-lifetime measurement

Anselm Baur, Fabian Becherer, Daniel Pitzl, Armine Rostomyan DESY, 01.10.2024

Surname: Lepton

DESY.

You are here

Belle II Germany - FSP

Motivation and current status

Lepton masses and lifetimes are fundamental parameters of SM

• E.g. Precise values are crucial for lepton universality tests of SM

⇒ **More precise measurements for lighter leptons**

Lepton Flavor Universality (LFU) in the SM:

● Branching fraction depends on lifetime and mass

$$
B_{\tau e} \propto B_{\mu e} \frac{\tau_{\tau}}{\tau_{\mu}} \frac{m_{\tau}^5}{m_{\mu}^5}
$$

Most precise measurement by Belle

- Data set size: Belle 711 fb⁻¹
- 3x3 topology used
- 1.1 million data events
- \bullet ~98% signal purity
- Main systematic source
	- SVD alignment
	- Fit method related uncertainties
	- Energy and FSR/ISR uncertainties

Decay length in trans. plane

The Belle II measurement overview

Data selection:

- Data set size: 362 fb⁻¹ (Run 1, except Exp. 8, 9)
- $3x1$ topology (>11 times BR of $3x3$)
- New event selection
	- Make use of superior detector
	- Achieve comparable/better event quantities with looser selection criteria
- \sim 15 million data events after selection
- Signal purity of 97.5%
- ⇒ **Higher data statistic**

Production vertex:

- Use beam spot constraint
- \bullet Project events on p_T to distinguish between detector resolution and lifetime shift **Decay vertex:**
	- Improved vertex resolution due to PXD
- ⇒ **Reduced vertex uncertainties**

Signal extraction:

- Use template fit(s)
	- Generate simulated data for different lifetime values (template) ⇒ Smearing of detector resolution described by simulated events
	- Use Likelihood fit to estimate best template
- ⇒ **Reduced uncertainties from signal extraction/fit method**

Template fit(s) to extraction τ **-lifetime**

$$
\mathcal{L}(n^{data}|n^{exp}(\vec{\mu},\vec{\theta})) = \prod_{i} P_{Pois}(n_i^{data}|n_i^{exp}(\vec{\mu},\vec{\theta})) \cdot constr(\vec{\theta})
$$

$$
n_i^{exp}(\vec{\mu},\vec{\theta}) = \mu_{global} \cdot \left(n_i^{sig,\tau_x}(\vec{\theta}) + \sum_{u}^{bkgs} n_i^{u}(\vec{\theta})\right)
$$

Likelihood model:

- Decay length distribution used as observable
- Signal template depends on lifetime value
- Include free global normalization factor (global eff. correction)
- Systematic unc. included as NP with constraint terms

2-step fit:

- **•** Estimate minimum NLL(τ_{x}) for each template
- **•** Best model parameters (μ,θ) can differ for each template
- Calculate/Approximate 2 \triangle NLL (τ_{x}) curve
	- Estimate minimum and confidence level intervals (CL)
	- CL includes systematic uncertainties

Event selection

Event yields

MC Modeling

Challenge:

- Template fits depend on good MC to data agreement
- Only shape difference in decay length important

What to study?

- 1. Variables with direct impact on reconstructed decay length \Rightarrow τ -3prong transverse momentum and polar angle (p_T and θ)
- 2. Modelling of variables used for event selection (second order)

Source of mismodelling?

- 1. Different processes can have different shapes If process compositions not well predict -> Combined shape not well modeled
- 2. Not well modelled detector / physics effects
	- a. FSR/ISR
	- b. Alignment
	- c. Material budget
	- d .

How to handle?

- First remove/reduce effect from 1.
- 2. Study remaining mis-modelling from 2.

Correct process contributions

Idea and challenge

- Estimate yield for each process with different shape separately from data
- Some process difficult to distinguish
Limit statistic
-
- **-> We are not able to treat each process separately**

Solution:

- - Derive normalization for groups of processes
○ Find best compromise between sensitivity and finest splitting
- Estimate additional systematic uncertainties for composition of group

What do we do:

- $\tau\tau$: Composition of τ -> 3 π and other decay mode
- Estimate combined yield from data
- Study composition and impact of other decay modes on decay length

llXX: 99% ee τ , 1% $\mu\mu\tau\tau$

- Get yield from MC (no clean control region)
- Derive systematic by varying process by cross section uncertainty of ee $\tau\tau$

ccbar: Processes with different lifetimes
● Derive combined correction from data

-
- Study impact of composition on shape

qqbar_{usb} and others: No lifetime -> Resolution distribution around 0
● Derive yield correction from data (composition insignificant)

Normalization of taupair and qqbar

Goal:

- Estimate normalization of taupair, qqbar $_{\text{ush}}$ and ccbar simultaneously
- Use a likelihood fit to estimate vields
	- Use single bin distribution in signal region to constraint taupair
		- No shape information -> No unblinding
	- Use side region to constraint qqbar
		- Use decay length distribution in sideregion to distinguish ccbar
		- Signal contribution negligible \geq No sensitivity to τ -lifetime

$$
r_{i,side}^{exp}(\vec{\mu}, \vec{\theta}) = \mu_{sig} \cdot n_{i,side}^{sig}(\vec{\theta}) + \mu_{ccbar} \cdot n_{i,side}^{cchar}(\vec{\theta}) + \mu_{qqbar_{uds}} \cdot n_{i,side}^{qqbar_{uds}}(\vec{\theta}) + \sum_{u}^{other \; bkgs} n_{i,side}^{u}(\vec{\theta})
$$

Results of normalization fit

- ccbar composed of processes with different lifetimes
	- If composition in signal and side-region is different normalization could be wrong
	- If relative composition in signal region is not correct ccbar shape could be wrong

Solution:

- Compare ccbar composition in signal and side-region
	- Trend for large decay length
	- Split ccbar further ?
- Derive systematic uncertainty on ccbar by varying individual ccbar components

Background composition variation

Current status and plans:

- Example estimation of systematic for ccbar contribution in qqbar
	- Currently included as place holder systematic
	- In final setup we will derive systematic unc. in this way for
		- Rel. contributions in ccbar, IIXX and taupair

Strategy:

- Derive systematic uncertainty on composition
- Take ccbar sample and scale it to 0 (down) and 200% (up) (smaller for final syst. uncs.)
- Re-scale other qqbar background samples to keep overall background normalization (keep other samples unchanged)
- Include shape difference in decay length between varied and nominal distribution as NP

Validation:

- 1. Create pseudo data set in which rel. ccbar contri. in bkg is increased by 50%
- 2. Perform fit with data + mc stat
- 3. Perform fit with additional included background NP
- Without NP large lifetime shift (bias) visible
- Including NP absorbs shift
	- -> Fit can correct wrong ccbar contribution in MC by pulling NP

Remaining MC Mismodeling

How to account for mismodeling?

- We derive for individual detector effects individual systematic uncertainties
- Central values not well estimated in MC -> Mismodelling
	- Estimate better pre-fit values to reduce potential pulls and impact on lifetime

How to estimate pre-fit values?

- Compare kinematic distributions between data and MC
	- Mismodelling arises from detector effects that do not change our true lifetime value
- Cannot distinguish individual sources of the mismodelling -> Combined central correction for all sources
- Reweight nominal template based of important observables for decay length distribution
	- Assumption: Similar effects on reconstructed decay length and selected kinematic distribution
	- \circ 2D reweighting in τ_{3p} **p_T** and θ
	- Derive systematic on choice of reweighting variables

Summary of systematic uncertainties

MC composition

- Vary composition in MC production
- Currently ccbar variation as placeholder for Bkg
- Kaon composition for signal included (1p contamination missing)

⇒ **2 (-> X) NPs**

Reweighting

- Compare shape difference of different reweighting choices
- Include shape differences as systematic uncertainties

⇒ **2 NPs**

Vertex resolution

- Estimate pseudo vertex resolution with 2-track vertex vs third track
- Apply shape difference in MC and data as systematic uncertainty ⇒ **1 NPs**

Misalignment

- Four different scenarios that partial double counting
- Currently all four scenarios implemented as systematic unc.
- In final setup only include scenario with largest impact

⇒ **4 (->1) NPs**

Material budget

- Change density of beam-pipe by $±5$ %
- Include as up/dn variation

⇒ **1 NPs**

Trigger efficiency

- Estimate rel. trigger eff in MC and data
- Include shape difference as function of decay length as systematic
- ⇒ **1 NPs**

Luminosity and tracking efficiency

- Normalization only systematics with 0.45% (0.96%)
- Lifetime only depends on shape -> No impact expected
- ⇒ **2 NPs**

Momentum scale

- Vary correction to alternative values
- Estimate each systematic source independent
- Variation can affect MC and/or Data
	- Estimate systematic unc. independent
	- Transfer residuals from data variation on MC templates
- ⇒ **8 NPs**

Photon efficiency and energy

- Vary correction to alternative values
- Estimate each systematic source independent
- ⇒ **2 NPs**

Fit results with nominal template as pseudo data set

Summary and outlook

Open points

- Misalignment systematic
	- Reduce from 4 to 1 NP in final setup
- Background contribution systematics (ccbar, IIXX, taupair)
	- Switch to final systematic for individual components
- Check impact of IP resolution on result
	- -> Blinded data fit studies
- Some fine tuning of shape fit
	- Binning and window cut in decay length
- Note content almost ready, currently text and layout polishing
- Started with paper skeleton

Next steps:

- Want to start with "blinded" data fit studies (no distribution and lifetime value)
	- We see that our main systematic unc. have quite some correlation
	- Check behaviour of NPs (pulls and constraints) with data
- Run data fits in different region of phase space without unblinding
	- Check difference between the lifetime values of the individual fits -> E.g. as function of τ kinematics and event kinematics
- ⇒ Ensure fit and lifetime stability

Event selection examples

- Reduce background contribution
- Remove not well modelled region of phase space

MC reweighting

How do reweight?

 \bullet 2D reweighting of $\tau_{_{3\text{p}}}$ $\mathsf{p}_{_{\text{T}}}$ and θ

How to verify reweighting?

- Check modelling of 1-d projection in τ_{3p} p_T and θ after reweighting
- Check modelling of other variables after reweighting

Benefits of re-weighting

- Kinematic correction of events
	- Includes effects from ISR/FSR, but also e.g. momentum scale correction
- Reduces impact of mis-modelling on final result

-lifetime templates

Challenge:

- Need high MC statistic to be able to improve Belle result
- Cannot produce new MC for each lifetime template

Solution:

- Produce only one nominal template (290.57 fs)
- Produce alternative template via re-weighting
- Weights calculated on generator level
- Weights applied on reconstructed events

Weights:

$$
w_{\bar{\tau}} = \frac{\bar{\tau}}{\tau} \cdot \frac{e^{\frac{-t}{\tau}}}{e^{\frac{-t}{\bar{\tau}}}} = \frac{\bar{\tau}}{\tau} \cdot e^{\frac{t}{\bar{\tau}} - \frac{t}{\tau}}
$$

$$
w_{\bar{\tau}} = \frac{\bar{\tau}}{\tau} \cdot e^{\frac{d}{c} \cdot \left(\frac{1}{\bar{\tau}} - \frac{1}{\tau}\right)}
$$

Assumption:

● Resolution function does not depend on decay length

Need precise MC modelling!

Method validation

- Use radom MC lifetime template to create pseudo data
- Add stat. fluctuation per bin -> multiply random var with gaus(n, \sqrt{n})

Result:

No bias observed

Lifetime re-weighting validation:

- Produce additional MC samples with shifted lifetime
- Compare to re-weighted distribution
- Fit re-weighted templates to alternative samples as pseudo-data

Result:

No bias observed

MC samples and object definitions

MC samples

- Run-depended Monte carlo MC15rd (4x data set size)
- TauThrust skim used

Signal definition:

• Use all $\tau \rightarrow 3$ prong events

 \mathbf{p} $M_{\gamma1}$ +

Object definitions:

For all tracks pion hypothesis used

-> Impact study ([slide](#page-26-0))

Tracks Photons Pi0

minC2TDist or E cut only applied in TauThrust skim

Pseudo vertex resolution

Definition

Shortest distance between vertex of the two sub-leading tracks and the leading track

Event selection

- Bad modelling in tails only in tails (events with "bad" vertexing)
- Events in tails are mainly in not well modelled PXD region e.g. clue gaps
- Cutting removes events with bad vertexing -> Mainly event without PXD hits
- ⇒ **Use windows cut [-100,100] m**

Systematic uncertainty

- Estimate systematic that covers potential vertex mismodelling between data and MC
- Use shape difference between MC and data after selection

Material budget

- Produced new samples (MC15ri, 1ab⁻¹)
- Use same strategy as previous papers (e.g. tau mass)
	- Vary material density of beampipe by 5% (up/dn)
- This strategy is just an approximation
	- Beampipe shows only ~2% variation
	- **PXD and SVD L3 also important (total cumulative** 5% variation)
	- -> We put all the variation into the beampipe
- We started with a toy study to check if this under/overestimates the true material budget impact
- Correct implementation would need to vary density of silicon as well (large effort to produce)

Similar study for photon conversion showed similar size but reversed sign (up/dn variation)

Misalignment

- Produced new samples (MC15ri, 50fb⁻¹)
	- Hopefully soon 500 fb⁻¹
- Four different alignment scenarios
	- Include all four as independent NPs
- Prompt to proc show by far largest variation (less affect by statistic)
- Other scenarios one magnitude smaller -> more affected by low statistic
	- Multiple zero crossing (reduces impact on lifetime)
	- Impact could be sizable after increasing statistic
- Each scenario gives only a one sided systematic
	- -> Fully symmetrize each variation around nominal -> very conservative

Belle II $\int \mathcal{L} dt = 362 fb^{-1}$ $\times 10^6$ (Simulation) nomina 1.0 alignment prompt to proc dn events alignment prompt to proc up $+0.1$ fs 0.5 -0.1 fs **6%** 1.04 1.02 variation
nominal 1.00 0.98 0.96 0.94 -250 250 500 750 1000 1250 1500 Ω proj. trans. decay length in µm **Belle II**

Final stability test

Setup

- Use nominal template as base for pseudo data set
- Add Gauss fluctuation on each bin to mimic data stat fluctuations
- Created 50 pseudo data sets

Results

- No bias observed
- Fit seem stable against data stat. fluctuation

Impact of TauThrust skim

● Check impact of TauThrust skim on event selection

- Efficiency over 99.95 % for data and MC
- Efficiency flat over decay length distribution
- ⇒ Impact of TauThrust skim negligible

Trigger efficiency

- Estimate rel. trigger eff. in data and MC
	- Use orthogonal CDC trigger as reference

rel. eff. trg (ecl) = $N(\text{ecl } \wedge \text{ cdc}) / N(\text{cdc})$

- Derive systematic from difference between data and MC
- Include systematic in Likelihood as NP

-> Only one-sided variation -> Fully symmetrized around nominal (very conservative)

Contributions of tau decays

- Check $\tau \rightarrow 3$ prong events with Kaons in decay
- \bullet K[±] sizeable but small contribution (4.39%)
	- Only trend around 0 in decay length -> Different vertex resolution
	- \circ Checked impact on tau lifetime fit by vary K^{\pm} by branching fraction uncertainty -> No impact on result
- \bullet K^0 _s $_{\rm s}$ negligible contribution (0.06%)

⇒ **Decay length distribution not affected by Kaon decay mods**

Modelling before after yield correction

● Modelling of important variables improved after yield correction

DESY. Page 28 The Section of the Page 28 Page 28

MC reweighting

How to assign a systematic uncertainty

- **●** Use two "projected" 3D-reweightings
	- \circ One in all three pions p_T
 \circ One in all three pions θ
	- One in all three pions θ
- **•** Estimate difference between both 3D-reweightings and $2D \tau_{3p}$ in the decay length distribution
- Symmetrize both differences to create up and down variation for each
- Include both as two independent NPs in Likelihood model

ccbar size impact

Lumi and tracking eff. uncertainty

- Both uncertainties have no shape component
- Implement both as normalization uncertainty

Lumi:

<https://arxiv.org/abs/2407.00965>

● Lumi Paper: 364.49 +/- 1.64 (0.45 %)

Tracking eff. uncertainty:

[https://indico.belle2.org/event/8043/contributions/51113/attachme](https://indico.belle2.org/event/8043/contributions/51113/attachments/20577/30471/tau_eff_f2f_31jan23.pdf) [nts/20577/30471/tau_eff_f2f_31jan23.pdf](https://indico.belle2.org/event/8043/contributions/51113/attachments/20577/30471/tau_eff_f2f_31jan23.pdf)

- \bullet 0.24 % per track (4-tracks: 0.9976⁴ = 0.9904)
-
- Impact unc. of mu_sig and mu_bkg in normalization fit -> Input uncertainty propagates to fit unc.
- No impact on lifetime measurement estimated via shape only

Background composition llXX

Overview:

- \bullet IIXX contains τ -decays -> has lifetime (similar as ccbar)
- IIXX one magnitude smaller than ccbar but has different decay shift

Suggestion:

- Vary as for ccbar IIXX variation 0 (down) and 200 % (up) (what size is reasonable?)
- Re-scale other background samples (except of ccbar) to keep overall background normalization
- Include as additional NP in fit
- -> Until now not included in default fit setup

Use the sideband region after 2 and 3 PoI scaling

- - One PoI for signal
	- One PoI for tot. bkg (all bkg scaled)
- Two different 2 Pol fit setting
	- Both fits have
		- i. One PoI for signal
		- ii. One PoI for ccbar
		- iii. Fix llXX
	- First fit has in add.
		- i. One PoI for other qqbar
		- ii. fixed other bkg
	- Second fit has in add.
		- i. One PoI that includes other qqbar and other bkg
- Both 3 PoI results very similar and no differences visible in post-fit distribution
- 2 PoI not sufficient to correct decay length distribution, while 3 PoI is
- Use 3 PoI fit to correct ccbar and others separately
- Use uncertainty on ccbar PoI as borders for ccbar variation
- Try to find additional sideregion for IIXX to correct it as well
- Some technical things was needed to be implemented

PXD and vertex resolution MC

- PXD not well modelled in MC (E.g. alignment missing in MC)
	- \circ E.g. Cutting directly on PXD hits increases mismodelling in ϕ
	- But also other modelling of other variables get worse
- Use instead pseudo vertex resolution
	- Bad modelling in tails only in tails (events with "bad" vertexing)
	- Events in tails are mainly in not well modelled PXD region e.g. clue gaps
	- Cutting removes events with bad vertexing/PXD modelling
- Use shape difference between MC and data as systematic uncertainty

[⇒] **Use windows cut [-100,100] ^m** alignment

Smoothing

Smoothing:

- 1. Estimate decay length distribution for alternative nominal and variation
	- a. Use same binning as default template
- 2. Calculate ratio between them
- 3. Remove normalization part (just take shape difference)
- 4. Smooth histograms with neighbouring bins, For each bin calculate variation combined with neighbouring bins
- 5. Multiply ratio to default template bin-by-bin
	- -> Final variation template

Con:

● Events/Bins used in calculation of multiple variations

Pro:

• No sharp edge between two neighbours

Symmetrisation

Directions of variation:

Bins with variation in different directions

• Keep both

Bins with variation in same directions

- Keep sign of larger variation
- Mirror smaller around nominal

Absolute size of variation:

Keep size of both

flip a sym. average syme syme syme sym. All the sym. max

Directions of variation:

Bins with variation in different directions

• Keep both

Bins with variation in same directions

- Keep sign of larger variation
- Mirror smaller around nominal

Absolute size of variation:

Set absolute size of both to abs. average of both

Directions of variation:

Bins with variation in different directions

• Keep both

Bins with variation in same directions

- Keep sign of larger variation
- Mirror smaller around nominal

Absolute size of variation:

Set absolute size of both to maximum of both

taupair split lawsuis and split lawsuis and split lawsuis split lawsuis and split lawsuis split lawsuis and split

