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Standard Model at a Glance

Standard Model describes our Universe at the most fundamental level

It is an elegant model that describes the fundamental particles and how

they interact via three of the four fundamental forces of nature

It is based on the gauge group SU(3)C × SU(2)L × U(1)Y

Strong Int. (QCD) : SU(3)C =⇒ N2 − 1 = 8 (gluons)

Weak Int. : SU(2)L =⇒ N2 − 1 = 3 (W±,Z )

EM Int. : U(1)Y =⇒ One generator (γ)

However the gauge Invariance : No mass terms to the mediating particles

(W± and Z) and the fermions.

The masses can be generated by introducing a scalar field (Higgs) which

breaks the symmetry spontaneously :

SU(2)L × U(1)Y → U(1)EM
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Quick overview of SM

A model of elementary particles and their interactions is defined by three

ingredients:

The symmetries of the Lagrangian

The representations of fermions and scalars

The pattern of spontaneous symmetry breaking.

The Standard Model is defined as follows:

The Gauge Symmetry is: GSM = SU(3)C × SU(2)L × U(1)Y

There are 3-fermion generations, each with 5 representations:

Q I
Li (3, 2 + 1/6), U I

Ri (3, 1,+2/3), D I
Ri (3, 1,−1/3),

LI
Li (1, 2,−1/2), E I

Ri (1, 1,−1),

There is a single scalar representation φ(1, 2,+1/2)

The scalar φ assumes a VEV, 〈φ〉 = (0, v/
√

2)T , so that the gauge group

is spontaneously broken

GSM → SU(3)C × U(1)EM
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SM Lagrangian

The most general renormalizable Lagrangian:

LSM = LKinetic + LHiggs + LYukawa

The kinetic terms to maintain the gauge inv, i.e., replace the ordinary

derivative by covariant derivative:

Dµ = ∂µ + igsG
µ
a La + igW µ

b Tb + ig ′BµY

For example, for left-handed quarks

LKin = iQ I
Liγ

µ

(
∂µ +

i

2
gsG

µ
a λa +

i

2
gW µ

b τb +
i

6
g ′BµY

)
Q I

Li

For left-handed lepton doublets

LKin = iLI
Liγ

µ

(
∂µ +

i

2
gW µ

b τb − ig ′BµY

)
LI

Li

These parts of the Interaction Lagrangian are always CP conserving and

involve three parameters.
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SM Lagrangian

The Higgs potential, which describes the scalar self-interaction

LHiggs = µ2φ†φ− λ(φ†φ)2

For SM scalar sector, there is a single doublet, this part of the L is also

CP conserving, this part involves two parameters, i.e., µ and λ or Higgs

mass and the VEV

Yukawa Lagrangian for the leptonic part

Llepton
Yuk = Y e

ij L
I
LiφE

I
Rj + h.c.

After the Higgs acquires the VEV, these terms lead to charged lepton

masses. (three parametes in this sector)

LYuk for the Quark part is

Lquark
Yuk = Y d

ij Q
I
LiφD

I
Rj + Y u

ij Q
I
Li φ̃U

I
Rj + h.c.

This is the part where quarks masses and flavour arises.

The Yukawa ints for the quarks are described by ten physical parameters.

They can be chosen to be the six quark masses and the four parameters

of the CKM matrix. 5 / 47



Importance of Flavour Physics

Flavour Physics encompasses many of the open questions of the Standard

Model

Why there are 3-generations of

quarks with hierarchical masses

Why the Quark and Lepton mixing matrices are so different

Most importantly, Flavour Physics serves as a tool to discover New

Physics beyond the SM.

Three Pillars of Flavour Physics:

The CKM mixing matrix and the Unitarity Triangle

Neutral Meson Mixing (M0 −M0)

Rare decays: Flavour Changing Neutral Current transitions

(b → s, d)
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Key Ingredient of Flavour Physics: CKM Matrix

The unitary CKM matrix VCKM relates the weak eigenstates of d-type quarks

to the corresponding mass eigenstatesd ′

s′

b′

 = VCKM

d

s

b

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

d

s

b


Standard parametrization :

VCKM =

1 0 0

0 c23 s23

0 −s23 c23

 c13 0 s13e−iδCP

0 1 0

−s13e iδCP 0 c13

 c12 s12 0

−s12 c12 0

0 0 1


Wolfenstein parametrization of CKM matrix is:

VCKM =

 1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 , λ = 0.22.
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Hierarchical Nature of CKM matrix
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Illustration of CKM Matrix

In the SM, we have three generations of quarks(
u

d

)
,

(
c

s

)
,

(
t

b

)

The electroweak interactions are described by Charged Current (CC)

mediated by W±µ or Neutral Current (NC) transitions mediated by Aµ
and Zµ

Flavour Changing Neutral Currents (FCNCs) are processes in which the

quark flavour changes, while the quark charge stays the same.
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The flavor sector is that part of the Standard Model which arises from

the interplay of quark weak gauge couplings and quark-Higgs couplings.

From a theorist’s perspective, the aim flavor physics is to search for those

places where SM predictions are clean enough, so that effects from

physics BSM could be recognized if indeed they occur.

In other words : The objective is to critically test the SM and look for

New Physics beyond it.
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Lepton Flavour Universality a key ingredient of SM

In the SM, the couplings of the gauge bosons to leptons are independent

of the lepton flavour

Equal couplings of the W and Z bosons to electrons, muons and taus

For Z boson, this has been checked at 2× 10−3 level of accuracy at LEP

For W boson, the τ BR is 2.6σ above 〈e, µ〉 which are equal to about 2%

precision level

2Γ(W → τν)

[Γ(W → µν) + Γ(W → eν)]

∣∣∣
LEP

= 1.066± 0.025
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Charged current and Neutral Current Interactions

The CC interaction is given as

− g√
2
ν̄eLW

µγµeL + h.c.

Only LH fields take part in CC interactions. Therefore the W interaction

violate parity

The Wlν interaction is universal

The interaction Lagrangian is

Lint =
g

cos θW
(T3 − sin2 θWQ)ψ̄γµψZµ + eQψ̄γµψAµ

We define: Q = T3 + Y , e = g sin θW

Photon coupling is parity invariant

Z couples to both LH and RH fermions but in a parity violating way
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Possible ways to search for New Physics

Searches for NP signature can be performed in two ways

The first one is through direct production of new particles in colliders.

The key ingredient for this is so-called ”relativistic path” is the amount of

energy available in collision, which drives the maximum range that can be

probed

The second method, the so-called ”quantum path” exploits the presence

of virtual states in the decays of SM particles.

Due to QM, the intermediate states can

be much heavier than the initial and

final particles and can affect the decay

rate as well as the angular distributions.
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Phenomenology of Weak decays of heavy hadrons

The basic starting point for the phenomenology of weak decays of

hadrons is the weak Hamiltonian

Heff =
GF√

2

∑
i

V i
CKMCi (µ)Oi

Oi are the local operators which govern the decays in question

Ci are the Wilson coefficients describe the strength with which a given

operator enters the Hamiltonian

In the simplest case of β decay Heff takes the familiar form

Hβeff =
GF√

2
Vud [ūγµ(1− γ5)d ⊗ ēγµ(1− γ5)νe ]
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Weak decays of muons

Amplitude for µ− → e−νµν̄e is

A = −1

8

g 2

k2 −M2
W

[ν̄µγ
µ(1− γ5)µ] [ēγµ(1− γ5)νe ]

=⇒ GF√
2

[ν̄µγ
µ(1− γ5)µ] [ēγµ(1− γ5)νe ], in the limit k2 � M2

W

B(µ→ eνµν̄e) ∼ 100% =⇒ decay width of muon used to evaluate GF

Γµ =
G 2

Fm
5
µ

192π3

(
1− 8

m2
e

m2
µ

)(
1 +

3

5

m2
µ

m2
µ

)

τ theo
µ = 2.18776× 10−6s, τ exp

µ = 2.1969811(22)× 10−6s
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Weak decays of muons

Including 1-loop EW corrections

Γµ =
G 2

Fm
5
µ

192π3

(
1− 8

m2
e

m2
µ

)[
1 +

α

2π

(
25

4
− π2

)](
1 +

3

5

m2
µ

m2
µ

)

τ theo
µ = 2.19699× 10−6s, τ exp

µ = 2.1969811(22)× 10−6s

Theory and Expt. data are in perfect agreement
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Weak decays of tau

τ being the heaviest lepton decays to both quarks and leptons:

τ → `ντ ν̄` and τ → ντ (π−,K−)

Total decay width of τ is

Γtot
τ =

G 2
Fm

5
τ

192π3

[
f (m2

f /m
2
τ ) + h.o

]
τ theo
µ = 3.26707× 10−13s, τ exp

µ = 2.906× 10−13s

Gluon exchange within the quarks.

QED effects are under control but not QCD

Need to know the dynamics of loop calculations
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Effective Field Theory Approach

An EFT is defined by an effective action, which in turn is completely

specified by the following three ingredients:

Degrees of freedom: The first step of building an EFT is to figure out

what are the degrees of freedom that are relevant to describe the physical

system. These are the variables that will appear in the effective action.

Symmetries: The second step in building an EFT consists in identifying

the symmetries that constrain the form of the effective action, and

therefore the dynamics of the system.

Any term compatible with the symmetries of the system should in

principle be included in the effective action. As a result, effective actions

generically contain an infinite number of terms.
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Expansion Parameter The key to handling an action with an infinite

number of terms lies in the fact that all EFTs feature one or more

expansion parameters.

Observable quantities are calculated in perturbation theory as series in

these small parameters.

This ensures that only a finite number of terms contribute at any given

order in perturbation theory

These three elements are fairly easy to state, but ensuring that they are

properly implemented in an EFT can be a subtle matter.
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Toy Model for Effective Field Theory

Let’s consider a toy model of the interaction between fermion (ψ) and

pseudoscalar meson (φ)

The action is given as

S =

∫
d4x

(
1

2
∂µφ∂

µφ+
1

2
M2φ2 + ψ̄(iγµ∂µ −m)ψ + iyφψ̄γ5ψ +

λ

4!
φ4

)
This action is invariant under parity provided φ is a pseudoscalar, i.e. it

transforms like φ→ −φ under a parity transformation.

A cubic self-interaction for φ would not be invariant and has therefore

been omitted.

We will consider a region of parameter space where y , λ� 1, so that we

can work in perturbation theory. Moreover, we will assume that the scalar

is much heavier than the fermion, i.e. M � m.

Suppose we are interested in describing a simple process such as the

elastic scattering of two fermions
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Toy Model for Effective Field Theory

iM = y 2

[
(ū3(p3)γ5u1(p1))

−i
(p3 − p1)2 + M2

(ū4(p4)γ5u2(p2))− (3↔ 4)

]

If the typical energy E of the fermions involved in this process is:

m� E � M, the scalar propagator can be expanded in powers of

momentum transfer, which gives

iM = i
y 2

M2

[
(ū3(p3)γ5u1(p1))(ū4(p4)γ5u2(p2))− (3↔ 4)

]
+O(E 2/M2)
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Toy Model for Effective Field Theory

As long as E 2/M2 is smaller than the required precision, the full or

effective theories will yield almost the same result.

The ratio E/M controls how well our EFT approximates the full theory,

which is the expansion parameter.

At energies E > M, our EFT ceases to be useful and we need to resort to

the full theory.
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Basic Idea of Wilson Coefficients

Consider the quark level transition c → sud̄

The amplitude can be given as

M =
GF√

2
V ∗csVud

1

1− k2/M2
W

(s̄c)V−A(ūd)V−A

=
GF√

2
V ∗csVud (s̄c)V−A(ūd)V−A +O(k2/M2

W )

This result may also be obtained from

Heff =
GF√

2
V ∗csVud (s̄c)V−A(ūd)V−A + higher order operators

Higher order operators typically involve the derivative terms, correspond

to O(k2/M2
W ). 23 / 47



Basic Idea

Neglecting the higher- dimensional operators and keeping only operators

with dim-6

Heff =
GF√

2
V ∗csVudCO, O = (s̄c)V−A(ūd)V−A

This simple example illustrates the basic idea of OPE: Product of two CC

operators expanded into a series of local operators (O), weighted by C ,

the Wilson coefficients.

When QCD effects are taken into account

Heff =
GF√

2
V ∗csVud [C1(µ)O1 + C2(µ)O2]

O1 = (s̄αcβ)V−A(ūβdα)V−A O2 = (s̄αcα)V−A(ūβdβ)V−A

A new operator with same flavor but different color structure appeared

due to the color algebra

ta
αβt

a
γδ = − 1

2N
δαβδγδ +

1

2
δαδδγβ
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Calculation of Wilson Coefficients

C1,2 can be determined matching the full and effective theory amplitudes

Mfull =Meff =
GF√

2
V ∗csVud [C1〈O1〉+ C2〈O2〉]

Full Theory (all particles appear as dynamical degrees of freedom),

Effective Theory (Integrating out the heavy field W )

The full amplitude can be calculated from the diagrams:
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Calculation of Wilson Coefficients

The matrix elements can be calculated O(αs )

Thus we obtain

C1(µ) = −3
αs

4π
ln

(
M2

W

µ2

)
, C2(µ) = 1 +

3

N

αs

4π
ln

(
M2

W

µ2

)
These results are valid only for µ = O(MW ). For µ� MW , we have sum

the large logarithms to all order of perturbation theory, which can be

done using the RGE for C(MW ).
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Summary of the basic Formalism

The ultimate goal: Evaluation of weak-decay amplitudes involving

hadrons in the framework of a low-energy effective theory

〈Heff〉 =
GF√

2
VCKM

∑
i

Ci (µ)Oi (µ) =
GF√

2
VCKM〈 ~OT

i (µ)〉 ~C(µ)

Step 1: Calculate C(µW ) to the desired order of αs . Since ln(µW /MW )

are not large, can be done in ordinary perturbation theory

Step 2: Evolve the coefficients from µW to low-energy scale µ using RGE

~C(µ) = U(µ, µW ) ~C(µW )

Step 3: Calculate the hadronic matrix elements 〈 ~Q(µ)〉 by some

non-perturbative method.
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Effective Hamiltonian for ∆B = ∆S = 1

The effective Hamiltonian is given as

Heff(∆B = 1) =
GF√

2

[
λu,c (C1(µb)Ou,c

1 + C2(µb)Ou,c
2 )− λt

6∑
i=3

Ci (µb)Oi

]

The Wilson Coefficients evaluated at MW scale are given as

C1(MW ) =
11

2

αs (MW )

4π
, C2(MW ) = 1−

11

6

αs (MW )

4π
,

C3,5(MW ) = −
αs (MW )

24π
Ẽ0(xt ), C4,6(MW ) = −

αs (MW )

8π
Ẽ0(xt )
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Renormalization Group Equation

These Wilson coefficients will be evolved to b scale using RGE

~C(µb) = Û5(µb,MW ) ~C(MW )

with the final results

C1(µb) = −0.184, C2(µb) = 1.078, C3(µb) = −0.013,

C4(µb) = −0.035, C5(µb) = −0.009, C6(µb) = −0.041
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Flavor Changing Neutral Current (FCNC)

FCNCs are highly suppressed, e.g., K → µν vs. KL → µµ

In the SM, there are no FCNC at the tree level

In the SM there are four neutral bosons (g , γ,Z , h) and their couplings

are diagonal.

The photon, gluon and Z couplings are also universal, while the Higgs

couplings are proportional proportional to the masses
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FCNC at one loop

FCNCs are suppressed in the SM, i.e., there is no tree level exchange

The suppression factors are: CKM factors and Mass factors/GIM

Mechanism

The Loop factor is Universal. For an example consider the b → sγ process

The amplitude for this process is

A(b → sγ) ∝ VibV
∗
is f (mi )

CKM unitarity =⇒ mi independent term in f (mi ) vanishes.

The amplitude must depend on mass
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FCNC at one loop

A(b → sγ) ∝ VibV
∗
is f (mi )

For small xi = m2
i /m

2
W : A ∼ xi or xi ln xi

In s decays this gives m2
c/m

2
W extra suppression and for charm it gives

m2
s /m

2
W suppression

However, for b decays it is not important as mt ∼ mW
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Box diagram

We know that the neutral mesons mix with the box diagrams

There are four such mesons: K(s̄d), B(d̄), Bs (b̄s), D(cū)

Question is: Why not π0 or the excited mesons, e.g. K∗0

∆M ∝
∑

i,j

VisV
∗
idVjsV

∗
jd f (mi ,mj )

The constant tem vanises due to unitarity (GIM)

To leading order f ∼ m2
i /m

2
W

K mixing : m2
c/m

2
W , D mixing : m2

c/m
2
W , and no suppression for B/Bs

mesons

Meson mixing is FCNC process with : Loop Suppression, CKM

Suppression and GIM suppression
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Contributions of Loop Diagrams : b → s transition

The contributions from FCNC one-loop diagrams in ’t Hooft-Feynman

gauge:

Box(∆B = 2) = λ2
i
G 2

F

16π2
m2

WS0(xi )(b̄s)V−A(b̄s)V−A

Box(b → sνν̄) = λi
GF√

2

α

2π sin2 θW

[−4B0(xi )](b̄s)V−A(ν̄ν)V−A

Box(b → sµµ̄) = λi
GF√

2

α

2π sin2 θW

[B0(xi )](b̄s)V−A(µ̄µ)V−A

b̄Zs = iλi
GF√

2

e

2π2
m2

Z
cos θW

sin θW
C0(xi )b̄γµ(1− γ5)s

b̄γs = −iλi
GF√

2

e

2π2
D0(xi ) b̄(q2γµ − qµ 6q)(1− γ5)s
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Basic Functions

The loop functions are:

S0(xt) =
4xt − 11x2

t + x3
t

4(1− xt)2
− 3x3

t

2(1− xt)3
ln xt

B0(xt) =
1

4

[
xt

1− xt
+

xt ln xt

(xt − 1)2

]
C0(xt) =

xt

8

[
xt − 6

xt − 1
+

3xt + 2

(xt − 1)2
ln xt

]
D0(xt) = −4

9
ln xt +

−19x3
t + 25x2

t

36(xt − 1)3
+

x2
t (5x2

t − 2xt − 6)

18(xt − 1)4
ln xt
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Summary of the Effective Vertices

Depend on the masses of internal quarks/leptons and consequently are

calculable functions of xi = m2
i /m

2
W

Depend on elements of the CKM matrix elements

The dependences of a given vertex on the CKM factors and the masses of

internal fermions govern the strength of the vertex in question.
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Effective Hamiltonian for B meson decays

Formulation of weak decays in terms of effective Hamiltonians is very

suitable for the inclusion of new physics effects.

B-meson decays, is governed by Feynman diagrams with W , Z - and top

quark exchanges

Such diagrams with full W , Z and t-propagators represent the situation

at very short distance scales O(mW ,mZ ,mt) , whereas the true picture of

a decaying hadron with masses O(mb) more properly described by

effective point-like vertices and are represented by the local operators Oi .

The Wilson coefficients Ci can then be regarded as coupling constants

associated with these effective vertices.
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Effective Hamiltonian for B meson decays

Heff is simply a series of effective vertices multiplied by effective coupling

constant Ci (OPE)

Heff =
GF√

2

∑
i

V i
CKMCi (µ)Oi

Ci (µ) summarize the contributions from scales higher than µ and can be

calculated in perturbation theory as long as µ is not too small.

Includes contribution from heavy particles : W , Z , t or new BSM

particles

Ci (µ) depend generally on mt dependence can be found by evaluating

so-called box and penguin diagrams

The value of µ can be chosen arbitrarily.

It is customary to choose µ to be of the order of the mass of the decaying

hadron, i.e., O(mb) for B decays
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Phenomenology of Weak decays of heavy hadrons

After constructing the effective Hamiltonian we can proceed to evaluate

the decay amplitudes.

An amplitude for a decay of a given meson say B → M1M2 is simply

given by

A(B → M1M2) = 〈M1M2|Heff |B〉 =
GF√

2

∑
i

V i
CKMCi (µ)〈M1M2|Qi (µ)|B〉

The essential virtue of OPE : It allows to separate the problem of

calculation of A(B → M1M2) into two distinct parts :

The short-distance or perturbative calculation of the couplings

The long-distance calculation of the matrix elements 〈Qi (µ)〉
Clearly, in order to calculate the amplitude A(B → M1M2), the matrix

elements 〈Qi (µ)〉 have to be evaluated.
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Non-perturbative methods like QCD Sum rules, Light Cone Sum Rules,

ChPT, HQET etc are used for 〈Qi 〉

Needless to say, all these non-perturbative methods have some limitations.

The fact that in most cases the matrix elements〈Qi 〉 cannot be reliably

calculated at present, is very unfortunate.

One of the main goals of the experimental studies of weak decays is the

determination of the CKM factors VCKM and the search for the physics

beyond the Standard Model.

Without a reliable estimate of 〈Qi 〉 this goal cannot be achieved

One of such schemes, the factorization scheme for matrix elements:

〈M1M2|JµJ†µ|B〉 = 〈M1|Jµ|B〉〈M2|J†µ|0〉
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Form Factors

Let us consider a simple example of β decay process : n→ peν̄e .

We focus only on the vector current, the relevant matrix element is

〈p(p′)|d̄γµu|n(p)〉

which we can not calculate from the first principle.

We parametrize this by writing out the most general linear combination of

kinematic variables satisfying the Lorentz symmetry

〈p(p′)|d̄γµu|n(p)〉 ∼ apµ + bp′µ

where a and b are form factors.

These can depend only on Lorentz scalars and there are three of these

available (p2, p′2 and p · p′).

The first two are just masses and are not dynamical (they do not change

when we change the momenta). The third one is a dynamical Lorentz

scalar
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Form Factors

It is convenient to write in a different momentum basis by defining the

momentum transfer

q = p − p′ =⇒ q2 = p2 + p′2 − 2p · p′

Analogously, we can write the form factors, e.g., for B → D transition:

〈D(pD )|c̄γµb|B(pB )〉 = f+(q2)(pD + pB )µ + f−(q2)qµ

These form factors are determined from Lattice Calculation or using some

quark models, Light cone sum rule etc.
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Charged Current vs. Neutral Current

Charged currents are mediated by W± and Neutral currents are by Z .

However, flavor changing neutral currents are suppressed in the SM and

occur at one-loop level

A glimpse at the PDG reveals that the probabilities for the charged

currents lead to the dominant weak decays, while the FCNC induced

decays are extremely suppressed.

Charged Currents Neutral Current

b → c`ν̄`: B(B → D0`ν̄`)=2.3% b → s`+`−: B(B → K∗`+`−) = 5× 10−7

c → s`ν̄`: B(D → Kµν̄µ)=9% c → u`+`−: B(D → π`+`−) < 1.8× 10−4

s → uµν̄µ: B(K → µν̄ν)=64% s → d`+`−: B(KL → µ+µ−) = 7× 10−9
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Effective Field Theory Approach for b → cτ−ν̄τ

The effective Hamiltonian responsible for the CC b → cτ ν̄l quark level

transitions is

HCC
eff =

4GF√
2
Vcb

[ (
δlτ + C l

VL

)
Ol

VL
+ C l

VR
Ol

VR
+ C l

SL
Ol

SL
+ C l

SR
Ol

SR
+ C l

TOl
T

]
The corresponding dimension-six effective operators are given as

Ol
VL

= (c̄Lγ
µbL) (τ̄LγµνlL) , Ol

VR
= (c̄Rγ

µbR ) (τ̄LγµνlL) ,

Ol
SL

= (c̄RbL) (τ̄RνlL) , Ol
SR

= (c̄LbR ) (τ̄RνlL) ,

Ol
T = (c̄Rσ

µνbL) (τ̄RσµννlL)
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Effective Field Theory Approach for b → s``

Compared to b → c`ν`, b → s`` transitions are richer due to large no of

observables

The effective Hamiltonian describing b → s`+`− process

Heff = −4GF√
2
VtbV

∗
ts

[
6∑

i=1

Ci (µ)Oi +
∑

i=7,9,10,S,P

(
Ci (µ)Oi + C ′i (µ)O′i

)]
.
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Effective Lagrangian for b → s`−`+

The effective Hamiltonian mediating the NC leptonic/semileptonic

b → s`+`−

HNC
eff = −4GF√

2
VtbV

∗
ts

[
6∑

i=1

Ci (µ)Oi +
∑

i=7,9,10,S,P

(
Ci (µ)Oi + C ′i (µ)O′i

)]
.

where Oi ’s are the dimension-six operators:

O(′)
7 =

αem

4π

[
s̄σµν

(
msPL(R) + mbPR(L)

)
b

]
Fµν ,

O(′)
9 =

αem

4π

(
s̄γµPL(R)b

)
(¯̀γµ`) , O(′)

10 =
αem

4π

(
s̄γµPL(R)b

)
(¯̀γµγ5`) ,

O(′)
S =

αem

4π

(
s̄PL(R)b

)
(¯̀̀ ) , O(′)

P =
αem

4π

(
s̄PL(R)b

)
(¯̀γ5`) ,

The primed as well as (pseudo)scalar operators are absent in the SM and

can be generated only in the BSM theories.
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List of Anomalies
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Summary

Current anomalies in the flavour sector provide an ideal platform to look

for New Physics.

They have huge impact on model building and also in the searches new

particle like Leptoquarks and Z ′ .

Building a viable model which accommodates the observed B anomalies

and consistent with all other measured flavor observables is the need of

the hour.

Thank you for your attention!
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