

ANNA-MARIA HEYN DIRECT MEASUREMENT OF $R^{\pm 0}$

- Do emerging structures from QCD care about QED charge?

- Do emerging structures from QCD care?
- Look at Belle II:

WHY DO WE CARE ABOUT $R^{\pm 0}$?

- Do emerging structures from QCD care?
- Look at Belle II: $P^{-} B^{+}$ \overline{bu} \overline{bu} \overline{bu} B^{0} B^{0} B

- Do emerging structures from QCD care?
- Look at Belle II:
- Ratio

WHY IS IT DIFFICULT?

- Currently: $R^{\pm 0} = 1.057^{+0.024}_{-0.025}$ (HFLAV¹)
- Phase space?
- So... do QCD emergent structures care?

WHY IS IT DIFFICULT?

- Currently: $R^{\pm 0} = 1.057^{+0.024}_{-0.025}$ (HFLAV¹)
- Phase space?
- So... do QCD emergent structures care?
- But:
 - Theory predictions hard
 - B Mesons decay
 - Treatment of others than $B\overline{B}$

DIRECT MEASUREMENT WITHOUT RECONSTRUCTION?

$B^+ \rightarrow 1$, 3, 5, ... charged daughters

CONCEPT

 B^+ →1, 3, 5, ... charged daughters B^0 →0, 2, 4, ... charged daughters

CONCEPT

 B^+ →1, 3, 5, ... charged daughters B^0 →0, 2, 4, ... charged daughters

But: 2 reconstructed B Mesons

CONCEPT

 B^+ →1, 3, 5, ... charged daughters B^0 →0, 2, 4, ... charged daughters

> Two B Mesons With Continuum

CONTINUUM

- Train BDT for Continuum Suppression
- Event shape variables:
 - Event thrust
 - Cosine of polar angle comp. of thrust axis
 - Fox Wolfram moments
 - CLEO cones

Adapted from Markus Prim

- Train BDT for Continuum Suppression
- Event shape variables:
 - Event thrust
 - Cosine of polar angle comp. of thrust axis
 - Fox Wolfram moments
 - CLEO cones

- Trained 3 BDTs: All Variables

HOW TO MEASURE $R^{\pm 0}$?

- Template fit with charged, mixed and Continuum contribution
- Get rates => $R^{\pm 0}$

 Template fit with charged, mixed and Continuum contribution 700000 – Get rates => $R^{\pm 0}$ 600000 500000 Events 400000 0.993107(8) Fitted 300000 0.993101 Input 200000 100000

METHOD

- Uncertainties: Use calibration channel:
 - unbinned fit with roofit for # left-over events for each # charged tracks

$$B^{0} \rightarrow D^{-}(\rightarrow K^{+}\pi^{-}\pi^{-})\pi^{+}$$
$$B^{-} \rightarrow D^{0}(\rightarrow K^{-}\pi^{+})\pi^{-}$$

Signal only 5 charged tracks

- Uncertainties: Use calibration channel:
 - unbinned fit with roofit for left-over # events
 - Sample to get incl. distribution

 $B^0 \rightarrow D^- (\rightarrow K^+ \pi^- \pi^-) \pi^+$

 $B^- \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^-$

- Uncertainties: Use calibration channel:
 - unbinned fit with roofit for left-over # events
 - Sample to get incl. distribution
 - Migration

- Uncertainties: Use calibration channel:
 - unbinned fit with roofit for # events
 - Sample to get incl. distribution
 - Migration
 - bootstrap for errors
 - propagate

- Use covariance for template fit
- Tracking efficiency for systematic unc.
- Efficiency

- Development for different Luminosities

CONCLUSION

- Promising method
- Will improve with more statistics!

QUESTIONS?

BACKUP

METHOD - SELECTION

- $\Upsilon(4S) \rightarrow \pi^+ + X$
- Constraints:
 - |dz| < 1cm, dr < 3cm, p > 0.2MeV
 - >= 1 hit in the drift chamber, angle in acceptance

METHOD - BDT

