

Search for ALPs in $e^+e^- \rightarrow \gamma a, a \rightarrow \gamma \gamma$ at Belle II

Belle II Germany Meeting, October 1st, 2024

Alexander Heidelbach, Giacomo De Pietro, Torben Ferber, and Pablo Goldenzweig

alexander.heidelbach@kit.edu

ALPs in e^+e^- decays

Axion Like Particles (ALPs)

Pseudo Goldstone boson of spontaneously broken and under SM anomalous Peccei-Quinn symmetry

Our model: dominant coupling to photons:

ALP-Strahlung
$$e^+e^- \rightarrow \gamma a$$
, $a \rightarrow \gamma \gamma$

This search

Photon-Fusion $e^+e^- \rightarrow e^+e^-a$, $a \rightarrow \gamma\gamma$

Experimentally challenging due to the low scattering angle of finale state e^+e^- Search for ALP Strahlung performed in 2018 with $0.445~{
m fb}^{-1}$ (Belle II, Phys. Rev. Lett. 125 (2020) 161806)

Analysis Strategy Institute of Experimental Particle Phy Produce run dependent MC • MadGraph5 aMC@NLO for signal with different m_a • BABAYAGA.NLO and **PHOKHARA** for background Simulation Preparation **Selection** Study Extraction 00

Analysis Strategy Institute of Experimental Particle Ph **Produce run dependent MC** • MadGraph5 aMC@NLO for signal with different m_a • BABAYAGA.NLO and **PHOKHARA** for background Simulation Preparation **Selection** Study Extraction **Reconstruction** • Pre-selection on events Kinematic constraint fit of 0 three photons to the beam energy • **Need**: Photon resolution

Analysis Strategy

01. October 2024 Search for ALPs in $e^+e^- \rightarrow \gamma a, a \rightarrow \gamma \gamma$ at Belle II

Belle II Group, ETP, Karlsruhe Institute of Technology

Analysis Strategy

Analysis Strategy

Simulation Preparation Selection Study Extraction

Simulation Preparation Selection Study Extraction

 e^+ $\rightarrow \gamma\gamma\gamma$

- Most dominant background
- Approximately constant distribution in $M_{\gamma\gamma}$

 e^{\dagger} $\rightarrow \gamma \gamma \gamma$

- Most dominant background
- Approximately constant distribution in $M_{\gamma\gamma}$

- Most common process
- Need to miss both tracks and reconstructed ECL clusters to be counted as background

 e^{\top} $\rightarrow \gamma \gamma \gamma$

- Most dominant background
- Approximately constant distribution in $M_{\gamma\gamma}$

- Most common process
- Need to miss both tracks and reconstructed ECL clusters to be counted as background

Simulation Preparation Selection Study Extraction

 $\rightarrow \gamma \gamma \gamma$

- Most dominant background
- Approximately constant distribution in $M_{\gamma\gamma}$

 $e^+e^- \rightarrow e^+$ $e^{-\gamma}$

- Most common process
- Need to miss both tracks and reconstructed ECL clusters to be counted as background

 $e^{-}e^{-}$

- $h=\pi^0,\eta,\eta',\ldots$
- Irreducible background in $M_{\gamma\gamma}$
- Additional source through next order process $ee \rightarrow h\gamma\gamma$

Pre-Selection

Background Distribution

Selection

Preparation

Study

Extractio

Simulation

[†]good track $= dr < 1 \text{ cm}, |dz| < 3 \text{ cm}, \theta$ in CDC acceptance

Belle II Group, ETP, Karlsruhe Institute of Technology

[†]good track =dr < 1 cm, |dz| < 3 cm, θ in CDC acceptance

Belle II Group, ETP, Karlsruhe Institute of Technology

Background Distribution

Pre-Selection

Simulation Preparation Selection Study Extraction

7 01. October 2024 Search for ALPs in $e^+e^- \rightarrow \gamma a, a \rightarrow \gamma \gamma$ at Belle II

Belle II Group, ETP, Karlsruhe Institute of Technology

Kinematic Fit

Challenge:

Absolute photon energy resolution rises with higher photon energies

Solution:

- Constrain the final state momenta to a known quantity
 - Here: constrain to very wellknown/measured beam properties

Photon Energy Resolution

Photon Covariance Matrix (PCM)

 $\Delta E \quad \operatorname{cov}(E,\theta) \quad \operatorname{cov}(E,\phi) \\ * \quad \Delta \theta \quad \operatorname{cov}(\theta,\phi) \\ * \quad * \quad \Delta \phi \end{pmatrix}$

- Most relevant are the diagonals
- Most impactful is the energy resolution for high photon energies
- Resolution is dependent on detector conditions

Current state:

- Extract resolution from $e^+e^- \rightarrow \mu^+\mu^-\gamma$
- Automated energy resolution calibration in the ECL barrel & $E_{\gamma} > 1$ GeV

Selection

Preparation

Study

Extractio

Selection: Punzi Net

Simulation Preparation Selection Study Extraction

Punzi Net (F. Abudinen et al., Eur. Phys. J. C 82 (2022) 121):

- Uses minimal **detectable cross-section** as loss function (ϵ , B differentiable)
- Feedforward network trained on input variables for different signal mass samples

Generalises well to mass hypotheses for which it was not trained

Used at Belle II for the invisible Z' in $e^+e^- \rightarrow \mu^+\mu^-Z'$ analysis (Belle II, Phys. Rev. Lett. 130, 231801 (2023))

Tested at KIT in BA thesis for $B^{\pm} \to K^{\pm}a, a \to \gamma \gamma$ sensitivity study

$$\sigma_{\min}(t) = \frac{\frac{b^2}{2}a\sqrt{B(t)} + \frac{b}{2}\sqrt{b^2 + 4a\sqrt{B(t)} + 4B(t)}}{\epsilon(t)L}$$

a, b: number of sigmas corresponding to Gaussian Test (5, 1.28)@(5 σ , 90%CL) ϵ : signal efficiency B: number of background L: luminosity

Selection: Result

Net input:

- Optimisation Range: $\pm 10\sigma$ (to be optimised)
- Features: 9 selected features based on E_{γ} , θ_{γ} , and event shape variables
- Signal:
 - $m_a \in [0.175, 10.375: 0.05] \,\mathrm{GeV/c^2}$
 - Excluded 22 masses for generalisation tests
- Hyperparameter combination
 - Architecture: 10 layers, max depth 30, LeakyReLU Punzi Training: 500 epochs, 20 000 batch size

Signal PDF:

Signal PDF:

 $\square N_{\text{Sig}} \left(f \text{DSCB} + (1 - f) \text{Poly} \right)$

Combined Signal Yield

 Multiply by *f* to get peaking yield

Signal PDF:

 $\square N_{\mathsf{Siq}} \left(f \mathsf{DSCB} + (1-f) \mathsf{Poly} \right)$

Combined Signal Yield

 Multiply by *f* to get peaking yield

TM fraction

Stabilises
 Combinatorial
 PDF parameter fit

Signal PDF:

 $\square N_{\mathsf{Sig}} \left(f \mathsf{DSCB} + (1-f) \mathsf{Poly} \right)$

Combined Signal Yield

 Multiply by *f* to get peaking yield

TM Signal PDF

- Double Sided Crystal Ball
- Both *n* parameters fixed
- Possible change: Generalized CB

TM fraction

Stabilises
 Combinatorial
 PDF parameter fit

Simulation Preparation Selection Study Extraction

Signal PDF:

 $\square N_{\mathsf{Sig}}(f \mathsf{DSCB} + (1-f) \mathsf{Poly})$

Combined Signal Yield

 Multiply by *f* to get peaking yield

TM fraction

Stabilises
 Combinatorial
 PDF parameter fit

TM Signal PDF

- Double Sided Crystal Ball
- Both *n* parameters fixed
- Possible change: Generalized CB

Combinatorics PDF

- More or less constant contribution
- Chebyshev polynomial of first-order
- Lower order is not sufficient for some masses
- Higher orders add too many parameters

Simulation

Selection

Study

Extraction

Preparation

Signal PDF:

$$N_{\text{Sig}}(f \text{DSCB} + (1-f) \text{Poly})$$

Combined Signal Yield

 Multiply by *f* to get peaking yield

TM fraction

Stabilises
 Combinatorial
 PDF parameter fit

TM Signal PDF

- Double Sided Crystal Ball
- Both *n* parameters fixed
- Possible change: Generalized CB

Combinatorics PDF

- More or less constant contribution
- Chebyshev polynomial of first-order
- Lower order is not sufficient for some masses
- Higher orders add too many parameters

Belle II Group, ETP, Karlsruhe Institute of Technology

Hypothesis Fit

Total PDF:

 $N_{Sig} (f Peak + (1 - f) Comb) + N_{Bkg} Polynom$ Signal PDF:

All shape parameters & *f* fixed to interpolation Background PDF:

3rd order polynomial

Polynomial parameter floating

Later: Fix them in side bands

Search Range:

 $m_a \in [0.175, 9.6: 0.05] \,\mathrm{GeV}$

Excluded: π^0, η, η' mass regions

Selection

Preparation

Simulation

Study

Extraction

Belle II Group, ETP, Karlsruhe Institute of Technology

Search Sensitivity

Upper Limit

Asymptotic formulae @ 95% CLs
 Use the upper limit on the cross-section for model-dependent coupling exclusion

The plots show...

Only the sensitivity for this analysis (MC only)

- Not considered: trigger efficiency, systematic uncertainty
 - Expectation: Trigger Efficiency > 95% and negligible systematics

A full road ahead of us!

Analysis priority list

- Study of trigger efficiency
- Extension to the full and automated photon resolution calibration
- Run optimisation on selection and fitting range
- We have a lot more data and understanding of Belle II since 2018
 - **Goal**: find $a \rightarrow \gamma \gamma$ decay with increased sensitivity

Backup

Hyperparameter "Optimisation"

Grid search of hyperparameters: Net input: "Most important" features Layer depth: 4-256 Signal: Number of layers: 3-10 $m_a \in [0.175, 10.375 : 0.05] \,\mathrm{GeV/c^2}$ Activation functions: ELU, ReLU, LeakyReLU, Sigmoid, Tanh Excluded 22 masses for Punzi batch size: $2^{11} - 2^{16}$ generalisation Only show 50% of signal masses Punzi epochs: 200-5000 Background: Fixed parameters: All background channels BCE epochs: 200, BCE batch size: 2048 Weight to luminosity LR scheduler

Training Plots

ETP, Karlsruhe Institute of Technology

Feature Selection

Signal Shape Interpolation

Belle II Group, ETP, Karlsruhe Institute of Technology

Signal Efficiency

Signal/Fit Range:

 For now: [-20σ_{DSCB}, + 20σ_{DSCB}]
 Signal shape is more or less symmetrical
 Signal Efficiency: Number of TM Events
 Number of Generated Events

It isn't easy to fit polynomial PDF to this shape

Possible solution:

Signal MC for each scan point

Trigger efficiency not taken into account

