

Search for exotics and test of chiral symmetry in $[c\bar{c}s\bar{s}]$ production in the continuum (final results)

Dmytro Meleshko, Elisabetta Prencipe, Sören Lange 01.10.2024

Justus-Liebig-Universität, Giessen, Germany

Belle II Germany 2024, DESY.

Introduction

Impressive legacy

- Many exotic states observed in the past decade are hard to fit these spectra.
- Below DD/BB thresholds cc and bb match potential models;

Life outside $\Upsilon(4S)$:

- Exotic *XYZ* states have been observed in different production mechanisms:
 - B-decays (0⁺, 1⁺, ...);
 - ISR (1⁻);
 - γγ collisions (0⁺, 2⁺);
- X(3872) and T⁺_{cc} have been observed in pp inclusive production at LHC. In e⁺e⁻ collisions this would correspond to continuum production;
- 10% of data taking at Belle is 60 MeV below ↑(4S)
- On-resonance data also contains continuum events (can be separated from *B*-decays by event shape);

Introduction

Introduction

• A Belle study reported observation of structures with the masses of $(4625.9^{+6.2}_{-6.0} \pm 0.4)$ MeV and $(4619.8^{+8.9}_{-8.0} \pm 2.3)$ MeV in the cross-section measurements of $e^+e^- \rightarrow D_s^+ D_{s1}^+(2536)^-$ and $e^+e^- \rightarrow D_s^+ D_{s2}^*(2573)^-$ respectively

Phys. Rev. D 100, no.11, 111103 (2019) Phys. Rev. D 101, no.9, 091101 (2020)

First $e^+e^- \rightarrow D_s \pi^0 X$ process studies:

- BaBar: 1267 yield on 91 fb^{-1}
- Belle: 761 yield on 87 *fb*⁻¹

Extrapolation from the old analysis with $D_{s0}^*(2317)$ only, but to the whole data set:

■ Belle @↑(4*S*): 6226 Only *D*^{*}_{s0}(2317)!

With one extra D_s (e.g. +3 charged tracks), efficiency is expected to drop (< 1%). Around 100 events are expected on full Belle dataset.

Chiral symmetry breaking test opportunity:

- $D_{s0}^*(2317)$ and $D_{s1}(2460)$ are considered as first chiral partners of the respective $c\bar{s}$ hadrons;
- The spontaneous breaking of the chiral symmetry elevates the (0⁺, 1⁺) above the (0⁻, 1⁻) doublet by the <u>fixed</u> value ΔM, which is predicted to be around 345 MeV/c²;
- Current ΔM measurement are decades old and suffer from large systematical and statistical uncertainties;

Study of $e^+e^- \rightarrow D_s^+ D_{sI}^- A$ + c.c. at Belle

Signal MC. Optimized selection and BCS implementation.

In addition to the selection summarized on the right, the BCS selection was applied in the latest iteration of a study.

Selection optimization study has been conducted.

Figure 1: Signal MC. Event multiplicity before BCS application.

Particle	Selection criterion		
	dr < 0.5 cm		
	dz < 3 cm		
Tracks	$P_{K_1}(K/\pi) > 0.5$		
	$P_{K_2}(K/\pi) > 0.2$		
	$P_{\pi}(K/\pi) < 0.9$		
	$E(\gamma) > 100 \text{ MeV}$		
	$p(\gamma\gamma) > 150 \text{ MeV/c}$		
π^0	$\chi^2(\gamma\gamma) < 200$		
	$122 < M(\gamma\gamma) < 148 \text{ MeV/c}^2$		
	$P_{\chi^2}(\gamma\gamma) > 1\%$		
4	$1.010 < M(KK) < 1.030 \text{ GeV/c}^2$		
φ	$P_{\chi^2}(KK) > 0.1\%$		
K*(000)	$842 < M(K\pi) < 942 \text{ MeV/c}^2$		
K (892)	$P_{\chi^2}(K\pi) > 0.1\%$		
	$1.9585 < M(D_s) < 1.9785 \text{ GeV/c}^2$		
D_s	$P_{\chi^2}(D_s) > 0.1\%$		
D [*] _{s0} (2317)	$p^*(D_s \pi^0) > 2.79 \text{ GeV/c}$		
	$P_{\chi^2}(D_s \pi^0) > 0.1\%$		
Other	$ \cos\theta_H > 0.42$		

Table 1: The summarized selection for $D_{s1}(2460)$ reconstruction.

* γ_* denotes the photon combined with D_s to create D_s^* candidate decaying into $D_s \gamma$.

Study of $e^+e^- \rightarrow D_s^+ D_{sJ}^- A + \text{c.c.}$ at Belle

The following peaking contributions are expected

- $D_{sJ}(2317)^+$ invariant mass region:
 - True $D_{sJ}(2317)^+$ peak $\sigma = (4.76 \pm 0.8)$ MeV
 - $D_{sJ}(2460)^+$ reflection peak $\sigma = (11.8 \pm 0.3)$ MeV
- $D_{sJ}(2460)^+$ invariant mass region:
 - True $D_{sJ}(2460)^+$ peak $\sigma = (5.07 \pm 0.13)$ MeV
 - $D_{sJ}(2317)^+$ reflection peak $\sigma = (14.6 \pm 0.7)$ MeV
 - *D_{sJ}*(2460)⁺ "broken signal"
 σ = (16.9 ± 1.8) MeV

Study of $e^+e^- \rightarrow D_s^+ D_{sJ}^- A$ + c.c. at Belle

$$\Delta M(D_s \pi^0) = N_1 G(\mu_1, \sigma_1) + f^{down} N_2 G(\mu^{down}, \sigma^{down})$$

$$\Delta M(D_s^* \pi^0) = N_2 G(\mu_2, \sigma_2) + f^{up} N_1 G(\mu^{up}, \sigma^{up}) + f^{broken} N_2 G(\mu^{broken}, \sigma^{broken})$$
(1)

ref: N = 3,843 \pm 67, μ = 348.9 \pm 0.1, σ = 6.20 \pm 0.10

ref: N = 835 \pm 31, μ = 347.1 \pm 0.2, σ = 5.80 \pm 0.20

Topology type	μ , [MeV]	σ , [MeV]	N
True D_{s0}^* (2317) signal	349.3 ± 0.2	$5.97\pm$ 0.25	$3,797 \pm 137$
Feed-down background	344.8 (fixed)	13.1 (fixed)	$1.688 \cdot N_2$
True D _{s1} (2460) signal	347.1 ± 0.5	5.46 ± 0.60	811 ± 155
Feed-up background	351.9 (fixed)	14.8 (fixed)	$0.134 \cdot N_{1}$
$D_{s1}(2460)$ broken signal	351.0 (fixed)	20.4 (fixed)	0.247 · N ₂

MLP application

Figure 2: MLP architecture.

Figure 3: MLP response for classifier on training sample.

MLP Convergence Test

Figure 4: MLP convergence test.

Figure 5: FoM dependence on classifier cut value.

Study of $e^+e^- \rightarrow D_s^+ D_{sJ}^- A$ + c.c. at Belle

Cut-based selection \rightarrow MVA selection

Topology type	μ [MeV]	σ [MeV]	N
True $D_{s0}^*(2317)$ signal	350.0 ± 0.5	6.64 ± 0.53	688 ± 62
Feed-down background	344.8 (fixed)	13.1 (fixed)	$1.688 \cdot N_2$
True $D_{s1}(2460)$ signal	346.2 ± 1.7	6.29 ± 1.55	105 ± 27
Feed-up background	351.9 (fixed)	14.8 (fixed)	$0.134 \cdot N_1$
$D_{s1}(2460)$ broken signal	351.0 (fixed)	20.4 (fixed)	$0.247 \cdot N_2$

Cuts: $N(D_{s0}^{*}(2317)) = 370 \pm 45$

 $N(D_{s1}(2460)) = 68 \pm 22$

Study of $e^+e^- \rightarrow D_s^+ D_{sl}^- A$ + c.c. at Belle

Study of $e^+e^- \rightarrow D_s^+D_{sJ}^-A$ + c.c. at Belle

$$\frac{Br(D_{s1}(2460) \to D_s^* \pi^0)}{Br(D_{s0}^*(2317) \to D_s \pi^0)} \times \frac{\sigma(D_{s1}(2460), \text{MVA})}{\sigma(D_{s0}^*(2317), \text{MVA})} = 0.26 \pm 0.07(\text{stat}) \pm 0.03(\text{syst})$$

*The value earlier measured by Belle is $0.29 \pm 0.06 \pm 0.03$ **The value predicted by theory is 3

$$\sigma^{UL} = \frac{N^{UL} \times |1 - \Pi|^2}{\mathcal{L} \times \Sigma_{ij} \varepsilon_{ij}^* \mathcal{B}_i \mathcal{B}_j \times (1 + \delta)_{ISR}}$$

Resonances	J^P	M [MeV]	Γ [MeV]	Significance
X(4274)	1^{+}	$4295 \pm 4^{+4}_{-6}$	$53\pm5\pm5$	18 (18)
X(4685)	1^+	$4684 \pm 7^{+13}_{-16}$	$126 \pm 15^{+37}_{-41}$	15 (15)
X(4630)	1^{-}	$4626 \pm 16^{+18}_{-110}$	$174 \pm 27^{+134}_{-73}$	5.5 (5.7)
X(4500)	0+	$4474\pm3\pm3$	$77 \pm 6 \pm ^{+10}_{-8}$	20 (20)
X(4700)	0+	$4694 \pm 4^{+16}_{-3}$	$87\pm8^{+16}_{-6}$	17 (18)

Decay chain	Total error [%]	Estimated N ₉₀	$\sigma^{UL} \times \mathcal{B}(X \to D_s D_{sJ}^*)$ [fb]
$e^+e^- ightarrow X(4274)A$	13.3	2.45	122.5
$e^+e^- ightarrow X(4685)A$	14.1	2.04	101.8
$e^+e^- ightarrow X(4630)A$	18.3	2.05	228.1
$e^+e^- ightarrow X(4500) A$	18.0	2.34	260.1
$e^+e^- ightarrow X(4700)A$	18.7	2.18	241.8

Summary

- The process was studied on signal MC, generic MC and data;
- Cut-based and MVA selections were optimized;
- Reconstruction efficiencies are 0.42% and 0.21% for $D_s D_{s0}^{-}(2317)$ and $D_s D_{s1}(2460)$ decay channels with MVA selections, respectively;
- Precise mass resolution measurement:
 - $\sigma(D_{s0}^*(2317)) = 6.64 \pm 0.53 \text{ MeV/c}^2;$
 - $\sigma(D_{s1}(2460)) = 6.29 \pm 1.55 \text{ MeV/c}^2$;
- Precise D_{sJ} mass splitting measurement:
 - $\Delta M(D_s^*(2317)) = 350.0 \pm 0.5 \text{ (stat.)} \pm 0.1 \text{ (syst.) MeV/c}^2$ PDG: 349.0 ± 0.6 MeV/c²;
 - $\Delta M(D_{s1}(2460)) = 347.2 \pm 1.9 \text{ (stat.)} \pm 1.4 \text{ (syst.) MeV/c}^2$ PDG: $347.3 \pm 0.7 \text{ or } 349.1 \pm 0.6 \text{ MeV/c}^2$;
- Systematic uncertainties evaluated;
- Estimated ratio of branching fractions is consistent with earlier Belle study;
- *D_sD_{sJ}* invariant mass distributions on data appeared to be PHSP-distributed;
- Cross-section ULs for the accessible X states are evaluated;
- For more detail, please refer to:
 - Belle Note #1585;
 - Paper Draft.

Backup

Signal MC. $D_s D_{s0}^*$ (2317) system study (threshold case).

 $arepsilon = 0.22 \pm 0.02\%$

Figure 6: The $D_s D_{s0}^*$ (2317) invariant mass distribution in threshold case. The signal contribution is fitted by Voigt function, non-resonant background as approximated by the Threshold function.

MVA methods comparison

Figure 7: MVA input variables for signal (blue) and background (red) events.

Figure 8: MVA input variables for signal (blue) and background (red) events.

- Pre-selection is applied.
- Performances of MLP, BDT, Fisher and DNN methods are compared \rightarrow MLP is chosen
- Set of input variables is optimized with respect to correlation matrix \rightarrow redundant variables eliminated.

Figure 9: Input parameters Correlation Matrix for signal events.

Figure 10: ROC curve.

Systematic Contribution	$D_s D_{s0}^*(2317)$ %	D _s D _{s1} (2460) %
Charged tracks identification	3.21	3.21
Track reconstruction	2.10	2.10
MC statistics	1.82	2.42
Integrated luminosity	1.40	1.40
π^0 reconstruction	2.00	2.00
γ reconstruction	-	2.30
Secondary BF	5.83	5.62
Background fit PDF order	1.03	1.23
Mass cuts on secondary particles	5.58	7.80
TOTAL	9.50	11.22

Asymptotic method

Equation to solve:

$$\frac{\int_{0}^{N^{90\%}} \mathcal{L}(x) dx}{\int_{0}^{+\infty} \mathcal{L}(x) dx} = 0.9$$
 (2)

 $N^{90\%}$ - wanted UL on the number of signal events.

Target dependency to study:

$$\Delta L = e^{\mathcal{L}(N_{sig}) - \mathcal{L}_0} \tag{3}$$

Consideration of the systematic uncertainties:

$$\Delta(\Delta L) = \frac{\Delta \mathcal{L}_j \cdot \mathcal{L}_j}{\sqrt{2\pi\varepsilon_{syst} N_j^{sig}}} \cdot e^{-\frac{1}{2} \left(\frac{\Delta N_j^{sig}}{\varepsilon_{syst} N_j^{sig}}\right)^2}$$
(4)

Cross-section UL calculation:

$$\sigma^{90\%} = \frac{N^{90\%}}{\varepsilon^{tot} \cdot \mathcal{L}^{int}} \tag{5}$$

CL method

Likelihood ratio:

$$\lambda(\mu) = \frac{\mathcal{L}(\mu, \hat{\hat{\theta}} | n_1, \dots, n_{N_b})}{\mathcal{L}(\mu, \hat{\theta} | n_1, \dots, n_{N_b})},$$
(6)

where $(\mu, \hat{\theta})$ are the parameters that maximize the likelihood for the set of observations $n_1, ..., n_{N_b}$; and $\hat{\hat{\theta}}$ maximizes the likelihood for a given value of μ .

Test statistics q_{μ} :

$$q_{\mu} = \begin{cases} -2ln\lambda(\mu) & \text{if } \mu > \hat{\mu}, \\ 0 & \text{otherwise} \end{cases}$$
 (7)

The level of agreement between the data and the hypothesized value of μ is quantified with the *p*-value:

$$p_{s+b} = P(q_{\mu} > q_{\mu,\text{obs}}|\mu) = \int_{\mu,\text{obs}}^{\infty} p(q_{\mu}|\mu) dq_{\mu}, \qquad (8)$$

where $> q_{\mu,\text{obs}}$ is the observed value of q_{μ} , and $p(q_{\mu}|\mu)$ denotes the probability density function of q_{μ} under the assumption of a signal strength of μ .

UL on μ at 90% CL is the largest value of μ such as p_{s+b} stays above 0.1