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Timeline of Quantum ElectroDynamics

✿ Thomson’s atomic model 1890s.

✿ Rutherford’s atomic model 1910s.

✿ Bohr’s atomic model 1910s.

✿ Schrödinger’s atomic model 1920s.

Lamb’s shift and Quantum ElectroDynamics.

Importance of spectroscopy in the development of the theory.
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Quantum ChromoDynamics

LQCD = −
1

4
FµνFµν +

Nf∑
α=1

ψ̄α(iγ
µDµ −mα)ψα = Lg [U ] + Lq [ψ̄, ψ, U ]

where Dµ = ∂µ − ig
∑8
i=1 λ

aAaµ, and Fµν = i
g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ]

Perturbative approaches fail in the hadronic regime.

Nonperturbative approaches required for first principles investigation: Lattice QCD
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Charmonium spectrum

✿ Rich experimental spectrum with several
prospects.
Exotics ...

✿ Comparison with simple minded model of
hadrons.
Mesons ∼ q̄q; Baryons ∼ qqq

✿ Model: Quantum mechanical system with a
potential inspired from properties of strong
interactions.
Godfrey, (Isgur), ... 2015

Olsen et al 2017

A handful of models and several different predictions.

Need for hadron spectroscopy in QCD from first principles
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Experimental facts : X(3872)

✿ first observed in Belle 2003
(Belle PRL 2003)

✿ Quantum numbers, JPC = 1++

(LHCb, 2013)

✿ Appears within 1 MeV below
D0D̄∗0 threshold.

✿ Preferred strong decay modes
J/ψ ω and J/ψ ρ

✿ The isospin still uncertain
* nearly equal branching fraction to J/ψ ω and J/ψ ρ decays.
* No charge partner candidates observed.
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Path integrals in Minkowski space

Path Integral:

Z =

∫
Dϕ(x)e−iS[ϕ(x)],

where S[ϕ(x)] =
∫
d4x L[ϕ(x)].

e−iS[ϕ(x)] factor ≡ Boltzmann factor in statistical mechanics.

Correlation functions:

⟨0|Ô|0⟩ =
∫
Dϕ(x)O[ϕ]e−iS[ϕ(x)]

The spectral information in two point correlations:

⟨0|ϕ̂(t)ϕ̂(0)|0⟩ = ⟨0|eiĤtϕ̂(0)e−iĤtϕ̂(0)|0⟩

= eiEvact⟨0|ϕ̂(0)e−iĤt
∑
n

|n⟩⟨n|ϕ̂(0)|0⟩

=
∑
n

e−i∆Ent⟨0|ϕ̂(0)|n⟩⟨n|ϕ̂(0)|0⟩
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Path integrals in Euclidean space

Wick rotation in time (t→ −it̃):

−iS = −i
∫
dx3dt L → −

∫
dx3dt̃ L̃ = −S̃

Path Integral:

Z̃ =

∫
Dϕ(x)e−S̃[ϕ(x)]

Positive weight factor: e−S̃[ϕ(x)] [probability]
Importance Sampling:

- random sampling of configurations {ϕ}.

⟨O⟩ ≈ O =
∑

O[ϕ]e−S̃[ϕ(x)]/
∑

e−S̃[ϕ(x)]

- importance sampling of configurations {ϕ}.
sample the configuration space with probability e−S̃[ϕ(x)].

⟨O⟩ ≈ O =
∑

O[ϕ]/N
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Lattice QCD: theoretical aspects

LQCD : A non-perturbative, gauge invariant regulator for the QCD path integrals.

✿ Quark fields ψα(x) on lattice sites

✿ Gauge fields as parallel transporters Uµ
Lives in the links. Uµ(x) = eigaAµ(x)

✿ ψ̄iα(x)[Uµ(x)]ijψ
j
α(x+ aµ̂) is gauge invariant.

✿ Lattice spacing : UV cut off

✿ Lattice size : IR cut off

Employ MC Monte Carlo importance sampling methods on Euclidean metric for numerical studies.
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Correlation functions

✿ Aim : to extract the physical states of QCD.

✿ Example case: mass of a pseudoscalar meson (pion)
The simplest interpolating current: ψ̄γ5ψ

✿ Euclidean two point current-current correlation functions

C(t) = ⟨0|[ψ̄γ5ψ](t)[ψ̄γ5ψ](0)|0⟩

= ⟨0|eHt[ψ̄γ5ψ](0)e−Ht[ψ̄γ5ψ](0)|0⟩

=
∑
n

e−Ent⟨0|ψ̄γ5ψ(0)|n⟩⟨n|ψ̄γ5ψ(0)|0⟩

=
∑
n

|Zn|2e−Ent
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Computing correlation functions: mesons

C(t) = ⟨0|[ψ̄γ5ψ](x, t)[ψ̄γ5ψ](0, 0)|0⟩

=

∫
DU tr[γ5 M

−1
xt,00 γ5 M

−1
00,xt] det(M) e−Sg [U ]

−
∫

DU tr[γ5 M
−1
xt,xt γ5 M

−1
00,00] det(M) e−Sg [U ]

On the importance sampled ensemble this amounts to computing

1

N

∑
tr[γ5 M

−1
xt,00 γ5 M

−1
00,xt]− tr[γ5 M

−1
xt,xt γ5 M

−1
00,00]

The sum is over the ensemble [N : # configurations in the ensemble].
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Extraction of the mass spectrum

C(t) =
∑
n|Zn|2e−Ent, which at large times, C(t)→ |Z0|2e−E0t

The operator can in principle couple with all the states that have its q. #s.
The strength of coupling Zn determines the quality of signal.

Effective mass defined as meff = 1
dt
log[

C(t)
C(t+dt)

]

Mass extraction: Fit to C(t) across multiple time slices.

Ground states: Single exponential fit forms

Excited states: Multi-exponential fit forms:
Stability of fits!

Limited # time slices to extract excited state
energies from multi-exponential fits.

Extraction of energy degenerate states is
impossible this way.
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Correlation matrices Cji(t) and GEVP

✿ Instead let us build a matrix of correlatiion functions:

Cji(t) = ⟨0|Φj(t)Φ̄i(0)|0⟩ =
∑
n

Zn∗
i Zn

j

2En
e−En(t)

where Φj(t) and Φ̄i(0) are the desired interpolating operators.
Znj = ⟨0|Φj |n⟩ are the operator-state overlaps.

✿ Cji(t) is Hermitian by construction. The eigensystem is automatically orthogonal.
The eigenvalues representing the evolution of physical states.

✿ Solving the generalized eigenvalue problem for Cji(t). C. Michael (1985)

Cji(t)v
(n)
j (t0) = λ(n)(t, t0)Cji(t0)v

(n)
j (t0)

✿ The m principal correlators given by eigenvalues behave as

λn(t, t0) ∼ e−En(t−t0)(1 +O(e−∂E(t−t0))).

✿ Eigenvectors related to the operator state overlaps

Znj = ⟨0|Φj |n⟩ ∝ v
(n)
j (t0)
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The interpolating operators: Example

Let us focus on the meson sector.

The simplest operators are local fermion bilinears:

0−+ ∼ ψ̄γ5ψ

1−− ∼ ψ̄γiψ

0++ ∼ ψ̄ψ

1++ ∼ ψ̄γ5γiψ

1+− ∼ ψ̄γiγjψϵijk

No local fermion bilinear for JPC = 1−+,
which is a quark model exotic q. #.

No higher spin local operators to extract orbital excitations.

Non-local operators:
Either involving displacements or using discrete derivatives.

Forward derivative:
−→
D iψx = ψx+ai − ψx

Backward derivative:
←−
D iψx = ψx − ψx−ai

Symmetric derivative:
←→
D i =

←−
D i −

−→
D i

A simple derivative operator: ψ
←→
D iψ [JPC = 1−−]

Other possible operators:

Multi-meson operators, diquark-antidiquark operators, baryon-antibaryon-like operators, ...
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Lattice systematics

Fermion related systematics

Unphysically heavy light quark masses: Chiral extrapolation
Tuning errors: strange, charm and bottom quark masses.
Discretization errors in heavy quark systems.

Non-zero lattice spacing

All calculations performed at finite non-zero lattice spacing.
Need for continuum extrapolation.

Finite volume

All calculations performed at finite physical lattice extent.
Need for infinte volume extrapolation.
Scattering and resonances: Need for multi-hadron operators, Quantization conditions, ...

Other systematics

Scale setting errors, effects from charm and bottom sea quenching, action specific uncertainties, mixed
action effects, QED and strong isospin breaking effects, ...
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Doubly charm baryons: An example

3400

3500

3600

3700

3800

3900

4000

4100

M
cc

 (M
eV

)

cc
*
cc cc

*
cc

: Expt ′17
: ILGTI ′13 - ′18 
: TWQCD ′17 
: ETMC ′17
: RQCD ′15
: HSC ′15 

: Brown et.al. ′14
: PACS-CS ′13
: Briceno et.al. ′12
: Durr et al. ′12 
: TRJQCD ′20 

Another calculation of heavy baryon masses: QCDSF-UKQCD 1711.02485.

Heavy baryon mass splittings : BMW Science347 1452 ’15

Early quenched lattice calculations : Lewis et al. ’01; Mathur et al. ’02; Flynn et al. ’03

Dynamical (light quark) investigations : Liu et al. ’10

Summary of results: MP Lattice 2018, Charm 2020, FTCF2024;

Mai, Meißner, Urbach, Physics Reports 2023
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The first doubly charm baryon : Ξcc

3500

3550

3600

3650

3700

3750

3800

M
cc
 (M

eV
)

: Expt ′17
: ILGTI ′13 - ′18 
: ETMC ′17
: RQCD ′15
: HSC ′15 

: Brown et.al. ′14
: PACS-CS ′13
: Briceno et.al. ′12
: TRJQCD ′20 

Ξcc isospin splitting (LQCD), 2.16(11)(17) MeV : BMW Science347 1452 ’15

SELEX measurement (3519 MeV) : Mattson et al. PRL89 112001 ’02

All lattice calculations disfavors SELEX peak to be a doubly charm baryon.
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Family of strong interacting particles

There is a big family of particles observed in nature, of which nucleon is just a member.
Baryons Mesons

Summary tables taken from Particle Data Group website (2021): pdg.lbl.gov/

Going beyond ‘stable’ hadrons at the core of understanding strong interactions.
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Beyond baryons and mesons in experiments

See a recent talk by Liming Zhang here

Hadron spectrum from lattice QCD simulations M. Padmanath IMSc Chennai (17 of 45)

https://indico.pnp.ustc.edu.cn/event/91/contributions/6352/attachments/1853/3042/Liming-LHCb-2024.pdf


Summary of LHCb discoveries
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https://www.nikhef.nl/∼pkoppenb/particles.html

See a recent talk by Liming Zhang here
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LHCb discovery of excited Ω0
c baryons

Resonance Energy Width Q.no.

Ω0
c 2695(2) - 1/2+

Ω0
c(2770) 2766(2) - 3/2+

Ω0
c(3000) 3000(1) 4.5(1) ?

Ω0
c(3050) 3050(1) 1(-) ?

Ω0
c(3066) 3066(1) 3.5(-) ?

Ω0
c(3090) 3090(1) 8.7(1) ?

Ω0
c(3119) 3119(1) 1(1) ?

Belle

Aaij et al. (LHCb) PRL118 182001 ’17

Confirmation by Belle : Yelton et al. (Belle) PRD97 051102 ’18
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Excited states, quantum number assignment and falsification
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MP and Mathur 2017 PRL and other pheno predictions. LHCb PRD 104, L091102 (2021)

On the lattice, strong decays are ignored, and there remain various unattended systematics.

Computational requirements: a major bottleneck. See my talk at ICNFP 2024 for more: click here.
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Excited state spectroscopy from lattice: Single hadron approach

✿ Large basis of carefully constructed hadron interpolators
Mesons : Liao & Manke hep-lat/0210030 ’02; Thomas (HSC) PRD85 014507 ’12

Baryons : Basak et al. (LHPC) PRD72 074501, PRD72 094506 ’05

Morningstar et al. PRD88 014511 ’13.

✿ Matrix of correlation functions & Variational study
Dudek et al. PRD77 034501 ’08, Michael NPB259 58 (1985)

✿ Established and practised by many groups
Relatively old summary. Many more in the recent years

Light mesons : Dudek et al. (HSC) PRL103 262001 ’09, PRD82 034508 ’10
Dudek et al. (HSC) PRD85 014507 ’12

Light baryons : Bulava et al. (HSC) PRD82 014507, ’10
Edwards et al. (HSC) PRD84 074508 ’11, PRD87 054506 ’13

Heavy mesons : Liu et al. (HSC) JHEP1207 126; Moir et al. JHEP1305 021
Cheung et al. JHEP1612 089; Mohler et al. PRD87 034501 ’13
Bali et al. PRD84 094506 ’11; Wurtz et al. PRD92 054504 ’15

Heavy baryons : Meinel, PRD85 114510 ’12
MP et al. (HSC) PRD90 074504 ’14, PRD91 094502 ’15
MP & Mathur (HSC) PRL119 042001 ’17, 1508.07168.

✿ Single hadron approach. Naive expectation : correct up to O(Γ)
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The challenge on lattice: Resonances in the infinite volume continuum

Scattering cross sections, phase shifts, branch cuts, Riemann sheets.

0

/4

/2

3 /4

Econt
cm2m

Schematic picture for illustration. Should not be taken quantitatively.
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Resonances on the lattice (elastic) : ??

Discrete spectrum: No branch cuts, no Riemann sheets, no resonances!
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3 /4

E lat
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p2

2m
Maiani-Testa no-go theorem [1990]

Hadron spectrum from lattice QCD simulations M. Padmanath IMSc Chennai (23 of 45)



Resonances on the lattice (elastic) : Lüscher (1991)

Infinite volume scattering amplitudes ⇔ Finite volume spectrum
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Lüscher [1991]
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Resonances on the lattice (elastic) : Lüscher (1991)

Infinite volume scattering amplitudes ⇔ Finite volume spectrum
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0
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Different inertial frames can be utilized to extract more information
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Resonances on the lattice (elastic) : Lüscher (1991)

Infinite volume scattering amplitudes ⇔ Finite volume spectrum

0
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3 /4

E lat
cm

L0

L1

L2

L3

aNs

2m
Multiple physical volumes can also be utilized to extract more information.

For generalizations of Lüscher framework, c.f. Briceño, Hansen 2014-15
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Finite volume spectrum and infinite volume physics

✿ On a finite volume Euclidean lattice : Discrete energy spectrum
Cannot constrain infinite volume scattering amplitude away from threshold.

Maiani-Testa 1990

✿ Non-interacting two-hadron levels are given by

E(L) =
√
m2

1 + k2
1 +

√
m2

2 + k2
2 where k1,2 = 2π

L
(nx, ny , nz).

✿ Switching on the interaction: k1,2 ̸= 2π
L
(nx, ny , nz). e.g. in 1D k1,2 = 2π

L
n+ 2

L
δ(k).

✿ Lüscher’s formalsim: finite volume level shifts ⇔ infinite volume phase shifts.
Lüscher 1991

B K̃−1

✿ Generalizations of Lüscher’s formalism: c.f. Briceño 2014

Quite complex problem: inelastic resonances (R→ H1H2, H3H4)

Quantization condition is a determinant equation: Det(B(L, k2)− K̃−1(k2)) = 0
becomes an underconstrained problem with only few energy levels at hand.
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Extensions and other methods

✿ Extensions within and beyond elastic scattering :
different inertial frames, boundary conditions
multiple scattering channels
particles with different identities Briceño 1411.6944; Hansen 1511.04737

2-particle scattering in finite volume code: https://github.com/cjmorningstar10/TwoHadronsInBox

3-particle scattering : Hansen, Sharpe, Lopez, Mai, Döring, Rusetsky, ...

✿ HALQCD method :
Determine the potential between scattering particles
Extract resonance information solving Schrödinger equation.
Ishii et al. PRL99 022001 ’07; PLB712 437 ’12

✿ finite volume Hamiltonian EFT / Quantization condition in plane wave basis :
Constrain free parameters of the Hamiltonian based on lattice spectrum
Solve for EVP to extract resonance information.
Hall et al. PRD87 094510 ’12

Meng & Epelbaum JHEP10 (2021) 051

Mai & Döring Eur.Phys.J.A53 (2017) 12, 240

✿ Optical potential :
Agadjanov et al. JHEP06 043 ’16 [HSI]

Hammer, Pang, Rusetsky, JHEP1709 109
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Complexity in Hadron spectroscopy

Hadron spectrum from lattice QCD simulations M. Padmanath IMSc Chennai (29 of 45)



Scattering amplitude parametrization

✿ Scattering amplitude: S = 1 + i 4k
Ecm

t

✿ For an elastic scattering, and assuming only S-wave,

t−1 =
2K̃−1

Ecm
− i

2k

Ecm
, with K̃−1 = k.cotδ(k)

(virtual/bound) state constraint below threshold: k.cotδ(k) = (+/−)
√
−k2

✿ Lüscher’s prescription: k.cotδ(k) = B(L, k2): a known mathematical function.
k2 is determined from each extracted finite volume energy splittings.

✿ Parametrize k.cotδ(k) as different functions of k.
Effective Range Expansion (ERE): k.cotδ(k) = a−1

0 + 0.5r0k
2 + βik

2i+4.
The best fits determined to represent the energy dependence.

✿ For multichannel processes, K̃−1(k2) and B(L, k2) become matrices,
the Quantization conditions become a matrix determinant equation, each energy level
gives a constraint, and each K̃−1-matrix element∗ needs to be parametrized.

Det(K̃−1(k2)−B(L, k2)) = 0
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Vanilla resonance: ρ → ππ

Incomplete list of lattice calculations

See my talk at ICNFP 2024 for more: click here.
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Another vanilla resonance: K∗ → Kπ

K∗ and κ resonances Incomplete list of lattice calculations

Kπ atoms at DIRAC experiment 1605.06103 See my talk at ICNFP 2024 for more: click here.
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Doubly heavy tetraquarks: T+
cc

✿ The doubly charmed tetraquark T+
cc, I = 0 and favours JP = 1+. Nature Phys., Nature Comm. 2022

Striking similarities with the longest known heavy exotic, X(3872).

✿ No features observed in D0D+π+: possibly not I = 1.

✿ Many more exotic tetraquark candidates discovered recently, Tcs, Tcs̄, X(6900).
Prospects also for Tbc in the near future. See talk by Ivan Polyakov at Hadron 2023

✿ Doubly heavy tetraquarks: theory proposals date back to 1980s.
c.f. Ader&Richard PRD25(1982)2370
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Doubly heavy tetraquarks using lattice QCD, Tbb and Tcc: I(J
P ) = 0(1+)

✿ Deeper binding in doubly bottom tetraquarks O(100MeV ). Fig: Hudspith&Mohler 2023

Red box: ILGTI work on TQQ tetraquarks: Junnarkar, Mathur, MP PRD 2019

✿ Shallow bound state in doubly charm tetraquarks O(100keV ). Fig: Lyu et al.PRL 2023

Red box: Tcc (RQCD) [PRL 2022] and its quark mass dependence [2402.14715].

✿ Several recent calculations in the bottom-charm tetraquark sector.
A summary of different lattice investigations → see review by Pedro Bicudo, 2212.07793

Hadron spectrum from lattice QCD simulations M. Padmanath IMSc Chennai (34 of 45)



Virtual/bound states

✿ T ∝ (pcotδ0 − ip)−1. Bound state is a pole in T with p = i|p|.
Virtual bound state is a pole in T with p = −i|p|.

✿ An example for virtual bound state: spin-singlet dineutron.
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DD∗ scattering in l = 0, 1 @ m
(h)
c with an ERE: T+

cc
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✿ Fit quality: mπ ∼ 280 MeV
χ2/d.o.f. = 3.7/5.

✿ Fit parameters:

a
(1)
0 = 1.04(0.29) fm & r

(1)
0 = 0.96(+0.18

−0.20) fm

a
(0)
1 = 0.076(+0.008

−0.009) fm3 & r
(0)
1 = 6.9(2.1) fm−1

✿ Binding energy:

δmTcc = −9.9(+3.6
−7.2) MeV.

✿ First evaluation of the DD∗ amplitude in Tcc channel.
+/g refers to positive parity, -/u refers to negative parity.
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Pion exchange interactions/left-hand cut: ERE and QC

✿ A two fold problem: (Unphysical pion masses used in lattice)
mπ > mD∗ −mD ⇒ D∗ → Dπ is kinematicaly forbidden.

2 → 2 Generalized LQC: does not subthreshold lhc effects.
Raposo&Hansen 2311.18793, Dawid et al 2303.04394, Hansen et al 2401.06609

See recent talks by Hansen and Lopez

ERE convergence fails at the nearest singularity.
Left-hand cut in the DD∗ system close below the DD∗ threshold.

Du et al 2303.09441[PRL]

✿ Unphysical pion masses (mπ > ∆M =MD∗ −MD, stable D
∗ meson):

Figure taken from Du et al 2303.09441[PRL]

Long range pion exchange interactions: the origin of left-hand singularity and cut.
Fits with a potential that incorporates the one pion exchange:

Virtual bound states ⇒ Virtual resonances
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https://www.indico.tp2.ruhr-uni-bochum.de/event/2/contributions/114/attachments/79/150/Bochum_HansenV2.pdf
https://www.indico.tp2.ruhr-uni-bochum.de/event/2/contributions/6/attachments/73/143/CD24.pdf


Solving Lippmann-Schwinger Equation for the DD∗ amplitude
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✿ The potential: a sum of short range and long range interactions

V (p,p′) = VCT(p, p
′) + V Sπ (p, p′) with VCT(p, p

′) = 2c0 + 2c2(p
2 + p′2) +O(p4, p′4)

✿ The scattering amplitude T−1 ∝ p cot δ0 − ip

✿ The pion decay constant fπ and DD∗π coupling gc
at mπ ∼ 280 MeV following the 1-loop χPT.

Du et al 2303.09441[PRL]

Collins, Nefediev, MP, Prelovsek 2402:14715
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One-pion exchange interaction/left-hand cut

✿ OPE from the lowest order NR Lagrangian

L = gc
2fπ

D∗† ·∇πaτaD + h.c. . ⇒ Vπ(p,p
′) = 3

(
gc
2fπ

)2
(ϵ·q)(q·ϵ′∗)
u−m2

π
Fleming et al. hep-ph/0703168, Hu&Mehen hep-ph/0511321

✿ Upon S-wave projection, we have

V Sπ (p, p) =
g2c
4f2π

[
m2

π−q20
4p2

ln
(
1 + 4p2

m2
π−q20

)
− 1

]
Logarithmic function branch cut → infinite set of Riemann sheets

✿ With the finite branch point at

p2
lhc = 1

4
(q2

0 −m2
π) < 0 for all lattice setups.

with q0 ≃ mD∗ −mD, where the D(∗)-meson recoil terms are ignored.
Du et al. 2303.09441[PRL]

✿ Consequences:
Complex phase shifts below the lhc.
Modified near-threshold energy dependence.

Hadron spectrum from lattice QCD simulations M. Padmanath IMSc Chennai (39 of 45)



Pole positions and scattering rate [EFT]
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✿ Subthreshold resonance pole pair moving towards the real axis with increasing mc.

✿ Collide on the real axis below threshold and turn back-to-back.
At the heaviest mc: virtual bound poles [in Red]

✿ With increasing mc, subthreshold resonance poles evolves to become
a pair of virtual bound poles.

✿ Enhancement in the DD∗ scattering rate (p|T0|2).

Collins, Nefediev, MP, Prelovsek 2402:14715
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Pole trajectory of T+
cc : ERE Vs EFT
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Work around to LQC: A plane-wave approach and modified LQC

✿ An effective field theory incorporating OPE with a plane wave basis expansion.

Lu Meng et al arXiv:2312.01930

Virtual bound states ⇒ Virtual resonances [mπ ∼280 MeV]

✿ Modified 3-particle (Lüscher) Quantization Condition:
Hansen, Romero-Lopez, Sharpe, 2401.06609, Raposo, Hansen, 2311.18793

Dawid, Lopez, Sharpe 2409.17059, See a recent talk by Dawid here

A rigorous procedure, but demands multiple lattice inputs.
- Dπ finite volume spectrum up to the Dππ threshold.
- Isovector DD finite volume spectrum up to the DDπ threshold.
- Isoscalar DDπ finite volume spectrum up to the DDππ threshold.
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https://www.indico.tp2.ruhr-uni-bochum.de/event/2/contributions/95/attachments/76/185/Chiral.pdf


Scalar charmonium-like states

✿ Several likely related features, X(3915), X(3930), X(3960).
Proximity to the D̄sDs threshold: Possible hidden strange content [csc̄s̄]

⇒ narrow width from D̄D

✿ Several phenomenological studies supporting this:
Lebed Polosa 1602.08421, Chen et al 1706.09731, Bayar et al 2207.08490

✿ Another feature named as X(3860) observed by Belle. No evidence from LHCb.

✿ Yet unknown D̄D bound state, predicted by models.
Gamermann et al 0612179, Hidalgo-Duque et al 1305.4487, Baru et al 1605.09649

✿ Such a D̄D bound state is supported by re-analysis of the exp. data.
Danilkin et al 2111.15033, Ji et al 2212.00631.
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Charmonium-like resonances and bound states on the lattice

✿ First extraction of coupled D̄D-D̄sDs scattering amplitude.
[c̄c, c̄cq̄q; q→ u,d, s, and I = 0].

✿ Lattice QCD ensembles : CLS Consortium
mπ ∼ 280 MeV, mK ∼ 467 MeV, mD ∼ 1927 MeV, a ∼ 0.086 fm

✿ In addition to conventional charmonium states, we observe candidates for
three excited scalar charmonium states
⇒ a yet unobserved shallow D̄D bound state.
⇒ a D̄D resonance possibly related to X(3860).
⇒ a narrow resonance just below and with large coupling to D̄sDs threshold.

possibly related to X(3960) / X(3930) / X(3915).

✿ Our (RQCD) recent publications on charmonium:
Collins, Mohler, MP, Piemonte, Prelovsek 2111.02934, 2011.02541, 1905.03506.
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Summary

✿ We have a handful of hadrons, with a large set of them still demanding an understanding based
on first principles. The list is proliferating with those several experimental efforts across globe.

✿ Lattice QCD, being a suitable nonperturbative framework, has been used to study several of
these hadrons.

✿ Made a ‘very’ brief outline of how hadron masses are extracted and how resonances are studied
in a finite volume.

✿ Presented a selected examples of lattice investigations, particularly addressing shallow bound
states, near threshold poles and conventional resonances.

✿ Many hadronic states remain unaddressed and several remaining challenges even before
addressing lattice systematics. Formalisms accounting three body dynamics. New ideas to access
highly excited states. ...

✿ Quark mass dependence as a probe to understand the nature of resonances.
Heavy hadron sector serving as an excellent test bed.

✿ Lattice systematics: Need for huge computation resources.
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Thank you
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