Measurements of inclusive $B \rightarrow X_u / v$ decays with hadronic tagging

Martin Angelsmark, Florian Bernlochner, Lu Cao, Merle Graf-Schreiber, Marcel Hohmann, Munira Khan, **Tommy Martinov**, Kerstin Tackmann, Phillip Urquijo

Inclusive $B \rightarrow X_u I v$ measurement

- Semi-leptonic decays to constrain the CKM unitarity triangle
 - $\circ \quad B \to X_u \, I \, v \text{ to measure } |V_{ub}|$
 - $\circ \quad B \to X_c \ I \ v \text{ to measure } |V_{cb}|$
- Two ways to measure |V_{ub}|
 - Exclusive decays
 - $\blacksquare \quad B \to \pi \, I \, v, \, B \to \rho \, I \, v \dots$
 - Inclusive decays

$$|V_{ub}| = (4.13 \pm 0.12^{+0.13}_{-0.14} \pm 0.18) \times 10^{-3}$$
 PDG incl.
 $|V_{ub}| = (3.70 \pm 0.10 \pm 0.12) \times 10^{-3}$ PDG excl.

2002

2004

2006

2008

2010

2012 year 2014

2016

2018

2022

2020

Inclusive $B \rightarrow X_u I v$ measurement Theory

• Resonant decays depend on form factors

- Non-resonant decays
 - Based on Heavy Quark Expansion
 - Large $\boldsymbol{B} \rightarrow \boldsymbol{X_c} \boldsymbol{I} \boldsymbol{v}$ background $(|V_{cb}|^2 / |V_{ub}|^2 \sim 100)$
 - \rightarrow cuts in phase space (ex: $M_x < 1.7 \text{ GeV}$)
 - $\circ \rightarrow$ HQE breaks down
 - Sensitivity on Shape Function(s)
 - Leading-order SF extracted from $B \rightarrow X_s \gamma$
 - Different models: BLNP, DFN, GGOU...
 - What about weak annihilation effects ?

 $B \rightarrow \pi I v$

Outline

• Inclusive $B \to X_u \ l \ v$ partial Branching Ratio measurement and extraction of $|V_{ub}|$

• Inclusive $B \rightarrow X_{\mu} I v$ differential Branching Ratio measurement

• Inclusive Weak Annihilation $B \rightarrow X_{\mu} I v$ measurement

• All 3 analyses are performed with the Full Event Interpretation hadronic tag

Event reconstruction Full Event Interpretation

- 3 types of tagging
 - Inclusive (untagged)
 - Semi-leptonic
 - Hadronic
- **B**_{tag} reconstructed in its hadronic decay channels
 - Accurate information about the event
 - Background suppression
- Lepton reconstructed
- Neutrino \rightarrow missing energy
- Hadronic system $X \rightarrow$ rest-of-event
- 3 important variables: *M_x*, *q*², *E_I*

DESY.

4.

e

Modelling

- Inclusive $\boldsymbol{B} \to \boldsymbol{X}_{\boldsymbol{\mu}} \boldsymbol{I} \boldsymbol{\nu}$: signal
 - **Hybrid model:** combine **resonant** (π , ρ , ω , η , η) and **non-resonant** contribution (<u>DFN</u>)
- Inclusive $\boldsymbol{B} \rightarrow \boldsymbol{X_c} \boldsymbol{I} \boldsymbol{v}$: main background
 - No model for non-resonant contribution
 - \rightarrow Sum of resonant modes (*D*, *D**, *D***) and "gap" modes
- Other backgrounds
 - $Y(4S) \rightarrow q\overline{q}$ (continuum)
 - Fake/secondary leptons
- Weak Annihilation contribution
 - Dedicated measurement

$$\Delta \mathcal{B}_{ijk}^{\mathrm{incl}} = \Delta \mathcal{B}_{ijk}^{\mathrm{excl}} + w_{ijk} \times \Delta \mathcal{B}_{ijk}^{\mathrm{incl}}$$

$B \rightarrow X_u I v$ partial Branching Ratio

Inclusive $B \rightarrow X_u I v$ measurement

Background suppression, Example: q^2

Before selections

After selections

- Two multivariate classifiers (Neural Networks)
 - One to suppress $e^+e^- \rightarrow Y(4S) \rightarrow q\overline{q}$ (continuum) events
 - One to suppress $B \rightarrow X_c I v$ events

Events where a kaon (K⁺, K⁰_S) is found are rejected

Partial branching fraction extraction

- Extract partial Branching Fraction
- Simultaneous fit of signal region and background-enriched control region in order to correct any potential $B \rightarrow X_c I v$ mismodelling
- Binned template fit with pyhf
 - Constrained source-wise nuisance parameters: ~150 NPs
 - 3 templates
 - Parameter of interest (POI): signal strength
- 3 templates
 - Signal: $B \to X_u / v$
 - Main background: $B \rightarrow X_c / v$
 - **Other backgrounds**: fake/secondary leptons and continuum
- Fitted variables
 - Main kinematic variables: q^2 , E_l^B , M_X
 - 2D combinations of these: e.g. $M_{\chi} \cdot q^2$

Asimov data

$B \rightarrow X_u I v$ differential Branching Ratio

Differential $B \rightarrow X_u I v$ measurement

 Shape information on kinematic variables → crucial to evaluate models and extract HQE parameters

- Subtract background using fitting procedure
 - Resolution is key (see next slide)
- Unfold signal yields
 - Next step, work in progress

Differential $B \rightarrow X_u I v$ measurement Resolution

- Cut $U_{miss} = |E_{miss} P_{miss}| < 0.5 \text{ GeV}$ improves resolution but reduces efficiency
- New strategy at Belle II: apply the kinematic fit
 - Use kinematic constraints from known initial state to recalculate kinematic variables
 - Improve resolution without reducing efficiency

DESY.

$B \rightarrow X_u I v$ via Weak Annihilation

Weak Annihilation

- Weak Annihilation contribution enters inclusive $B \rightarrow X_{\mu} I v$ modelling at $O(1/m_h^3)$
 - Not included in most available $B \rightarrow X_u / v$ models
 - Poorly understood theoretically
 - Sub-leading but **sizeable uncertainty** in inclusive $|V_{ub}|$ extraction
 - Expected to become more important as experimental uncertainty and other modelling uncertainties shrink
- One attempt at a direct measurement at CLEO
 - $\circ \quad \mathsf{\Gamma}_{\mathsf{WA}} \,/\, \mathsf{\Gamma}_{b \to u} < 7.4\% \text{ at } 90\% \text{ C.L.}$
- Soft hadronic system
- \rightarrow Weak Annihilation visible at high q^2/E_1

Weak Annihilation

- Shape of peak is poorly known
 - \rightarrow scan a range of models built from off-shell *W*
 - Peaks in q^2 distribution of different widths around m_B^2
- Goal is to **extract a limit on WA** contribution
- Fitting procedure
 - 2D fit of B^+/B^0 channels
 - Extract WA limits for different *W* width and mass hypotheses

OUTLOOK AND CONCLUSIONS

Summary

• Status of analyses

• Most of the technology in place

• Branching fraction measurement currently moving to RC

- Expected uncertainty from nominal fit with Asimov data ~20% lower than Belle measurement despite smaller dataset
- Two other measurements are work-in-progress

• Outlook

• Sensitivity projections for inclusive $|V_{ub}|$

	Statistical	Systematic	Total Exp	Theory	Total
		(reducible, irreducible)			
$ V_{ub} $ inclusive					
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5 - 4.5	3.4 - 5.1
50 ab^{-1}	0.4	(0.4, 1.6)	1.7	2.5 - 4.5	3.0 - 4.8

THANK YOU FOR YOUR ATTENTION !