*t***-lifetime measurement**

Belle II Germany - FSP

<u>Anselm Baur</u>, Fabian Becherer, Daniel Pitzl, Armine Rostomyan DESY, 01.10.2024

HELMHOLTZ

Motivation and current status

Lepton masses and lifetimes are fundamental parameters of SM

• E.g. Precise values are crucial for lepton universality tests of SM

Current mass values in MeV		Current lifetime values in s		
e:	0.51 ± 3×10 ⁻⁸ %	e: >2.1×10 ³⁷ CL: 90 %		
μ :	105.65 ± 2×10⁻⁶ %	μ: 2.1×10 ⁻⁶ ± 1×10⁻⁴ %		
τ:	1776.86 ± 6×10⁻³ %	<i>τ</i> : 290.3×10 ⁻¹⁵ ± 1×10⁻¹ %		

⇒ More precise measurements for lighter leptons

Lepton Flavor Universality (LFU) in the SM:

• Branching fraction depends on lifetime and mass

$$B_{ au e} \propto B_{\mu e} rac{ au_ au}{ au_\mu} rac{ au_ au}{m_\mu^5} rac{m_ au^5}{m_\mu^5}$$

Most precise measurement by Belle

- Data set size: Belle 711 fb⁻¹
- 3x3 topology used
- 1.1 million data events
- ~98% signal purity

- Main systematic source
 - SVD alignment
 - Fit method related uncertainties
 - Energy and FSR/ISR uncertainties

Decay length in trans. plane

The Belle II measurement overview

Data selection:

- Data set size: 362 fb⁻¹ (Run 1, except Exp. 8, 9)
- 3x1 topology (>11 times BR of 3x3)
- New event selection
 - Make use of superior detector
 - o Achieve comparable/better event quantities with looser selection criteria
- ~ 15 million data events after selection
- Signal purity of 97.5%
- ⇒ Higher data statistic

Production vertex:

- Use beam spot constraint
- Project events on p_T to distinguish between detector resolution and lifetime shift **Decay vertex:**
 - Improved vertex resolution due to PXD
- ⇒ Reduced vertex uncertainties

Signal extraction:

- Use template fit(s)
 - Generate simulated data for different lifetime values (template)
 ⇒ Smearing of detector resolution described by simulated events
 - Use Likelihood fit to estimate best template
- ⇒ Reduced uncertainties from signal extraction/fit method

Template fit(s) to extraction τ -lifetime

$$\mathcal{L}(n^{data}|n^{exp}(\vec{\mu},\vec{\theta})) = \prod_{i} P_{Pois}(n_i^{data}|n_i^{exp}(\vec{\mu},\vec{\theta})) \cdot constr(\vec{\theta})$$
$$n_i^{exp}(\vec{\mu},\vec{\theta}) = \mu_{global} \cdot \left(n_i^{sig,\tau_x}(\vec{\theta}) + \sum_{u}^{bkgs} n_i^u(\vec{\theta}) \right)$$
6

Likelihood model:

- Decay length distribution used as observable
- Signal template depends on lifetime value
- Include free global normalization factor (global eff. correction)
- Systematic unc. included as NP with constraint terms

2-step fit:

- Estimate minimum NLL(τ_x) for each template
- Best model parameters (μ, θ) can differ for each template
- Calculate/Approximate $2 \Delta NLL(\tau_x)$ curve
 - Estimate minimum and confidence level intervals (CL)
 - CL includes systematic uncertainties

Event selection

Event yields

Observable	Symbol	Value/Range	-		-
thrust	V.	[0 9 0 99]	Process	Events	Fraction
visible event energy (CMS)	$E^{\text{vis},*}$	[3.5, 9] GeV			[%]
missing event momentum (CMS)	$p_{\text{evt}}^{\text{miss},*}$	$\geq 0.3 \text{ GeV}$	signal	15363868	97.50
polar angle of missing event mom. (CMS)	$\theta_{p,\mathrm{evt}}^{\mathrm{miss},*}$	[0.45, 2.8] rad	background	394121	2.50
transverse momentum of $\pi_{3p,1}^{\pm}$	$p_{T\pi_{3p,1}}$	[0.3, 5] GeV	uubar	212095	1.35
transverse momentum of $\pi_{3p,2}^{\pm}$	$p_{T\pi_{3p,2}}$	$\geq 0.3 \text{ GeV}$	ssbar	62657	0.40
transverse momentum of $\pi_{3p,2}^+$	$p_{T_{\pi_{3p,3}}}$	$\geq 0.1 \text{ GeV}$	cchar	55953	0.36
polar angle of π_{3p}^{-} directions	$\theta_{\pi_{3p,1}} = \theta_{\pi_{3p,2}} = \theta_{\pi_{3p,3}}$	[0.45, 2.6] rad	ddhar	41559	0.96
transverse momentum of reconstructed τ_{3p}	$p_{T\tau_{3p}}$	≥ I Gev	dabar	41008	0.20
polar angle of reconstructed τ_{3p}^{\pm}	$ heta_{ au_{3p}}$	[0.4, 2.6] rad	llXX	20204	0.13
number of photons 3-prong side	$n_{\gamma_{3p}}$	≤ 1	bbbar	1007	0.01
number of π^0 's 3-prong side	$n_{\pi_{0,3p}}$	== 0	000000	520	<0.01
number of photons 1-prong side	$n_{\gamma_{1p}}$	≤ 1	ee	009	<0.01
number of π^0 1-pring side	$n_{\pi_{0,1_P}}$	≤ 1	eell	99	< 0.01
vertex resolution	$d_{xy,2x1}$	[100, 100] µm	mumu	6	< 0.01
reconstructed decay length	d_{xy}	[-400, 1500] µm	hhISR	3	< 0.01
reconstructed τ_{3p}^{\pm} mass (signal region)	$M_{ au_{3p}}$	[0.75, 1.5] GeV		9	
reconstructed τ_{3p}^{\pm} mass (side region)	$M_{ au_{3p}}$	[1.8, 2.5] GeV			

MC Modeling

Challenge:

- Template fits depend on good MC to data agreement
- Only shape difference in decay length important

What to study?

- 1. Variables with direct impact on reconstructed decay length $\rightarrow \tau$ -3prong transverse momentum and polar angle (p_T and θ)
- 2. Modelling of variables used for event selection (second order)

Source of mismodelling?

- Different processes can have different shapes
 If process compositions not well predict -> Combined shape not well modeled
- 2. Not well modelled detector / physics effects
 - a. FSR/ISR
 - b. Alignment
 - c. Material budget
 - d.

How to handle?

- 1. First remove/reduce effect from 1.
- 2. Study remaining mis-modelling from 2.

Correct process contributions

Idea and challenge

- Estimate yield for each process with different shape separately from data
- Some process difficult to distinguish
- Limit statistic
- -> We are not able to treat each process separately

Solution:

- Derive normalization for groups of processes
 - Find best compromise between sensitivity and finest splitting
- Estimate additional systematic uncertainties for composition of group

What do we do:

- $\tau\tau$: Composition of $\tau \rightarrow 3 \pi$ and other decay mode
 - Estimate combined yield from data
 - Study composition and impact of other decay modes on decay length

ΙΙΧΧ: 99% eeττ, 1% μμττ

- Get yield from MC (no clean control region)
- Derive systematic by varying process by cross section uncertainty of $ee \tau \tau$

ccbar: Processes with different lifetimes

- Derive combined correction from data
- Study impact of composition on shape

qqbar_{usb} and others: No lifetime -> Resolution distribution around 0

Derive yield correction from data (composition insignificant)

Normalization of taupair and qqbar

Goal:

- Estimate normalization of taupair, qqbar_{ush} and ccbar simultaneously
- Use a likelihood fit to estimate yields
 - Use single bin distribution in signal region to constraint taupair
 - No shape information -> No unblinding
 - Use side region to constraint qqbar
 - Use decay length distribution in sideregion to distinguish ccbar
 - Signal contribution negligible -> No sensitivity to τ -lifetime

Results of normalization fit

PoI	result
signal	1.023 ± 0.011
other qqbar	$0.605 {\pm} 0.007$
ccbar	$0.972{\pm}0.019$
llXX	fixed
others	fixed

- ccbar composed of processes with different lifetimes
 - If composition in signal and side-region is different normalization could be wrong
 - If relative composition in signal region is not correct ccbar shape could be wrong

Solution:

- Compare ccbar composition in signal and side-region
 - Trend for large decay length
 - Split ccbar further ?
- Derive systematic uncertainty on ccbar by varying individual ccbar components

Background composition variation

Current status and plans:

- Example estimation of systematic for ccbar contribution in qqbar
 - Currently included as place holder systematic
 - In final setup we will derive systematic unc. in this way for
 - Rel. contributions in ccbar, IIXX and taupair

Strategy:

- Derive systematic uncertainty on composition
- Take ccbar sample and scale it to 0 (down) and 200 % (up) (smaller for final syst. uncs.)
- Re-scale other qqbar background samples to keep overall background normalization (keep other samples unchanged)
- Include shape difference in decay length between varied and nominal distribution as NP

Validation:

- 1. Create pseudo data set in which rel. ccbar contri. in bkg is increased by 50%
- 2. Perform fit with data + mc stat
- 3. Perform fit with additional included background NP
- Without NP large lifetime shift (bias) visible
- Including NP absorbs shift
 - -> Fit can correct wrong ccbar contribution in MC by pulling NP

Remaining MC Mismodeling

How to account for mismodeling?

- We derive for individual detector effects individual systematic uncertainties
- Central values not well estimated in MC -> Mismodelling
 - Estimate better pre-fit values to reduce potential pulls and impact on lifetime

How to estimate pre-fit values?

- Compare kinematic distributions between data and MC
 - Mismodelling arises from detector effects that do not change our true lifetime value
- Cannot distinguish individual sources of the mismodelling
 -> Combined central correction for all sources
- Reweight nominal template based of important observables for decay length distribution
 - Assumption: Similar effects on reconstructed decay length and selected kinematic distribution
 - \circ 2D reweighting in $au_{
 m 3p} \, {f p}_{
 m T}$ and heta
 - Derive systematic on choice of reweighting variables

Summary of systematic uncertainties

MC composition

- Vary composition in MC production
- Currently ccbar variation as placeholder for Bkg
- Kaon composition for signal included (1p contamination missing)

⇒ 2 (-> X) NPs

Reweighting

- Compare shape difference of different reweighting choices
- Include shape differences as systematic uncertainties

⇒ 2 NPs

Vertex resolution

- Estimate pseudo vertex resolution with 2-track vertex vs third track
- Apply shape difference in MC and data as systematic uncertainty

⇒ 1 NPs

Misalignment

- Four different scenarios that partial double counting
- Currently all four scenarios implemented as systematic unc.
- In final setup only include scenario with largest impact

⇒ 4 (->1) NPs

Material budget

- Change density of beam-pipe by ±5 %
- Include as up/dn variation

⇒ 1 NPs

Trigger efficiency

- Estimate rel. trigger eff in MC and data
- Include shape difference as function of decay length as systematic
- ⇒ 1 NPs

Luminosity and tracking efficiency

- Normalization only systematics with 0.45% (0.96%)
- Lifetime only depends on shape -> No impact expected
- ⇒ 2 NPs

Momentum scale

- Vary correction to alternative values
- Estimate each systematic source independent
- Variation can affect MC and/or Data
 - Estimate systematic unc. independent
 - Transfer residuals from data variation on MC templates
- ⇒ 8 NPs

Photon efficiency and energy

- Vary correction to alternative values
- Estimate each systematic source independent
- ⇒ 2 NPs

Fit results with nominal template as pseudo data set

Summary and outlook

Open points

- Misalignment systematic
 - Reduce from 4 to 1 NP in final setup
- Background contribution systematics (ccbar, IIXX, taupair)
 - Switch to final systematic for individual components
- Check impact of IP resolution on result
 - -> Blinded data fit studies
- Some fine tuning of shape fit
 - Binning and window cut in decay length
- Note content almost ready, currently text and layout polishing
- Started with paper skeleton

Next steps:

- Want to start with "blinded" data fit studies (no distribution and lifetime value)
 - We see that our main systematic unc. have quite some correlation
 - Check behaviour of NPs (pulls and constraints) with data
- Run data fits in different region of phase space without unblinding
 - Check difference between the lifetime values of the individual fits -> E.g. as function of τ kinematics and event kinematics
- \Rightarrow Ensure fit and lifetime stability

Event selection examples

- Reduce background contribution
- Remove not well modelled region of phase space

MC reweighting

How do reweight?

• 2D reweighting of $\tau_{3D} p_T$ and θ

How to verify reweighting?

- Check modelling of 1-d projection in $\tau_{3p} p_T$ and θ after reweighting
- Check modelling of other variables after reweighting

Benefits of re-weighting

- Kinematic correction of events
 - Includes effects from ISR/FSR, but also e.g. momentum scale correction
- Reduces impact of mis-modelling on final result

τ-lifetime templates

Challenge:

- Need high MC statistic to be able to improve Belle result
- Cannot produce new MC for each lifetime template

Solution:

- Produce only one nominal template (290.57 fs)
- Produce alternative template via re-weighting
- Weights calculated on generator level
- Weights applied on reconstructed events

Weights:

$$w_{\bar{\tau}} = \frac{\bar{\tau}}{\tau} \cdot \frac{e^{\frac{-t}{\tau}}}{e^{\frac{-t}{\bar{\tau}}}} = \frac{\bar{\tau}}{\tau} \cdot e^{\frac{t}{\bar{\tau}} - \frac{t}{\tau}}$$
$$w_{\bar{\tau}} = \frac{\bar{\tau}}{\tau} \cdot e^{\frac{d}{c}} \cdot \left(\frac{1}{\bar{\tau}} - \frac{1}{\tau}\right)$$

Assumption:

• Resolution function does not depend on decay length

Need precise MC modelling!

Method validation

Fit validation -> Toy study:

- Use radom MC lifetime template to create pseudo data
- Add stat. fluctuation per bin -> multiply random var with gaus(n,√n)

Result:

No bias observed

Lifetime re-weighting validation:

- Produce additional MC samples with shifted lifetime
- Compare to re-weighted distribution
- Fit re-weighted templates to alternative samples as pseudo-data

Result:

No bias observed

MC samples and object definitions

MC samples

- Run-depended Monte carlo MC15rd (4x data set size)
- TauThrust skim used

Signal definition:

• Use all $\tau \rightarrow 3$ prong events

С. 	Process	σ [nb]	$\int \mathcal{L} dt \; [\mathrm{fb}^{-1}\;]$	$N \ [10^6]$
T+T-	$e^+e^- \to \tau^+\tau^-$	0.919	1455.052	1.34×10^3
10	$e^+e^- \rightarrow c\bar{c}$	1.329	1455.052	1933.76
1	$e^+e^- \rightarrow d\bar{d}$	0.401	1455.052	583.48
di	$e^+e^- \rightarrow s\bar{s}$	0.383	1455.052	557.28
	$e^+e^- ightarrow u \bar{u}$	1.605	1455.052	2335.36
1-9	$e^+e^- \rightarrow B^+B^-$	0.54	1455.052	785.73
q	$e^+e^- \rightarrow B^0 \bar{B}^0$	0.51	1455.052	742.08
3	$e^+e^- \rightarrow e^+e^-(\gamma)$	295.8	36.3731	10759.16
æ ($e^+e^- ightarrow \mu^+\mu^-(\gamma)$	1.148	1455.052	1670.40
17.	$e^+e^- ightarrow e^+e^-e^+e^-$	39.55	363.767	14386.98
e_	$e^+e^- \rightarrow e^+e^-\mu^+\mu^-$	18.83	363.767	6849.73
0	$e^+e^- \rightarrow e^+e^-\pi^+\pi^-$	1.895	363.767	689.34
	$e^+e^- \rightarrow e^+e^-K^+K^-$	0.0798	363.767	29.03
X	$e^+e^- \rightarrow e^+e^-p\bar{p}$	0.0117	363.767	4.26
XX	$e^+e^- \to e^+e^-\tau^+\tau^-$	0.01836	363.767	6.68
-	$e^+e^- ightarrow \mu^+\mu^- \tau^+ \tau^-$	1.441×10^{-4}	363.767	5.24×10^{-2}
	$e^+e^- \to \tau^+\tau^-\tau^+\tau^-$	2.114×10^{-7}	363.767	$7.69 imes 10^{-5}$
<u> </u>	$e^+e^- \rightarrow K^+K^-\gamma$	0.0163	363.767	5.93
SR	$e^+e^- \rightarrow K^0 \bar{K}^0 \gamma$	0.008864	363.767	3.22
I_{III}	$e^+e^- \to \pi^+\pi^-\gamma$	0.1667	363.767	60.64
	$e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma$	0.02378	363.767	8.65

Object definitions:

Tracks

Parameter	Value Range	Description
abs(dz)	$< 3 \mathrm{cm}$	distance of the track to IP in z
dr	$< 1 \mathrm{cm}$	point of closest approach in $r-\phi$ plane
nTracks	4	number of tracks
<pre>sum(charge)</pre>	0	net charge of the event

For all tracks pion hypothesis used

-> Impact study (slide)

Photons

Parameter	Value Range
abs(clusterTiming)	< 200
cosTheta	-0.8660 < cosTheta < 0.9563
clusterNHits	> 1.5
isDescendantOfList(pi0)	0
E	$0.2\mathrm{GeV}$
minC2TDist or E	> 40 or > 0.4

minC2TDist or E cut only applied in TauThrust skim

	D	i	0
-		-	-

Parameter	Value Range
abs(clusterTiming)	< 200
cosTheta	-0.8660 < cosTheta < 0.9563
clusterNHits	> 1.5
minC2TDist or E	> 40 or > 0.4
leadingclusterEn	
subleadingclusterEn	Depending on
cosAngle2Photons	detector region
р	
$M_{\gamma 1} + M_{\gamma 2}$	$0.115 < M_{\gamma\gamma} < 0.152 \text{ GeV}$

Pseudo vertex resolution

Definition

• Shortest distance between vertex of the two sub-leading tracks and the leading track

Event selection

- Bad modelling in tails only in tails (events with "bad" vertexing)
- Events in tails are mainly in not well modelled PXD region e.g. clue gaps
- Cutting removes events with bad vertexing -> Mainly event without PXD hits
- \Rightarrow Use windows cut [-100,100] μ m

Systematic uncertainty

- Estimate systematic that covers potential vertex mismodelling between data and MC
- Use shape difference between MC and data after selection

Material budget

- Produced new samples (MC15ri, 1ab⁻¹)
- Use same strategy as previous papers (e.g. tau mass)
 - Vary material density of beampipe by 5% (up/dn)
- This strategy is just an approximation
 - Beampipe shows only ~2% variation
 - PXD and SVD L3 also important (total cumulative 5% variation)
 - -> We put all the variation into the beampipe
- We started with a toy study to check if this under/overestimates the true material budget impact
- Correct implementation would need to vary density of silicon as well (large effort to produce)

 Similar study for photon conversion showed similar size but reversed sign (up/dn variation)

DESY.

Page 22

Misalignment

- Produced new samples (MC15ri, 50fb⁻¹)
 - Hopefully soon 500 fb⁻¹
- Four different alignment scenarios
 - Include all four as independent NPs
- Prompt to proc show by far largest variation (less affect by statistic)
- Other scenarios one magnitude smaller -> more affected by low statistic
 - Multiple zero crossing (reduces impact on lifetime)
 - Impact could be sizable after increasing statistic
- Each scenario gives only a one sided systematic
 - -> Fully symmetrize each variation around nominal -> very conservative

Final stability test

Setup

- Use nominal template as base for pseudo data set
- Add Gauss fluctuation on each bin to mimic data stat fluctuations
- Created 50 pseudo data sets

Results

- No bias observed
- Fit seem stable against data stat. fluctuation

Impact of TauThrust skim

Check impact of TauThrust skim on event selection

- Efficiency over 99.95 % for data and MC
- Efficiency flat over decay length distribution
- ⇒ Impact of TauThrust skim negligible

Trigger efficiency

- Estimate rel. trigger eff. in data and MC
 - Use orthogonal CDC trigger as reference

Trigger Bit	$arepsilon_{ m trg}^{ m signal region}$			
ingger bit	Exp. Data	Sim. Data		
hie	0.856	0.853		
lmlO	0.513	0.512		
lml1	0.123	0.125		
lml2	0.011	0.011		
lml4	0.000	0.000		
lm16	0.088	0.082		
lm17	0.005	0.004		
lm18	0.151	0.149		
lm19	0.215	0.216		
lml10	0.439	0.435		
lml12	0.792	0.792		
lml13	0.058	0.055		
Total	0.949	0.944		

rel. eff. trg (ecl) = N(ecl \land cdc) / N(cdc)

- Derive systematic from difference between data and MC
- Include systematic in Likelihood as NP

-> Only one-sided variation -> Fully symmetrized around nominal (very conservative)

Contributions of tau decays

- Check $\tau \rightarrow 3$ prong events with Kaons in decay
- K[±] sizeable but small contribution (4.39%)
 - Only trend around 0 in decay length
 -> Different vertex resolution
 - Checked impact on tau lifetime fit by vary K[±] by branching fraction uncertainty
 No impact on result
- K⁰_s negligible contribution (0.06%)

⇒ Decay length distribution not affected by Kaon decay mods

Modelling before after yield correction

• Modelling of important variables improved after yield correction

-> Mis-modelling partially introduced by wrong signal to background ratio

DESY.

MC reweighting

How to assign a systematic uncertainty

- Use two "projected" 3D-reweightings
 - One in all three pions p_{T}
 - One in all three pions θ
- Estimate difference between both 3D-reweightings and 2D- $\tau_{_{\rm 3p}}$ in the decay length distribution
- Symmetrize both differences to create up and down variation for each
- Include both as two independent NPs in Likelihood model

ccbar size impact

Group \bkg var.	200~%	150 %	130~%	120 %	110 $\%$
total	0.181	0.178	0.174	0.172	0.170
syst	0.161	0.158	0.153	0.151	0.149
alignment	0.088	0.084	0.081	0.080	0.082
material	0.083	0.076	0.066	0.063	0.057
bkg contri.	0.065	0.056	0.041	0.032	0.018
mc_stat	0.072	0.069	0.066	0.066	0.063
trigger	0.053	0.056	0.055	0.058	0.060
photon_eff	0.027	0.033	0.026	0.032	0.032
reweighting	0.019	0.019	0.019	0.019	0.026
vertex	0.000	0.000	0.000	0.000	0.000
photon_en	0.000	0.000	0.000	0.000	0.000

Lumi and tracking eff. uncertainty

- Both uncertainties have no shape component
- Implement both as normalization uncertainty

Lumi:

https://arxiv.org/abs/2407.00965

• Lumi Paper: 364.49 +/- 1.64 (0.45 %)

Tracking eff. uncertainty:

https://indico.belle2.org/event/8043/contributions/51113/attachme nts/20577/30471/tau eff f2f 31jan23.pdf

- 0.24 % per track (4-tracks: 0.9976⁴ = 0.9904)
- Unc: 0.96%
- Impact unc. of mu_sig and mu_bkg in normalization fit
 -> Input uncertainty propagates to fit unc.
- No impact on lifetime measurement estimated via shape only

	mu_sig_unc	mu_bkg_unc
data + mc stat.	0.03 %	0.25 %
+ lumi.	0.45 %	0.52 %
+ track. eff.	0.97 %	1.00 %
+ lumi. and track. eff	1.07 %	1.10 %

Background composition IIXX

Overview:

- IIXX contains τ -decays -> has lifetime (similar as ccbar)
- IIXX one magnitude smaller than ccbar but has different decay shift

Suggestion:

- Vary as for ccbar IIXX variation 0 (down) and 200 % (up) (what size is reasonable?)
- Re-scale other background samples (except of ccbar) to keep overall background normalization
- Include as additional NP in fit

-> Until now not included in default fit setup

Use the sideband region after 2 and 3 Pol scaling

- Default 2 Pol fit
 - One Pol for signal
 - One Pol for tot. bkg (all bkg scaled)
- Two different 2 Pol fit setting
 - Both fits have
 - i. One Pol for signal
 - ii. One Pol for ccbar
 - iii. Fix IIXX
 - First fit has in add.
 - i. One Pol for other qqbar
 - ii. fixed other bkg
 - Second fit has in add.
 - i. One Pol that includes other qqbar and other bkg
- Both 3 Pol results very similar and no differences visible in post-fit distribution
- 2 Pol not sufficient to correct decay length distribution, while 3 Pol is
- Use 3 Pol fit to correct ccbar and others separately
- Use uncertainty on ccbar Pol as borders for ccbar variation systematic
- Try to find additional sideregion for IIXX to correct it as well
- Some technical things was needed to be implemented

PXD and vertex resolution

- PXD not well modelled in MC (E.g. alignment missing in MC)
 - E.g. Cutting directly on PXD hits increases mismodelling in ϕ
 - But also other modelling of other variables get worse
- Use instead pseudo vertex resolution
 - Bad modelling in tails only in tails (events with "bad" vertexing)
 - Events in tails are mainly in not well modelled PXD region e.g. clue gaps
 - Cutting removes events with bad vertexing/PXD modelling
- Use shape difference between MC and data as systematic uncertainty

\Rightarrow Use windows cut [-100,100] μ m

DESY.

Smoothing

Smoothing:

- 1. Estimate decay length distribution for alternative nominal and variation
 - a. Use same binning as default template
- 2. Calculate ratio between them
- 3. Remove normalization part (just take shape difference)
- 4. Smooth histograms with neighbouring bins, For each bin calculate variation combined with neighbouring bins
- 5. Multiply ratio to default template bin-by-bin
 - -> Final variation template

Con:

• Events/Bins used in calculation of multiple variations

Pro:

• No sharp edge between two neighbours

Symmetrisation

flip a

Directions of variation:

Bins with variation in different directions

• Keep both

Bins with variation in same directions

- Keep sign of larger variation
- Mirror smaller around nominal **Absolute size of variation**:

Absolute size of variation

• Keep size of both

sym. average

Directions of variation:

Bins with variation in different directions

Keep both

Bins with variation in same directions

- Keep sign of larger variation
- Mirror smaller around nominal

Absolute size of variation:

• Set absolute size of both to abs. average of both

sym. max

Directions of variation:

Bins with variation in different directions

• Keep both

Bins with variation in same directions

- Keep sign of larger variation
- Mirror smaller around nominal

Absolute size of variation:

• Set absolute size of both to maximum of both

taupair split

IIXX split

