b->svv with inclusive tag

status and updates

Y. FAN, E. GANIEV, S. GLAZOV, <u>Y. HAN</u>, N. ROUT (DESY) S. STEFKOVA (KIT), C. SCHMITT (LMU) D. KULAKOV, A. KUCHER (KYIV) M. LIU (JLU), F. LOZZI (Roma Sapienza/DESY)

HELMHOLTZ

Motivation

- b-> svv: a FCNC transition, offers a powerful opportunity to probe the SM
 - Highly suppressed in SM
 - Branching fraction precisely predicted: no charged leptons in the final state
 - Highly sensitive to non-SM contributions
- B-> K(*)vv @Belle II
 - B^+/B^0 decays into a pseudo-scalar (K^+/K_s^0) or a vector meson (K^{*+}/K^{*0})

Decay	SM total $(x10^{-6})$
$B^+ \to K^+ \nu \bar{\nu}$	5.06 ± 0.31
$B^0 ightarrow K^0_{ m s} u ar{ u}$	2.05 ± 0.14
$B^+ \to K^{*+} \nu \bar{\nu}$	10.86 ± 1.43
$B^0 \to K^{*0} \nu \bar{\nu}$	9.05 ± 1.37

https://arxiv.org/abs/2301.06990

Where we were

- Previous measurements:
 - B⁺-> K⁺nunu measurement with Belle II Run 1 data
 - Inclusive tag, Hadronic tag and combined
 - $\circ~$ 3.5 σ wrt to null hypothesis and 2.7 σ wrt SM
 - First evidence of B⁺-> K⁺nunu

PhysRevD.109.112006

- Extend to K*, K_S⁰ channels
 - Use the data sample collected in Run1
 - Challenge: low efficiency of final states with $K_s^{0}s$ and pi⁰s
 - Follow similar strategies with potential improvements
 - Selections, background suppression, new ML tools, etc.
- Target: moriond 2025

Workflow and Outline

Recap

The analyses follow a similar workflow as the last iteration:

- 1) Basic selection:
 - Object selection and event cleanup
 - Signal candidate selection
- 2) Main background suppression
 - BDT1 for event selection
 - Background suppression: e.g from D
 - Final selection using BDT2
- 3) Validation with control channels
- 4) Statistic interpretation

Workflow and Outline

Improvements wrt previous iteration

The analyses follow a similar workflow as the last iteration:

- 1) Basic selection:
 - Object selection and event cleanup
 - Signal candidate selection
- 2) Main background suppression
 - BDT1 for event selection
 - Background suppression: e.g from D
 - Final selection using BDT2
- 3) Validation with control channels
- 4) Statistic interpretation

Samples: : MC15ri, MC15rd exp18 Gitlab repository: <u>https://gitlab.desy.de/belle2/physics/ewp/b2hnunubar_ITA</u>

- 1. Candiate selection
- 2. Optimize D veto
- 3. Explore new ML tools: DNN LNN
- 4. Look into important background components

Reject low-multiplicity tracks

e.g. KS0 channel

- Discrepancy in the low DeltaE range comes from the low-multiplicity tracks: not well modeled in simulation
- Reject using selections on event variables: angle of missing momentum direction and transverse energy

Unify these selections for all channels: study ongoing

Candidates selection strategy

Multi-candidates to improve the signal efficiency:

- KS0/K+:
 - Apply best candidate selection at the basic selection step -> BDT1, etc...
- K*0/K*+: postponed best candidate selection to a later stage
 - Two candidates at the basic selection step
 - -> BDT1
 - -> Background Suppression
 - -> Best candidate selection at BDT2

e.g. multi-candidates in the K*+ channel:

- Based on the BDT1 and q^2 info
- Improved signal efficiency while keeping background level under control

Signal efficiency and background events in ${\rm K}^{*+}$ channel as a function of multiple candidates

DESY.

Improvements related to D veto

Dominating background in signal region:

K+,KS0: kaon from D

K*: D \rightarrow K*X and combinatorial background (kaon from D)

Previously, we suppressed with the reconstructed D0/D+ candidates:

- (KS0) Dp -> pi+Ks, D0-> pi+pi-Ks
- (K*0) Dp -> K*0 e/mu, D0-> K*0 pi+pi- , D0 -> K+ X, Dp-> K*0 X
- (K*+) Dp -> K*+ pi+pi-, D0 -> K*+ pi-, D0 -> K*- X, Dp-> K*+ XX (X: charged tracks)
- Keep candidate with highest vertex fitting chiProb : can be improved

Ongoing studies and developments for improvement:

- → Detailed categorization of the background
- → Exploration of new methods and additional variables for improving background suppression

B +

Optimization of the D veto

e.g. K*0

- 1) Background composition -> which particle is mimicking signal K*0
- 2) Veto strategy:
 - a) Reconstruct the particles mimicking K*0
 - b) Save and pass the variables to BDT2
- 3) Check the background composition again

Optimization is ongoing (also for other channels)

Explore other ML tools: DNN

Efficiency vs Significance

• Performance is being checked in K*0 channel

- Train DNN1 and DNN2 as potential alternatives to BDT1/BDT2
- Good discriminating power
- Promising starting point, can be further optimised in the future!

Explore new chance with new architecture

BDT combined with Lorentz equivariant architecture

- Lorentz equivariant Net, similar to a GNN, respects the Lorentz group symmetries of 4-momenta
- Combine BDT1,2 and a LNN on particle 4-vectors for signal-background classification:
 - Looks promising with initial setup, and further investigation is ongoing ...
 - <u>Talk @EWP</u>

Background from $B \rightarrow K^* K^0 K^0$

- $B \rightarrow K^* K^0 K^0$ can mimic our signal => Essential to constrain and model them well
- Use $B \rightarrow K^* K^0_{\ S} K^0_{\ S}$ decays to model $B \rightarrow K^* K^0_{\ L} K^0_{\ L}$
- $B \rightarrow K^* K^0_{\ S} K^0_{\ S}$ have never been measured before => Measure them ourselves
- For now, use generic 400 fb⁻¹ MC15ri sample
 - Reconstruct $B \rightarrow K^* K^0_{\ S} K^0_{\ S}$
 - Fit ΔE distribution
 - Apply sPlot technique to obtain signal-only M ($K^0_{\ S}K^0_{\ S}$) distributions
 - => In simulation, prominent f'₂ resonance
 - => However, no $B \rightarrow K^* f'_2$ in $P \overline{D} G$
- Use the obtained model from data to reweight the phase space
 - => Now preparing to look in data

Modeling of K0K0K0

Replace the relevant decays before BDT2 training

B0->KS0K0K0 is an important background for KS0 channel and not well modeled in simulation

=> highly overestimated in rel-06

=> double counting of K0K0K0 is fixed in rel-08

- → Correction before BDT2 training
 - Replace the relevant decays in generic simulation with K0K0K0 (Dalitz) and up-to-date branching fractions
 - B->Φ KL/KS is scaled to the latest PDG value
 - Improves background modeling

Summary and outlook

The analyses follow a similar workflow as the last iteration:

- 1) Basic selection:
 - Basic event selection
 - Signal candidate selection
- 2) Main background suppression
 - BDT1 for event selection
 - Background suppression: e.g from D
 - Final selection using BDT2
- 3) Validation with the control channel
- 4) Statistic interpretation

The analysis is progressing efficiently, with efforts aimed at improving various areas.

Target: moriond 2025

Where we were

B+ -> K+ nunu

Previously:

- $B^0 \rightarrow K^{*0}$, $B^+ \rightarrow K^{*+}$ and $B^0 \rightarrow KS0$ were studied pretty detailed for Moriond 2022
- Data sample: (collected by summer 2021) 189.2 fb⁻¹ and 17.9 fb⁻¹ on- and off-resonance samples
- MC14ri samples
- The measurements were almost ready to be unblinded and code machinerv is well developed

Follow similar workflow as last iteration:

- 1) Basic selection:
 - Signal candidate selection
 - Basic event selection
- 2) Main background suppression
 - BDT1 for event selection
 - Final selection using BDT2 or BDT2+GraphNN (K*+)
- 3) Validation with control channel
- 4) Statistic interpretation

Explore new chance with NN

DNN Architecture: 16 Layers, 279 Features.

```
class NeuralNetwork(nn.Module):
        def init (
            self,
            input dim.
            hidden layers=[1024, 512, 512, 256],
            dropout_rate=0.4,
            alpha=0.01, # for LeakyReLU
        ):
            super(NeuralNetwork, self). init ()
            self.input_dim = input_dim
10
11
            self.hidden_layers = hidden_layers
            self.dropout_rate = dropout_rate
12
13
14
            layers = []
15
            prev dim = input dim
16
            for units in hidden layers:
                layers.extend(
17
18
19
                        nn.Linear(prev dim, units),
                        nn.LeakyReLU(alpha),
20
21
                        nn.BatchNorm1d(units),
22
                        nn.Dropout(dropout_rate),
23
24
25
                prev dim = units
26
            layers.append(nn.Linear(prev_dim, 1))
27
            self.model = nn.Sequential(*layers)
28
29
        def forward(self. x):
30
            return self.model(x)
31
```

- BatchNorm and Dropout layers reduce model overfitting.
- Use appropriate model complexity.
- ReLU family of activation functions fix vanishing gradient problem.
- DNN1 is composed of 3 models dnn1a, dnn1b and dnn1dot which combines their scores.

Which particles(decays) mimic signal K*0(decays) in neutral B background

BDT2>0.92

D-veto

Basic selection

e.g. K*0 channel

- Signal selection efficiency drops a lot for K*0 channels (initial starting point)
 - Good tracks: |dr| < 0.5 cm, |dz| < 3 cm, pT>0.1 GeV/c, E<5.5 GeV, $\theta \in CDC$
 - Cuts on inv.mass of K*0
 - KaonID> 0.9: reduce the multiplicity
 - Number of PXD hits: accurate vertex
 - Best candidate selection

Selection efficiency drops from 45.6% to 23.7%

	efficiency		candidate multiplicity
Track clean up	45.6%		13.9
+ 0.8 < Kstar_M < 1.0	39.7%		5.2
+Kstar_K_kaonID > 0.9	30.2%	To be	1.8
+Kstar_K_nPXDHits>0	28.7%	improved	1.8
+Kstar_Pi_nPXDHits > 0	27.4%		1.7
+Best candidate (lowest q2)	23.7%		1.0