu \nu_\mu)}$$

- Large BR (tree level)
- Theory and syst. uncertainties
- Neutrinos in the final state

$$R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})}$$

SM: 0.2582 ± 0.0038 *PRL 125, 222003 (2018)*

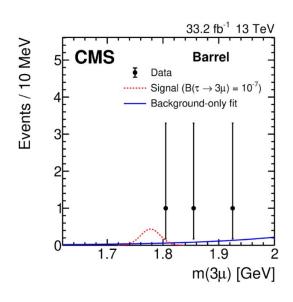

Lepton Flavour Universality studies

R(K): test of LFU in $B^{\pm} \rightarrow K^{\pm} \ell^{+} \ell^{-}$ decays

Results: compatible with the SM

R(K) in $q^2 \in [1.1; 6.0]$ GeV² in agreement with the world-average, with **unc. reduced by 40%** = $0.78^{+0.46}_{-0.23} (stat)^{+0.09}_{-0.05} (syst)$

Limited by small stat. in the electron channel. Main syst: background description, trigger turn-on



Lepton Flavour Violation studies

$\tau^+ \rightarrow \mu^+ \mu^+ \mu^-$

- τ→3µ excellent candidate for new physics searches
 - o LFV process, strongly suppressed in the SM (~10⁻⁵⁵), but predicted at the level of 10⁻⁸ 10⁻¹⁰ by some BSM models

 Bordone et al. 10.1007/JHEP10(2018)148
 - o clear final state signature
 - fairly abundant in pp collisions (per /fb)
- CMS targets τ leptons produced via D/B mesons and via W bosons
- analysis on 2016 pp data @ 13 TeV (30 /fb)
- select three-muon events and reduce the background contamination via BDT
- observed (expected) UL from three-muon invariant mass distribution
 - B^{HF}(τ →3 μ) < 9.2 (10.0) x 10⁻⁸ @ 90% CL
 - $B^{W}(\tau \rightarrow 3\mu) < 20.0 (13.0) \times 10^{-8} @ 90\% CL$
 - B(τ →3 μ) < 8.0 (6.9) x 10⁻⁸ @ 90% CL

Lepton Flavour Violation studies

arXiv:2312.03199v1 submitted to PRD

Search for cLFV in the top quark sector: μetq

Probe μetq coupling in EFT in t production and decay, where q=u/c

Signal signature:

- OS eµ pair
- Leptonic top quark decay → additional lepton + one b-jet
- one/zero light jet (u/c)

Background:

- Prompt (WZ, multiboson, $t(\bar{t}) + X(X)$) from simulation
- Non-prompt data-driven estimation

 $t\bar{t}$ production + CLFV in top decay

Statistically dominated, main systematics: lepton reco. and iso, jet modelling, non-prompt leptons

Two Signal regions defined:

 $SR + m(e\mu) < 150 \,\text{GeV}$: top quark decay enriched, $SR + m(e\mu) > 150 \,\text{GeV}$: top quark production enriched.

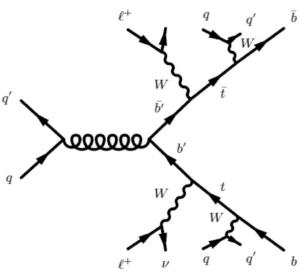
Many more studies...

CMS B Physics results:

https://cms-results.web.cern.ch/cms-results/public-results/publications/BPH/BPH.html

Fourth Generation Searches

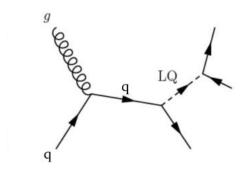
Certain BSM models predict fourth generation of fermions

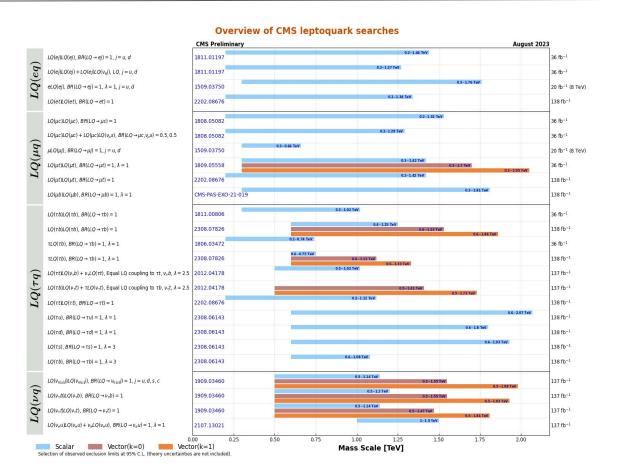

Analyses look at:

$$\circ$$
 b' \rightarrow t + W

$$\circ \quad t' \to t + Z$$

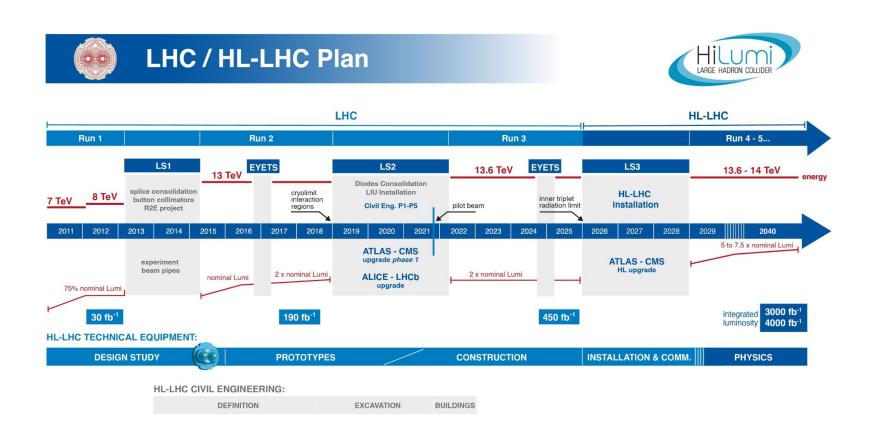

$$\circ$$
 t' \rightarrow b + W


No discoveries yet, efforts continue


Leptoquarks

- "leptoquarks" (LQ) are hypothetical particles that carry both lepton and baryon number.
- Predicted in many BSM models such as GUT theories, composite models, R parity violating SUSY etc.
- LQ have fractional electric charge
- LQ can have spin 0 (scalar LQ) or 1 (vector LQ)
- At hadron colliders, they can be produced mainly in a pair or singly, in association with a lepton
- CMS has several LQ searches based on final states

Leptoquarks


And many more (including VLQ, RHN, etc.)

CMS scientific results:

https://cms.cern/org/cms-scientific-results

Plan of the LHC and the High-Luminosity LHC

Scouting & B-Parking

Data flow for a typical 2018 data-taking scenario Prompt offline Standard data stream: reconstruction ~ 1 kHz, ~ 1000 MB/s 30 MHz High Level Trigger Level 1 Parking data stream: Delayed offline Collisions: Trigger ~3 kHz, ~ 2000 MB/s reconstruction ~100 kHz Full detector information and Coarse reconstruction. online resolution limited detector systems No offline Scouting data stream: ~ 5 kHz, ~ 40 MB/s reconstruction Data reconstructed and stored on disk

Future prospects

Long scope ahead with HL-LHC

New triggers, new reconstruction techniques being worked on

Expect several new Flavour physics results from CMS in the future

