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Dark Energy  JVERE Dark Energy  JLIERTY

We don’t know what precisely it is ?

] But we know that it is certainly a form Before Planck After Planck
of matter whose existence in

astrophysical environments has been

observed via its gravitational interaction.
Therefore, we call this unknown form
of matter as “dark matter (DM)”.

What is Dark Matter ?

DARK MATTER

SCIENTISTS HOPE TO PROVE DARK MATTER SOON 2/~
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Evidence of DM from rotation curve

observed

,r ,r2 . ‘./‘f./ ; .\\\~~\ luminous disk
M33 rotation curve
(fig. 1)
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Missing mass ~ Non-baryonic



“Discovery” of Dark Matter — |
Jan Hendrik Oort (1932)

BULLETIN OF THE ASTRONOMICAL INSTITUTES
OF THE NETHERLANDS

Wae Aungust vy Vaolume VL No. s

COMMUNICATION FROM THE OBSERVATORY AT LEIDEN

The fores sxaried by the sisllar system (n the dirsction perpendicular to the gelaotic
plune and some related problems, by 7 2 Ooet

Jan Hendrik Oort (1900-1992)

Astrvmmemben) Tmtitntes of The Netherbumds « Prosbbed by the NASA Astruphysios Dinty Sysbem

* Vertical velocities of stars too high —
they should have escaped!

Integrating over a column perpendicular to the
galactic plane I find that an average unit of photographic
light corresponds to a mass of 18 (if both are
expressed in the sun as unit), approximately agreeing
with the proportion found in the central region of

the Andromeda nebula, the only available case where ~2 GeV/cc! Modern value ~ 0.3 Gev / cc

a comparnson is possible,

* Need “invisible" mass of density

Borrowed from Subir Sarkar



“Discovery” of Dark Matter — ||
Fritz Zwicky (1933)

F. Zwicky, "Die Rotverschiebung von extragalaktischen Nebeln",
Helvetica Physica Acta 6: 110-127 (1933)

F. Zwicky, "On the Masses of Nebulae and of Clusters of Nebulae",
Astrophysical Journal 86: 217 (1937)

THE ASTROPHYSICAL JOURNAL

AN INTEANATIONAL REVIEW OF SPECTROSCOPY AND
ASTRONOMICAL MHYSICS

Coma Cluster VOLUME 6 OCTOBER 1937 NUMBER )
N > 1000 galaxies
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Evidence of DM in bullet cluster

(Collision of galaxies in Bullet cluster | E 0657-56)

Markevitch et.al, Astro Phy |, 2004




Evidence of DM in CMB

Multipole moment, ¢
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Nature of Dark Matter...

From the astrophysical evidences of dark matter one infers that...

v DM should be a massive particle and hence interact
gravitationally.

o S v' It is electrically neutral and colorless. Therefore it could hide

itself easily.
v" It is stable on the cosmological time scale and therefore the
large scale structure exists.

Mass of DM=?
Spin of DM=?, Charge of DM=1 Many
Interaction apart from gravity ? unanswered
Relic abundance questions!

However,
We don’t know ...

(symmetric/asymmetric ?)

Q. How to probe the DM, which is required for the existence of our
Universe ?




s DM a WIMP (Gravity+ weak) ?

The DM is assumed to be in
equilibrium in the early
Universe via the weak

interaction processes. As the

temperature, due to
expansion of the Universe,

falls below the mass scale of
DM, the latter gets freeze-out
from the thermal bath and
gives the correct relic
abundance.

Steigman and Turner, 1984
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Freeze-out

10" Pem’s™!

Planck 10 Yem’s !

10¥em’s™!

Freeze-in

Equilibrium
abundance
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X =m/T
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Y, =%, x=—£



=0.1198+0.0026

O h?_ 1.1x10°GeV ',
oM g:*M (o | V],

o Analytical estimation of The observed relic
a WIMP relic density abundance of DM by
WMAP and PLANCK

<o|V|>e=3x10%°cm’ /sec = 2.6 x10°GeV
~O(10*)cm’

!

Which is typically a weak —

interaction cross-section.

Therefore one believes that DM could be a WIMP.



Dark matter:
The Physics beyond the SM ?



DM:The physics beyond the SM

The only particles in SM which
seem to satisfy some properties
of DM are neutrinos:

" Forces
Q,h* = ~0.0024
| /8 Q 91.5eV
Bl << (2, N’

scalar particle

Cowsik McClelland, PRL 1972

Leptons

So, we need to look for a candidate of DM in the beyond standard
model of particle physics, which is probably heavy (> a few GeV).

Lee and Weinberg, PRL 1977
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General Strategy for DM physics

Lnew=Lgy+ Lpy+ Lppy.sm

Constraints

Large number of

(1) DM should satisfy the relic density constraint from possibilities, such as

WMAP and PLANCK
(2) DM must satisfy the direct detection constraint
from latest expts like Xenon-IT and LZ and others
(3) DM should be stable in the cosmological time scale.

scalar, fermion and
vectors... =2 Any
stable particle with
sl hypercharge,Y=0 can
be a viable candidate
of DM. For a particle
with non-zero Y, one

Look for predictions at
indirect and collider
search experiments

without disturbing the SM
physics.

has to struggle to
validate at DD
experiments.




Dark Matter Zoo

\ Thermal Relics ... Asymmetric DM

SIMP DM
Axion DM =

| WIMP DM DM Anti-DM
FIMP DM *

Sterile neutrino
DM
Self-Interacting

DM N
Net survival DM




Testing a WIMP DM Hypothesis

thermal freeze-out (early Univ.)

indirect detection (now)
I ——

DM XS‘ M
DM SM
_

production at colliders

direct detection



DM search experiments in the world




Strategy for direct search of DM

= 'Dark matter
| i' 'elastlcally scatters.“._
. off nuclei

Nuclear recoils

detected by
__ phonons, -
-~ scintillation,
~ ionization, ...




Master formula for DM detection

The total number of dark matter particles detected in a terrestrial experiment

N =t (nv)(Nyo) n = P No = &(Detector mass)
My T My (Nucleus mass)

Exposure time (t) DM flux=number density of DM (n) x speed (v)  Effective area of target=
Number of target nuclei x

DM-nucleus cross-section
But the experiment detects the spectrum of DM recoils, i.e., Energy dependence of the number detected
DM particles. So, the quantity of interest is

dN _ ., N do
dE, VN dE,

The DM velocity is not unique in the vicinity of the detector. So need a distribution function to calculate the
DM detection rate:



dN

Vesc do Vesc
R Ndi = 1
iE. tnNva dERf(v) dv fvmmf(v) v

min

The minimum speed required to produce a DM recoil:

!
L] — [ & 3 2 —
Vmin = \/mx Er/245 b =

If we define the experimental exposure: € = tMy then the DM detection rate can be

expressed as
dN 0 do
—e—L [ up@) S do
dlEp m, my J, r.f]l.Ej'{

For light nuclei the DM particle sees the nucleus as a whole, while for bigger nucleus the DM sees the
substructure, which can be taken into account by using a form factor.As a result the differential scattering
cross-section become-

TTrLETL

do my og
dliip 2Ny v?

F*(ER)



Finally we get a DM detection rate:

dN . il
— ¢ g a0 F.-_" |[: -EH) [ JF [ ]I
dEp 2my fty N Jo, . v

dkag

dER
dNest _ AN | dNpgg

dEr ~ dEr  dEg

Similarly we will get background for each experiment:

This has to be compared with the experimental
result to give an exclusion plot in the plane of cross-
section versus mass of dark matter.



Exclusion limits from direct search dark matter
experiments (heavy mass particles)

44
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Exclusion limits from direct search dark matter
experiments (light mass particles)

——— CRESST-I2019  ===-=- CRESST surface 2017 ——=— CRESST-12016 e CRESST-Il 2014
= CDEX 2014 — . — CDMSlite 2015 CDMS-Si 2013 SuperCDMS 2014
CoGeNT 2013 DAMIC 2016 e EDELWEISS-IIl 2016 — - — EDELWEISS surf Migdal 2019
----------- EDELWEISS surf stand. 2019 Collar 2018 ——— COSINE-100 2018  ------' DarkSide binom. 2018
e LUX combined 2016 — . — LUX Migdal 2018 —— NEWS-G 2018 — —= PandaX-ll 2016
XENON1t 2018 e XENON100 low-mass 2016 PICO-60 C,F; 2016
5 -31
g 10 DR e S W R — 107
= 104 \ o \ 10732 S
c \
2 10° : 103 §
2 \ S
- el
3 10° \ 109
0 35 N
. 10 \ 10 ?
6 1 = = 10-36 8
§ 107 109 2
(7] 20 38 O
- 102= 103% @
- = Q
z 1073 E 103° é’
()] E []
© 10%E 1040 L
+ i A =
& 10°= 104 =
o =
-6 -42 Q.
‘E’- 10 10 .
® 107 104 £
= -8 -44 g
~ 10 10
— > =
g 1 0'9 Coherent Neutrino Scattering on CaWO4 1 0'45 g
1 0-10 1 ! 1 | Lo 1 1 ! [ | 1 0-46
0.1 02 0304 1 2 3 4 567890

Dark Matter Particle Mass (GeV/c?)



Strategy for Indirect search of DM

« Dark matter may pair

annihilate in our galactic : Low-energy photons  pysitrans
neighborhood to

* Photons

. Neutrinos Z’;g'#ﬂr%;irgy Electrons
* Positrons N\/\} Neutrinos

« Anti-protons
* Anti-deuterons

* The relic density Supersymmetric 1 -
: neutralinos el /\/\AA/\/\/\/\/\/\AAProtons
provides a target H
annihilation cross Decay process )
section

(o, V) ~ 3 x 102 cm3/s



Example:Working formula for positron flux

Assume that the positrons are produced in the centre of galaxy and then propagates to us through the
galactic magnetic field. The evolution of positron number density per unit energy f(t: ;_3_:": E) obeys the
diffusion equation:

of 0

_ I{(E) Ve (,’;(E) f) — () =====> Source term

Moskalenko & Strong, E aE
Astrophys, |493, 694, | l
1998(Galprop code) Diffusion coefficient

Energy loss coefficient due to synchrotron

radiation + inverse Compton scattering on
CMB photon

The source tel 2 InTk
1 P Z AN

1

Particle physics




In a steady state a semi-analytical formula for positron flux is given by:

2 oM
. Vet 1 Po P / / /
¢+ (K. To) =D — - IE" fini(E") - I (Ap(E,E
e+ (B2 7o) 4wb(E)2<MMI) [ B Juy(E7) - T{Ap(E, £7))

E
T. Delahaye et.al. (0712.2312) [
Hisano et.al. (hep-ph/0511118) Particle Physics Astro physics

The astrophysics part can be reproduced with a fitting function:

by —/ { — by)”
I[(Ap) = ap + a; tanh (1—> [t’lg exp (—( 2 ) + ﬂ,g]

C1 Co

Marco Cirelli et.al. 0802.3378



Flux«<E” (s sr' mv* Gev?)
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Collider search of dark matter

J"_ - ~CMS ___ >oi5t 7 137a0)

Pseoudo
scalar

Fermion
Vector

s bbbt

2HDM+a

Simplified " ' Extended
dark sectors RS dark sectors

Neutrino
portal

CMS collaboration: 2405.13778



CMS Search of DM at 7 TeV COM - Energy
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Note: Collider experiments constraint the DM mass more in the low
energy region, where the direct detection experiments are not competitive.



Dark sector searches with CMS experiment

Simplified dark sectors Extended dark sectors Inelastic Dark Matter

Fermion portal

& Bifundamenta
g Jr

I
GDM | @ %
I

Spin-1 portal 2HDM+a

Stealth SUSY

DM

Scalar
dark Higgs
Higgs 125

X

YoM

Udark

Pseudoscalar

Axion-like particle

Hom




Sl
GDM—HUElEﬂH [sz]

10

CMS 49m'(7T

eV), 19.7 o' (8 TeV), 140 fb™' (13 TeV)

90% CL upper limits
EB(H —inv)<0.14
Higgs portal models

£=== Majorana fermion DM
~~ Scalar DM
& Vector DM (UV-comp)
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Direct detection
==« CRESST-II, Phys. Rev. D 100 (20193) 102002

s s DarkSide-50, Phys. Rev. Lett 121 (2018) 081307
ssnPandaX-4T, Phys. Rev. Lett. 130 (2023) 021802

sun] UX-FEPLIM, Phys. Rev. Lett. 131 (2023) 041002
i [ T W I I I N B I

10

10° 10
My [GeV]

3



Long lived particle search through displaced vertex

displaced
tracks

107"

B(H — XX)

1072

/

1073

107

Stable

10°°

10" 1 10 10% 10° 10* 10° 10° 10’
CTy [mm]

Higgs decaying to long lived particle with mass varies between 40 — 55 GeV

CMS 97.6-137 fb' (13 TeV) + 36.7 fo' (13.6 TeV)

95% CL Upper Limit
Displaced leptons
B(X —ee)=B(X — uu)=05
m, = 50.0 GeV
Eur. Phys. J. C 82 (2022) 2
== Dimuon scouting
B(X — pu) =013, m, =40 GeV
JHEP 04 (2022) 052
~ Displaced dimuon
B(X — pu) =013, m_=40 GeV
arXiv:2402_14451
==Z + displaced jets
X — bb, m, =55 GeV
JHEP 03 (2022) 160
== Displaced jets
X —dd, m, =55 GeV
Phys. Rev. D 104 (2021) 1
== M35 Clusters
X =, mx=55(3e\."
arXiv:2402.01898
=: M3 Clusters
X—:bb.mx=SEGeV
arXiv:2402.01858

HH—inv
Euwr. Phys. J. C 83 (2023) 933



Theoretical modeling of dark matter....

Particle Physics

Models

Aim:To find a viable particle physics
model for DM content of the
Universe...



The two important points that should be considered

while building models of dark matter:

(I) The hyper charge Y =2(Q —T,) of the additional
field multiplet should be zero for elastic dark matter,
so that large Z-boson mediated direct detection
cross-section can be avoided. If Y =#(Q then the
large direct detection cross-section can be avoided by
making it inelastic type.

7 > o ~ 0(10_38)Cm2 Excluded

by DD

n n
(2) The additional field should be stable by itself or should be
made stable by adding additional flavor/gauge symmetry.
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Catalogue of Dark matter models

Asymmetric dark matter
models (through CP violating
decay of heavy particles)

Freeze-out dark Freeze-in dark
matter models matter models

Minimal dark matter (No Non-minimal dark matter ?

additional flavor symmetry (Additional flavor symmetry is
is required for its stability) required to make it stable)

Multipartite
dark matter
(scalar,
fermion...)

SU(2)charged dark
matter (scalar,
fermion...)

SU(2) singlet dark matter
(scalar, fermion...)



Part-1l (models of dark matter)



Examples of dark matter models...

Weakly interacting

vector-like lepton
as dark matter

S. Bhattacharya, Nirakar Sahoo and N. Sahu, PRD93,2016

S. Bhattacharya, S Patra, Nirakar Sahoo, N.Sahu, JCAP 1606,2016

S. Bhattacharya, Nirakar Sahoo and N. Sahu, PRD96, 2017

S. Bhattacharya, Purusottam Ghosh, Nirakar Sahoo and N. Sahu, 1812.06505



Vector-like Singlet fermion DM

(i 1 o v\ _
LDM = x(iy u_mx)x_x H H‘? XX
1000+ =
T
100+ e
10-
< 1:
>
G 0.100=
0.010% B A=500GeV
’ W /= 1000 GeV
0.001 W /= 2000 GeV
107" | A =4000 GeV

-42}

7500 1000
A = 500 GeV

— LUX 2017
----- XENON 1T 2018

Allowed zone

of valid DM 0 500 1000 1500 2000




Vector-like Inert lepton doublet DM

LDM — N(iy"‘D”—mN)N

0.100;
0.010:

0.001+

Qyh®
=

1075¢
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alone is ruled out
by direct search

— LUX 2017
----- XENON 1T 2018
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Singlet-Doublet mixed Fermion DM

We overcome the problem of small relic abundance by introducing a
vector-like singlet fermion #°, which mixes with the neutral
component of the doublet fermion and decreases the annihilation
cross-section.As a result we get the correct relic abundance.

Lpm =M NN +MZ?;(°+[YNI—~I 70 +hc]
INT 0; 0
+Niy“D,N+ y"1y"0 , x

N° B B H* _ 0 _
where N =(N]=(1’2’_1)1 H —(Ho)—(l’zll)’l =(11,0)

Bhattacharya, Sahoo, Sahu, PRD 93, 2016, Bhattacharya, karmakar, Sahu, Sil, JHEP
2017, Bhattacharya, Sahoo and Sahu, PRD 96 (2017), Bhattacharya, Ghosh,
Sahoo and Sahu, Front. In. Physics (2019), Dutta, Bhattacharya, Ghosh and Sahu,
JCAP 03 (2021), Borah, Mahapatra and Sahu, PLB 831 (2022)




Singlet-Doublet mixed Fermion DM

Under symmetry both and N are odd. As a result the

DM emerges as a mixture of singlet fermion and the neutral
component of the vector-like doublet fermion N.

After EW phase transition the mass matrix for neutral vector-like
fermions is given by

(N 0 ZO

My, my \( N°
My M ZO

x

Where My =Y <H >



M. =M _ — ‘N, =cos@y° +sin AN °
1 X MN—M;( 1 X
m2
M, =M + D N, =cosAN° —sin gy°
M, —M,

M* =M,sin“@+M,cos*’@ =M, ;N"

m DOUBLET
tan 26 = D
M, -M
The lightest particle is the N, SINGLET
which is candidate of dark matter

with appropriate mixing angle &



Slne < 0 1 —_— From exclusion of direct detection of dark matter

sSin @ > O(]_O_S) =  NLSP decay before the DM freezes out, so
that no over production of dark matter

We will scan the parameter space within the given range of singlet-doublet
mixing:

107> < sinf < 0.1

Note: However, in case of Majorana singlet-doublet DM, the mixing angle can be
as large as 0.5.

Dutta, Bhattacharya, Ghosh and Sahu, JCAP03, 008,202 |



Relic density of mixed Fermion DM
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Co-annihilation

process




Co-annihilation N*N- _y SM
process

Note: These diagrams don’t
depend on singlet-doublet mixing.
So in the small mixing limit these
diagrams give relic abundance of

aE ——- = at
}N‘ H_}_;__{‘: dark matter.

W —— -

TR
>- } E--r JHHL
LY -"q"'i'l"— e ] -

Note: There are many additional channels in presence of the scalar triplet, which
we have not drawn here.

We look for the observed relic abundance in the parameter space spanned by

AM sin 26
2V

M, ,M,~M?sing Y =
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Small singlet-doublet mixing

Testing the Hypothesis at collider
via displaced vertex signature...



Am < 50 GeV mHe=300GIeV m‘n=300GeVI_
me=300 GeV my==300 GeV . °
2 sna0001 v=01cev | Displaced vertex signature of
ﬁ" R=0.001
10* — Sing=0.0001
~

for small mixing angle:

N* = N, +/"+v,

" 3
L
N- Y
W .ﬂ"“‘
/e %
Thus for a small mass | : |
difference we expect a T v
large displaced vertex = * |
signature of charged L .,
partner of the dark
| 5
matter. el s 1
my [GeV]



Conclusions

(I)The observed relic abundance of DM implies that its
freeze-out cross-section (~0.Ipb) is typically a weak
interaction cross-section. So it is largely believed that the
DM is a WIMP,

(2)We studied the case of a mixed (singlet+doublet) leptonic
DM which satisfies the relic abundance in a large parameter
space.

(3)The spin independent direct detection cross-section is
within the reach of Xenon-nT.

(4)The displaced vertex signature of the charged partner
looks promising.
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